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Abstract: Field experiments were conducted to analyze the effectiveness of the crop stress index
(CWSI) obtained by infrared thermal imaging to indicate crop water status, and to determine the
appropriate CWSI threshold range for wheat at different growth stages. The results showed that the
sensitivity of plant physiological parameters to soil water was different at different growth stages.
The sensitivity of stomatal conductance (Gs) and transpiration rate (Tr) to soil water was higher
than that of leaf relative water content (LRWC) and photosynthetic rate (Pn). The characteristics
of plant physiology and biomass (yield) at each growth stage showed that the plant production
would not suffer from drought stress as long as the soil water content (SWC) was maintained above
57.0% of the field water capacity (FWC) during the jointing stage, 63.0% of the FWC during the
flowering stage and 60.0% of the FWC during the filling stage. Correlation analysis showed that the
correlation of CWSI with Gs, Tr and Pn was lower than that with LRWC and SWC at the jointing
stage. CWSI was extremely significantly negatively correlated with SWC and LRWC (p < 0.01), but
significantly negatively correlated with Gs, Tr and Pn (p < 0.05). At the flowering stage, CWSI was
extremely significantly negatively correlated with all physiological and soil parameters (p < 0.01).
The regression analysis showed that the CWSI of winter wheat was correlated with biomass (grain
yield) in a curvilinear relationship at each growth stage. When the CWSI increased to a certain extent,
the biomass and yield showed a decreasing trend with the increase in CWSI. Comprehensive analysis
of all indexes showed that CWSI can be used as a decision-making index to guide the water-saving
irrigation of winter wheat, as long as the CWSI threshold of plants was maintained at 0.26–0.38
during the jointing stage, 0.27–0.32 during the flowering stage and 0.30–0.36 during the filling stage,
which could not only avoid the adverse effects of water stress on crop production, but also achieve
the purpose of water saving.

Keywords: crop canopy temperature; infrared thermography; winter wheat; CWSI; water deficit
diagnosis

1. Introduction

Winter wheat is the main food crop in the Huang–Huai–Hai region of China. In recent
years, the water-saving irrigation technology of winter wheat based on drip irrigation and
sprinkler irrigation has shown remarkable water-saving effects by measuring soil moisture
in real-time to guide crop irrigation [1–3]. However, due to the uneven distribution of soil
moisture in the field and the lag of soil moisture monitoring, the traditional monitoring
method of soil moisture lacks the ability to quickly, accurately and timely assess the crop
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water condition, and fails to meet the needs of guiding the precision irrigation of crops [4].
The real-time monitoring and scientific diagnosis of crop water status are the prerequisites
for the timely and accurate irrigation of crops [5]. Although plant physiological indexes
such as plant water content and leaf water potential are good indicators to reflect crop water
status, they are relatively time-consuming in the measurement process, and the influence of
spatial distribution differences of plant individuals and sample number limitations during
field sampling leads to large errors in the measurement results [6,7]. Therefore, it is of great
significance to choose scientific crop water monitoring methods for the timely and accurate
diagnosis of crop water deficit and reasonable irrigation decisions.

Crop canopy temperature is an important indicator of the water status of plant
populations [8]. With the advent of thermal imaging cameras, it provides a reliable means
for quickly and easily obtaining canopy temperature information and the timely and ac-
curate diagnosis of crop moisture status [9]. The remote sensing monitoring of canopy
temperature to diagnose crop water status overcomes the limitation of traditional methods
to represent the overall population with individual indicators, and it realizes the rapid
and accurate determination of plant population water status in a large range, becoming a
superior crop water diagnosis method than the determination of soil moisture and plant
physiological indicators [10]. However, when using infrared thermal imaging cameras
to extract canopy temperature, it is not only affected by environmental factors such as
solar radiation, wind speed, air temperature and humidity, but also by the plant’s own
physiological factors [11,12]. During the growth process of wheat, the environment is com-
plex and changeable, and various environmental factors interact to affect the crop canopy
temperature [13]. In addition, winter wheat has different drought tolerances at different
growth stages, resulting in different sensitivities of plant physiological indicators (such as
plant water content, Gs and Tr) to soil moisture [14]. These physiological indexes can not
only reflect crop water status but also directly affect crop canopy temperature. Therefore,
when using the canopy temperature information obtained by infrared thermography to
diagnose crop water status, it is necessary to analyze the sensitivity of each physiological
index to soil moisture and the correlation between canopy temperature information and
various physiological indexes, to scientifically and accurately determine the water deficit
of crops at each growth stage.

In this study, based on the analysis of different adaptation characteristics of plant
physiological indexes to soil water at different growth stages of winter wheat, correlation
analysis was conducted between the canopy temperature information obtained by infrared
thermal imaging and soil water and plant physiological indexes, to study the effectiveness
of canopy temperature information based on the infrared thermal image to diagnose crop
water status. On the basis of the above research, canopy temperature information, biomass,
yield and other indicators in different growth stages of winter wheat were comprehensively
analyzed to determine the threshold range of suitable water for plants based on canopy
temperature information in each growth stage, to guide crop irrigation.

2. Results
2.1. Characteristics of Soil Moisture and Yield under Different Treatments

Different irrigation treatments significantly affected the soil water status, and there
were significant differences in SWC among different treatments at jointing, flowering
and filling stages (Figure 1). The biomass and grain yield of crops were also affected by
irrigation amounts. At the jointing stage, there was no significant difference in biomass
among W1, W2 and CK, while the biomass of W3 was significantly reduced compared with
that of CK (Table 1). In the two test years, the SWC of W3 at this stage was 57.4% FWC
(2022a) and 57.6% FWC (2023a), respectively. At the flowering stage, the biomass of W1 was
similar to that of CK, but the biomass of W2 and W3 decreased significantly compared with
that of CK. In the two test years, the SWC of W2 at this stage was 63.4% FWC (2022a) and
62.3% FWC (2023a), respectively. At maturity, there was no significant difference in grain
yield between W1 and CK, while the grain yield of W2 and W3 decreased significantly
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compared with that of CK. In the two test years, the SWC of W2 at the filling stage was
60.9% FWC (2022a) and 60.1% FWC (2023a), respectively. In addition, W1 had a higher
harvest index compared with CK. Different irrigation treatments also significantly affected
irrigation water use efficiency (IWUE) by affecting crop yield. The grain yield of W1 was
not significantly different from that of CK, but it reduced the amount of irrigation water
and therefore improved IWUE. The results of soil water and biomass (grain yield) in the
two years showed that the plant production would not suffer from drought stress as long
as SWC was maintained above 57.0% FWC during the jointing stage, 63.0% FWC during
the flowering stage and 60.0% FWC during the filling stage.
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Figure 1. Soil water content (SWC) under different treatments. Different letters in the same growing
stage show significant differences among treatments (p < 0.05). CK: adequate irrigation; W1: moderate
irrigation; W2: slight deficit irrigation; W3: severe deficit irrigation.

Table 1. Biomass, yield and IWUE of different treatments.

Treatments

Biomass at Jointing
Stage (kg ha−1)

Biomass at
Flowering Stage
(kg ha−1)

Grain Yield
(kg ha−1) Harvest Index Total Irrigation

Water (mm)
IWUE
(kg ha−1 mm−1)

2022 2023 2022 2023 2022 2023 2022 2023 2022 2023 2022 2023

CK 3622.5a 3501.4a 8951.2a 8916.8a 8601.3a 8692.4a 0.39b 0.40b 300 300 30.3b 30.0b
W1 3597.6a 3483.6a 8917.8a 8866.5a 8488.4a 8586.8a 0.43a 0.44a 240 240 36.9a 37.3a
W2 3584.9a 3444.7a 7438.6b 7700.7b 6501.7b 6565.1b 0.40b 0.41b 180 180 36.1a 36.5a
W3 3045.3b 2854.2b 5856.3c 5685.7c 4319.3c 4086.0c 0.39b 0.37c 160 160 27.0c 25.5c

Different letters in the same year imply significant differences between different treatments at p < 0.05. IWUE:
irrigation water use efficiency. CK: adequate irrigation; W1: moderate irrigation; W2: slight deficit irrigation;
W3: severe deficit irrigation.

2.2. Stomatal Behavior and Water Status of Plants under Different Treatments

Different irrigation treatments had different effects on plant water status by affecting
water absorption by the roots. At the jointing stage, the LRWC of W1 and W2 was the same
as that of CK and higher than that of W3. At the flowering and filling stages, the LRWC
of W1 was the same as that of CK, those of W2 and W3 were significantly lower than that
of CK, and W3 had the lowest LRWC (Figure 2). Irrigation has an important effect on the
stomatal behavior of plants by influencing their water status. At the jointing stage, the Gs
and Tr of W1 were the same as those of CK, but those of W2 and W3 were lower than those
of CK. At the flowering stage and filling stage, the Gs and Tr of plants in W1, W2 and W3
were lower compared to those of CK (Figure 3). The Pn of plants was different from Gs and
Tr. At the jointing stage, the Pn in W1 and W2 was similar to that in CK, but that in W3 was
significantly lower than that in CK. There was no significant difference in Pn between W1
and CK at the flowering stage and filling stage, but the Pn of W2 was lower than that of
CK, and W3 had the lowest Pn. It can be seen that plant physiological parameters have
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various sensitivities to soil water in different growth stages, and the sensitivity of Gs and
Tr to soil water was higher than that of LRWC and Pn.
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Figure 2. LRWC of plants under different treatments. Different letters in the same growing stage
show significant differences among treatments (p < 0.05). CK: adequate irrigation; W1: moderate
irrigation; W2: slight deficit irrigation; W3: severe deficit irrigation.
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Figure 3. Stomatal behavior of plants under different treatments. Different letters in the same growing
stage show significant differences among treatments (p < 0.05). CK: adequate irrigation; W1: moderate
irrigation; W2: slight deficit irrigation; W3: severe deficit irrigation.

2.3. Correlation Analysis of CWSI with SWC, LRWC and Stomatal Characteristic Parameters

The CWSI of crops showed an increasing trend with the decrease in irrigation water
(Figure 4). However, it is important to note that the CWSI of crops under different treat-
ments exhibited distinct characteristics during the three test periods. At the jointing stage,
the CWSI of W1 was similar to that of CK, and the CWSI of W2 and W3 was significantly
greater than that of CK. At the flowering and filling stages, the CWSI of W1, W2 and W3
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was significantly higher than that of CK, and W3 had the highest CWSI, followed by W2.
Correlation analysis showed that the correlation of CWSI with Gs, Tr and Pn was lower
than that with LRWC and SWC at the jointing stage (Table 2). CWSI was extremely signifi-
cantly negatively correlated with SWC and LRWC (p < 0.01), but significantly negatively
correlated with Gs, Tr and Pn (p < 0.05). At the flowering stage, CWSI was extremely
significantly negatively correlated with SWC, Gs, Pn, Tr and LRWC (p < 0.01). At the filling
stage, CWSI was extremely significantly negatively correlated with SWC, Gs, Tr and LRWC
(p < 0.01), but significantly negatively correlated with Gs, Tr and Pn (p < 0.05).
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Figure 4. CWSI of plants under different treatments. Different letters in the same growing stage show
significant differences among treatments (p < 0.05). CK: adequate irrigation; W1: moderate irrigation;
W2: slight deficit irrigation; W3: severe deficit irrigation.

Table 2. Correlation analysis of CWSI with SWC, LRWC and stomatal characteristic parameters.

SWC LRWC Gs Tr Pn

Jointing stage −0.6925 ** −0.6627 ** −0.5028 * −0.5009 * −0.5032 *
Flowering stage −0.6768 ** −0.7549 ** −0.7340 ** −0.7177 ** −0.6084 **

Filling stage −0.7018 ** −0.7197 ** −0.6620 ** −0.6326 ** −0.5081 *
* and ** indicate significant correlation at p < 0.05 and p < 0.01 levels, respectively.

2.4. Regression Analysis of CWSI with Biomass and Grain Yield

Regression analysis showed that the CWSI of winter wheat at each growth stage was
correlated with biomass (grain yield) in a curvilinear relationship (Figure 5). With the
increase in CWSI, the biomass and yield of winter wheat did not change significantly in
the early stage. When the CWSI increased to a certain extent, the biomass and grain yield
showed a decreasing trend with the increase in CWSI. The R2 values of CWSI and biomass
(grain yield) in the three growth stages were 0.7586, 0.7844 and 0.8943, respectively, and they
were all significantly correlated (p < 0.05), indicating that there were significant quadratic
function changes between CWSI and biomass (grain yield). In addition, according to the
performance characteristics of plant physiology (Figures 2 and 3), biomass/grain yield
(Table 1) and CWSI (Figure 4) at each growth stage, there was no significant difference in
biomass among WI, W2 and CK at the jointing stage, and the CWSI value of CK, W1 and
W2 at this stage was 0.26, 0.27 and 0.36 in 2022, and 0.26, 0.29 and 0.38 in 2023, respectively.
There was no significant difference in biomass between W1 and CK from the heading to
flowering stage, and the CWSI value of CK and W1 at this stage was 0.28 and 0.32 in 2022,
and 0.27 and 0.30 in 2023, respectively. At the maturity stage, the yield of W1 was similar
to CK, and the CWSI value of CK and W1 during the filling stage was 0.31 and 0.35 in 2022,
and 0.30 and 0.36 in 2023, respectively. Based on the above results, it can be concluded that
crop production will not be affected by water stress as long as the CWSI value of crops is
maintained at 0.26–0.38 during the jointing stage, 0.27–0.32 during the flowering stage and
0.30–0.36 during the filling stage.
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3. Discussion
3.1. Sensitivity of Physiological Factors to Soil Water

Optimizing irrigation systems according to the sensitivity of crops to water shortage
and the allowable water deficit at different growth stages has important guiding significance
for the efficient utilization of agricultural water resources [15]. Under field conditions, crops
have different requirements for suitable soil water due to differences in genotype, growth
stage, soil conditions, etc. [16], which results in different sensitivities of physiological
indicators reflecting plant water status to soil water. In this study, under the same water
condition, wheat had different physiological characteristics at different growth stages. At
the jointing stage, Gs and Tr of W1 and W2 were significantly lower than those of the
control, but Pn, LRWC and biomass did not decrease significantly, indicating that the
plants were not subjected to water stress. At the flowering stage and filling stage, the Pn,
LRWC and biomass of plants in W2 were significantly decreased compared with the control,
indicating that plants were under water stress. It can be seen that the adaptability of wheat
physiological characteristics (such as LRWC, Gs, Tr and Pn) to soil water was also different
in different growth stages. Monitoring only soil moisture cannot be used to accurately judge
the true water status of crops, and soil moisture and plant physiological and ecological
characteristics must be comprehensively analyzed in order to make scientific irrigation
decisions. In addition, although the plant Gs and Tr of W1 decreased significantly during
flowering, its Pn was not affected. This is because there is a linear relationship between
plant Tr and Gs, while the relationship between Pn and Gs is gradually saturated [17].
The proper reduction in Gs has no significant effect on Pn, but can significantly reduce Tr,
which helps to reduce plant water consumption and delay water stress, thus improving
crop water use efficiency.

3.2. Sensitivity of Canopy Temperature to Soil Water and Plant Physiological Factors

The accurate diagnosis of plant water status is the premise to ensure timely and
scientific crop irrigation. Although canopy temperature can reflect the water status of the
crop population, it is often interfered with by external conditions (such as solar net radiation,
wind speed, air temperature and humidity), thus affecting the accuracy of diagnosing crop
water status by measuring canopy temperature [18]. Idso et al. [19] proposed the crop
water stress index (CWSI) and defined an empirical model for CWSI calculation on the
basis of considering the influence of air humidity and temperature. However, the CWSI
calculation of this model does not take the real leaf as the reference surface. Jones [20] and
Leinonen et al. [21] suggest using leaves sprayed with water from both sides to simulate full
transpiration as a wet reference surface estimate, and using leaves coated with Vaseline on
both sides to simulate leaves with no transpiration at all as a dry reference surface estimate.
Canopy temperature was extracted by infrared thermal image technology, and CWSI was
calculated to estimate the water stress of plants, which reduced the experimental error,
and the calculated CWSI value could better evaluate the water status of crops. Previous
studies have shown that the CWSI calculated by this method has a good correlation with
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SWC, Pn, Gs, leaf water potential and other indicators reflecting plant water status, which
can better reflect the water status of crops [22,23]. Yuan et al. [24] proved that CWSI was
closely related to leaf water potential, stomata resistance and soil water, and was an ideal
index for monitoring the water status of winter wheat. At present, CWSI is a widely used
indicator to reflect the water status of plants [25]. However, due to the long growth period
of winter wheat, its environment is complex and changeable during the growth process
of wheat, the plant’s own factors (such as its physiological and ecological characteristics)
are also constantly changing, and the interaction of these factors jointly affects the crop
canopy temperature [13]. For example, in this study, the sensitivity of plant physiological
indexes (such as LRWC, Gs and Pn) to soil water was different at various growth stages,
resulting in different characteristics of canopy temperature information (CWSI) at different
growth stages. Therefore, when using canopy temperature to diagnose crop water status,
the difference in drought tolerance at different growth stages of crops should also be
considered, and the sensitivity of canopy temperature to crop physiological characteristics
and soil water should be analyzed.

3.3. Feasibility Analysis of CWSI in Guiding Irrigation

Soil water status is the basis of irrigation decision making. Studying the relationship
between CWSI and SWC, irrigation amount and crop production can provide a theoretical
basis for using canopy temperature information to guide crop irrigation. There is a good
consistency between CWSI and soil water change; CWSI can reflect the trend of farmland
water change [26]. This study also showed that CWSI was significantly correlated with
SWC, which could reflect plant water status and could be used as an effective index to
evaluate crop water status. However, some studies suggest that using plant water status as
the basis for irrigation decision making is more reliable than soil water status; especially,
LRWC is the best indicator to reflect the degree of plant water surplus and deficit [27]. This
study also showed that LRWC was significantly correlated with CWSI, and CWSI could be
used to evaluate crop water status and guide crop irrigation. Previous studies have shown
that wheat yield varies parabolically with irrigation amount, and an increasing irrigation
amount within a certain range can improve the grain yield of wheat [28,29]. In this study,
by analyzing the relationship between CWSI and yield, it is considered that CWSI and yield
are significantly negatively correlated and conform to the parabolic equation. Therefore,
CWSI can be used as a decision-making index to guide the water-saving irrigation of winter
wheat. Developing a suitable irrigation scheduling according to the response of crops to
water deficit and the lower limit of SWC at different growth stages can achieve the purpose
of saving water and increasing the grain yield of crops [15]. There are significant differences
in climatic conditions and plant adaptability to the environment at different growth stages
of winter wheat, which should be considered when using canopy temperature information
to guide crop irrigation [30]. In this study, by analyzing the change rules of CWSI, biomass
(yield) and other indicators of crops and their correlation, it was found that the threshold
range of CWSI for the water deficit in wheat at different growth stages was different.
Therefore, it was necessary to pay attention to the differences in different growth stages
of crops when using CWSI to guide irrigation. In addition, the CWSI critical value of
crop water shortage in this study is somewhat different from those of Chen et al. [30]
and Zhang et al. [31]. In addition to the fact that different soil backgrounds, canopy
temperature measurement methods and meteorological factors of different determination
times will affect the appropriate CWSI of crops, the different plant varieties used in this
study are also reasons for the inconsistency between the results of this study and the
conclusions of previous studies. Previous studies have shown significant differences in
canopy temperature among wheat varieties [32]. Most of the relevant research results come
from specific environments and plant varieties, which cannot play a broad role in guiding
irrigation decisions of different crops under various environmental conditions. Therefore,
further application research is needed on how to avoid the interference of background
information such as environmental factors and plant varieties on canopy temperature and
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to select a scientific canopy temperature measurement method, to accurately obtain the
canopy temperature information of crops.

4. Materials and Methods
4.1. Experimental Design

This study was conducted from October 2021 to June 2023 in the experimental field
of Henan Polytechnic University (35◦11′ N, 113◦15′ E). The meteorological data of each
growing season are shown in Figure 6. The soil in the experimental field was clay loam. In
the tillage layer (0–30 cm), the soil bulk density was 1.30 g·cm−3, the field water capacity
(FWC) was 27.2% and the contents of total nitrogen (N), phosphorus and organic matter
were 1.18 g kg−1, 0.92 g kg−1, 26.8 g kg −1, respectively. The winter wheat variety used in
this study was “Ping ’an 11”, which is widely cultivated in this area. The basal fertilizers
consisting of N (120 kg ha−1), P (60 kg ha−1) and K (48 kg ha−1) were applied before
wheat sowing (18 October). The experiment involved water treatments: full irrigation (CK),
moderate irrigation (W1), slight deficit irrigation (W2) and severe deficit irrigation (W3).
Each water treatment was irrigated according to the drip irrigation quantity designed in
Table 3. Each treatment consisted of 3 replicated plots, and each plot had an area of 12 m2

(2.4 m × 5.0 m).
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Table 3. Different water treatments and their irrigation amounts (mm).

Treatments Seedling Stage Jointing Stage Heading Stage Filling Stage Total

CK 80 80 80 60 300
W1 70 70 70 30 240
W2 60 60 60 180
W3 60 50 50 160

4.2. Monitoring Items and Methods
1⃝ Acquisition of infrared thermal images. During the jointing (16 March) and flow-

ering stages (26 April) of wheat, infrared thermal images of wheat canopy were taken
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vertically at a distance of 50 cm above the canopy with an infrared thermal imager (Infrec
G100, NEC, Tokyo, Japan) from 11:00 to 12:00 p.m. on a sunny day, and randomly shot
3 times per plot.

2⃝ Determination of dry and wet reference surface temperatures. According to the
method of Leinonen et al. [21], two adjacent, equally sized and fully unfolded pest-free
leaves were selected in the wheat canopy before canopy temperature measurement with an
infrared thermal imager, and both sides of one leaf were evenly coated with Vaseline to
close stomata as a dry reference surface. Water was simultaneously sprayed on both sides
of the other leaf to keep it moist, as a wet reference surface. After the wet and dry reference
surfaces were made, the temperature of the reference surface was stabilized for 1 min, and
then the wheat canopy was photographed by infrared thermal imager. After taking photos,
an infrared thermal image and the corresponding physical picture could be generated at
the same time. In the supporting software, these two pictures could be opened at the same
time, the position of the dry and wet reference surface in the infrared thermal image could
be determined according to the physical picture, and the temperature of the dry and wet
reference surface (Td, Tw, respectively) could also be obtained.

3⃝ Calculation of canopy temperature. The image analysis software of the infrared
thermal imager (Infrec Analyzer NS9500 Standard, S7.1E) was used to export all pixels in
the thermal image into an Excel table, the temperature between the dry and wet reference
surfaces was extracted, and its average value was used as the average temperature of
the wheat canopy. This method can effectively remove the interference of soil, sky and
other factors.

4⃝ Soil and plant index determination.
The photosynthetic parameters: These were measured in sync with canopy tempera-

tures. At the jointing and flowering stages, the Gs, Pn and Tr of the fully developed leaves
were measured using an LI-6800 Portable Photosynthesis System (LICor, Inc., Lincoln, NE,
USA) from 9:00 a.m. to 11:00. Each treatment was repeated 3 times.

Leaf relative water content (LRWC). After the photosynthetic parameters were deter-
mined, the same leaf was immediately collected to measure its LRWC, and each treatment
was repeated 3 times.

Soil moisture measurement. After the photosynthetic parameters were determined,
the soil moisture content of each treatment was measured by a soil moisture meter at 20 cm
intervals. Soil moisture content was measured 0–60 cm at the jointing stage and 0–100 cm
at the flowering stage.

4.3. Calculation of Crop Water Stress Index (CWSI)

The CWSI of crops was calculated according to the empirical formula of Jones [33]:

CWSI =
Tc − Tw

Td − Tw
(1)

where Tc is the temperature of the canopy leaf (◦C); Td is the leaf temperature (◦C) when
the leaf stomata is closed and no transpiration occurs. Tw is the leaf temperature (◦C) at
which the stomata of the leaves are open to the maximum and the leaves are in the full
transpiration state. Td and Tw were replaced by leaf temperatures where Vaseline was
applied and water was sprayed, respectively.

4.4. Yield Traits and Irrigation Water Use Efficiency (IWUE)

At maturity (1 June), plants of 1.0 m2 were randomly collected from each plot to
measure grain yield. IWUE was also calculated according to the following formula:

IWUE (kg ha−1mm−1) = Y (kg ha−1)/IR (mm) (2)

where Y is grain yield and IR is the recorded irrigation volume throughout the growing season.
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4.5. Statistical Analysis

SPSS 25.0 software was used for statistical analysis and the differences among different
treatments were compared using the least-significant-difference (LSD) tests (p < 0.05).

5. Conclusions

The sensitivity of plant physiological parameters to soil water was different at different
growth stages. The sensitivity of Gs and Tr to soil water was higher than that of LRWC
and Pn. The characteristics of plant physiology and biomass (yield) at each growth stage
indicate that plant production will be protected from drought stress as long as soil moisture
is maintained above 57.0% FWC during the jointing stage, 63.0% FWC during the flowering
stage and 60.0% FWC during the filling stage. Correlation analysis showed that CWSI
was significantly negatively correlated with all SWC and plant physiological parameters.
The regression analysis revealed a curvilinear relationship between the CWSI of winter
wheat and biomass (yield). As CWSI increased beyond a certain threshold, there was
a corresponding decrease in both biomass and grain yield. Comprehensive analysis of
all the indexes showed that CWSI can be used as a decision-making index to guide the
water-saving irrigation of winter wheat. In order to avoid the adverse impact of water
stress on crops and achieve water-saving production, the CWSI threshold of crops should
be maintained at 0.26–0.38 during the jointing stage, 0.27–0.32 during the flowering stage
and 0.30–0.36 during the filling stage.
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