
Citation: Wang, T.; Xu, J.; Chen, J.;

Liu, P.; Hou, X.; Yang, L.; Zhang, L.

Progress in Microbial Fertilizer

Regulation of Crop Growth and Soil

Remediation Research. Plants 2024, 13,

346. https://doi.org/10.3390/

plants13030346

Academic Editors: Xiangdong Yang,

Przemysław Barłóg and Xinhua He

Received: 13 December 2023

Revised: 16 January 2024

Accepted: 22 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Progress in Microbial Fertilizer Regulation of Crop Growth and
Soil Remediation Research
Tingting Wang 1, Jiaxin Xu 1, Jian Chen 2, Peng Liu 1, Xin Hou 1, Long Yang 1,* and Li Zhang 1,*

1 College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China;
18653883150@163.com (T.W.); 17866710916@163.com (J.X.); liupeng2003@sdau.edu.cn (P.L.);
houxin@sdau.edu.cn (X.H.)

2 Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
chenjian@jaas.ac.cn

* Correspondence: lyang@sdau.edu.cn (L.Y.); zhanglili@sdau.edu.cn (L.Z.)

Abstract: More food is needed to meet the demand of the global population, which is growing
continuously. Chemical fertilizers have been used for a long time to increase crop yields, and
may have negative effect on human health and the agricultural environment. In order to make
ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have
to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological
fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil
nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes.
This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates
crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the
classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation,
phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the
role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and
the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand
the research progress of microbial fertilizer and provides new perspectives regarding the future
development of microbial agent in sustainable agriculture.

Keywords: microbiological fertilizer; plant-growth-promoting bacteria; crop growth; soil remediation

1. Introduction

The global population will continue to grow and is expected to exceed 9 billion by
2050, requiring a rapid increase in crop production [1]. Urbanization and industrialization
have led to a significant reduction in arable land while at the same time causing dam-
age to agroecosystems. The need to increase crop yields to feed a growing population
on limited arable land requires significant inputs of agrochemicals into the agricultural
environment [2]. However, the long-term use of these agrochemicals not only affects soil
fertility but also contaminates agroecosystems through the introduction of toxic substances.
These pollutants are persistent and accumulate in the environment over time, leading to
the further contamination of the food chain and posing a threat to human health [3,4].
This limits the sustainable productivity of soils and poses a threat to the environment and
human health. The fact that microorganisms are an important natural resource for the
development of “green methods” has attracted great attention worldwide. Improving soil
health and crop growth through the use of fertilizers enriched with beneficial microorgan-
isms is essential to maintaining a balance between efficient crop production and sustainable
agriculture [5].

The inter-root is an active area for microbial interactions with the plant root system [6].
In inter-root soils, plant growth benefits from several PGPR with multiple functions, and
these beneficial bacteria play important roles in soil nutrient cycling, the decomposition of
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organic matter, the suppression of soil-borne diseases, and the improvement of crop growth
and resistance. Some examples are biological nitrogen fixation, phosphate solubilization,
phosphorus and potassium solubilization, hormone secretion, the inhibition of pathogens,
the induction of plant resistance, etc. [7,8]. In addition, plants also secrete secondary
metabolites to feed the microorganisms around the inter-root. Interactions between plants
and beneficial bacteria play an important role in maintaining the microenvironment around
the plant root system, which is favorable for plant growth and development [9].

Microbial fertilizer is a type of bio-fertilizer containing beneficial microorganisms with
specific functions [10]. The application of microbial fertilizers can help the soil form a
new microbial community structure and promote the supply of nutrients to plants with
the soil [11]. Numerous studies have shown that microbial fertilizers made from PGPR
play an important role in improving soil fertility and promoting crop growth. They also
help crops combat biotic and abiotic stresses. Today, microbial fertilizers are considered
renewable and environmentally friendly, supporting sustainable agriculture. In this review,
we summarize the mechanism of action of microbial fertilizers in promoting crop growth
and resistance to environmental stresses, and we also discuss the application of microbial
fertilizers in soil remediation.

2. Microbiological Fertilizer Classification

Microbial fertilizers can be classified into different types according to their functions.
Briefly, they can be divided into three categories: bio-organic fertilizer, compound microbial
fertilizer and microbial fungicide. Table 1 summarizes the beneficial growth-promoting
bacterial strains of different types of microbial fertilizers on different crops.

2.1. Bio-Organic Fertilizer

Bio-organic fertilizer is primarily composed of livestock and poultry manure, crop
residues, municipal waste, and other organic waste materials that have undergone harmless
treatment. It is enriched with specific functional microorganisms and serves as a compound
fertilizer for organic matter. Bio-organic fertilizer offers the dual benefits of microbial
fungicide and traditional organic fertilizer. Along with its high organic matter content, it
also contains specific microorganisms with unique functions [12]. In recent years, the rise
in organic waste and pollutants has resulted in a gradual decline in farming quality, which
subsequently impacts soil health [11]. Through the formulation of fertilizer application
and the return of straw to the field and other measures, the fertilizer effect of organic
fertilizer can be brought into play and the threat to the soil environment posed by excessive
chemical fertilizer can be reduced, which is conducive to the promotion of the development
of bio-organic fertilizer [13]. Compared with chemical fertilizer, bio-organic fertilizer has
the efficacy of traditional organic fertilizer on the one hand and the special function of
beneficial micro-organisms on the other hand; through the combination of the two, it plays
the role of maximum fertilizer efficiency [14]. It has been found that bio-organic fertilizers
often act as beneficial soil conditioners, improving soil quality, promoting the formation
of soil aggregates, and enhancing the availability of nutrients to crops [15]. It has also
been shown that bio-organic fertilizers increase soil microbiota and promote soil carbon
and nitrogen cycling compared to chemical fertilizers. The most important function of
bio-organic fertilizer is to recruit more beneficial soil microorganisms through the beneficial
microorganisms it contains and colonize the inter-root area in large quantities, which is the
place where microorganisms, soil, and plant roots interact with each other to allow better
communication between them.

2.2. Microbial Agents

Microbial agents, also known as microbial inoculants, are defined as biofertiliz-
ers containing a range of live microbial products [16]. Beneficial bacteria with specific
functions are isolated from bacteria, fungi, actinomycetes, and algae to develop micro-
bial inoculants [17,18]. Currently, new inoculants represented by PGPR have attracted
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widespread attention. PGPR, such as Klebsiella, Azotobacter, Azoospirillum, and Bacillus,
proliferate in the inter-root soil. Bacillus and Pseudomonas, which are isolated from the
rhizosphere, have been extensively utilized for the development of microbial inoculants
based on the identification of microorganism diversity [19]. Research demonstrates that mi-
crobial inoculants incorporate a specific range of beneficial bacteria, which induce hormonal
substances for plant growth through their inherent direct mechanisms, and counteract the
threat of biotic or abiotic stress cues to plants. These inoculants do not pose a pathogenic
effect on plant organisms, are environmentally friendly, promote plant adaption to the
environment, enhance growth and development, harmonize nutrients in soil, yield diverse
plant growth regulators, detoxify soil heavy metals, pesticides, and fungicides, and utilize
biological control techniques for soil remediation. The initial studies on microbial inocu-
lants primarily involved single strains that had singular functions and minimal impact on
plant growth [20]. However, current research on microbial inoculants has shifted toward
investigating multiple beneficial bacteria and multifunctional composite inoculants. As a
result, this area of study has gained significant attention.

2.3. Complex Microbial Fertilizer

Composite microbial fertilizer integrates a variety of beneficial bacteria such
as Bacillus subtilis, Bacillus licheniformis, Azospirillum brasilense, and Streptomyces, syner-
gistically activating characteristics such as the solubilization of phosphorus and potassium,
and nitrogen fixation through optimal combination [21,22]. Compound microbial fertilizer
primarily involves agricultural residues (avian excreta and straw) and beneficial microor-
ganisms as the primary raw materials to produce a novel variety of fertilizers [23,24].
Complex microbial fertilizers incorporate chemical fertilizers, organic fertilizers, and bene-
ficial microorganisms. They foster robust plant growth while possessing the immediacy
of chemical fertilizers and the longevity of organic fertilizers. This effectively improves
soil fertility and sustains healthy, thriving crops [25]. In this case, the beneficial bacteria
contained in the composite microbial fertilizer produce secondary metabolites through
the metabolic activities of the microorganisms, which dissolve the mineral elements in the
soil and promote crop growth. Root-associated beneficial microorganisms are colonized,
establishing a beneficial microbiome. This further interacts with rhizosphere secretions
from the beneficial microorganisms to induce secondary metabolite production in plants,
participate in plants’ defense systems, and produce growth regulators that promote plant
growth and regulate crop development.

Table 1. Beneficial strains of growth-promoting bacteria of different types of microbial fertilizers in
different crops.

Types of Microbial Fertilizers Crop Plant Growth Promoting Rhizobacteria References

1 Bio-organic fertilizer Lettuce
Actinobacteria, Proteobacteria, Chloroflexi,

Acidobacteria, Gemmatimonadota
Ascomycota, and Basidiomycota

[26]

2 Bio-organic fertilizer Tobacco

Actinobacteria, Chloroflexi, Proteobacteria,
Acidobacteria, Firmicutes, Gemmatimonadota,

StreptomyceBacillus, Arthrobacter,
and Paenibacillus

[27]

3 Bio-organic fertilizer Beet, potato,
winter, wheat

Actinobacteria, Proteobacteria, Acidobacteria,
Arthrobacter, and Paenibacillus [28,29]

4 Bio-organic fertilizer Cauliflower Proteobacteria, Actinobacteria, Acidobacteria,
Gemmatimonadetes, Bacteroidetes, and Chloroflexi [30]

5 Bio-organic fertilizer Tomato Proteobacteria, Actinobacteriota, Bacteroidota,
Firmicutes, Firmicutes, and Verrucomicrobiota [31]
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Table 1. Cont.

Types of Microbial Fertilizers Crop Plant Growth Promoting Rhizobacteria References

6 Microbial inoculants Watermelon
Pseudomonas, flavobacterium

Aspergillus, Myceliophthora, Trichoderma, and
Humicola and Neocosmospora

[32]

7 Microbial inoculants Radish Proteobacteria, Bacterioidetes, Acidobacteria,
Actinobacteria, and Planctomycetes [33]

8 Microbial inoculants Rice
Proteobacteria, Acidobacteria, Bacteroidetes,

Gemmatimonadetes, Actinobacteria, Planctomycetes
Ascomycota, and Chytridiomycota

[34]

9 Microbial inoculants Prunusdavidana

Proteobacteria, Bacteroidetes, Acidobacteria,
Gemmatimonadetes, Actinobacteria, Patescibacteria,

Chloroflexi, Verrucomicrobia, Nitrospirae,
Latescibacteria, and Rokubacteria

[35]

10 Microbial inoculants Cucumber

Alphaproteobacteria, Actinobacteria, Acidobacteria,
Betaproteobacteria, Gammaproteobacteria,
Deltaproteobacteria, Gemmatimonadetes,

Bacteroidetes, Chloroflexi, Planctomycetes,
Firmicutes, Verrucomicrobia, Nitrospirae,

Armatimonadetes, Cyanobacteria,
TM7, Fibrobacteres,

and Chlorobi

[36]

11 Compound microbial fertilizer Soybean nitrogen-fixing bacteria,
phosphorus-solubilizing bacteria [37]

12 Compound microbial fertilizer Sugarcane Trichoderma harzianum, Gluconcetobacter
diazotrophicus, and Pseudomonas fluorescents [38]

3. Microbial Fertilizers Regulate Crop Growth and Resistance
3.1. Microbial Fertilizers Regulate Crop Growth

Plant growth and development are intricately linked through mutual interactions
between organisms in the root of plants and the rhizosphere. The rhizosphere prevails
as a distinct habitat for the majority of microorganisms, serving as a direct source of
their nutrients. In particular, bacteria that live around the roots, for example PGPR, are
recognized as beneficial bacteria that promote plant growth and regulate plant growth and
development. PGPR regulate plant growth and enhance yield via diverse direct action
mechanisms, further augmenting plant nutrient assimilation [39]. The mechanisms of the
direct action of PGPR encompass nitrogen fixation, the solubilization of phosphorus and
potassium minerals, the generation of plant hormones, and the production of ferric iron
carriers [40]. Table 2 illustrates the mechanisms by which various beneficial microorganisms
regulate crop growth.

Table 2. Mechanisms of crop growth regulation by various beneficial microbes.

Microorganisms Crop Mechanism of Action References

Pseudomonas sp. Maize, cassava, spring wheat,
tomato, Arabidopsisthaliana

Promotion of nutrient uptake, regulation of
hormone levels, ISR, ACC-deaminase
activity, siderophore, nitrogen fixation,

solubilization of phosphorus

[41,42]

Bacillus sp. Soya, oriental melons,
potatoes, barley, maize

Vocs, antibacterial compound, organic acids,
exopolysaccharides, different enzymes, ISR [43–45]

Rhizobium sp. Soya, peanuts, Nitrogenfixation, exopolysaccharides,
phosphate solubilization [46,47]
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Table 2. Cont.

Microorganisms Crop Mechanism of Action References

Azotobacter sp. Rice, tomato, cowpea bean, Nitrogenfixation, dissolved phosphorus and
potassium, generation of IAA, siderophore [48–50]

Azospirillum sp. Cucumber Siderophore, indole-3-aceticacid, ISR [51]

Pseudomonasputida Melon Different enzymes, solubilization of
phosphorus, siderophore [52]

Pseudomonasaeruginosa Tobacco Dissolved phosphorus and potassium,
growth hormone [53]

Bacillusaryabhattai Tomato, maize, bean Growth hormone, solubilization
of phosphorus [54]

3.1.1. Nitrogen Fixation

Nitrogen is a critical nutrient element in the growth and development of plants. As
the nitrogen in the atmosphere exists in its free state, most plants are incapable of directly
utilizing it. Thus, the necessity arises to fix the free nitrogen and transmute it into nitrogen
that can be absorbed and utilized by plants. Significantly, a plethora of studies have
demonstrated that nitrogen can be fastened in an assimilable condition for crops via a
distinct group of microorganisms, which are designated as biological nitrogen fixers (BNFs).
These elements facilitate the colonization and nitrogen fixation of rhizosphere bacteria [55].

Nitrogen-fixing bacteria are non-symbiotic, free-living bacteria. They belongs to the
family of Azotobacteria and are mainly used as a non-leguminous crop biofertilizer. The main
nitrogen-fixing bacteria include symbiotic nitrogen-fixing bacteria, free-living nitrogen-
fixing bacteria, and combined nitrogen-fixing bacteria, and the nitrogen-fixing bacteria
associated with leguminous plants include Rhizobium, Azotobacteria, and slow-growing
rhizobacteria [56,57], Associative nitrogen-fixing bacteria with nonleguminous plants en-
compass Arthrobacter, Alcaligenes, Mycobacterium, Pseudomonas, Bacillus, and Azospirillum [58].
Among them, Rhizobium represents the epitome of symbiotic nitrogen fixation and is one of
the most comprehensive studies on the symbiotic relationship between root nodules and
nitrogen-fixing bacteria [59]. Rhizobium perceives flavonoid compounds exuded from plant
root systems to produce signals for reciprocal communication with the root microbiome [60].
For instance, secretions from peanut root can stimulate the rhizobium of peanuts. Rhizobium
is attracted to the root’s secretions, then forms nodules and fixes nitrogen in the roots of the
host plant [61]. In addition, it was observed that the association of alfalfa with Rhizobium
can enhance biological nitrogen fixation, stimulate plant growth, and more pertinently,
rehabilitate heavily metal-contaminated soil while augmenting the resistance of plants to
metals [62].

3.1.2. Phosphate Solubilizing

As an indispensable second nutrient element for plant growth and development,
phosphorus contributes to important physiological processes such as plant metabolism, root
growth and development, and flowering and fruiting [63]. Due to long-term application of
chemical fertilizers, more than 70% of phosphorus in soil exists in inorganic form, and this
inorganic phosphorus can easily react with Fe3+, Al3+ and Ca2+ in soil to form insoluble
phosphate [64]. Consequently, the addition of beneficial microorganisms is required to
solubilize phosphates from the soil. It has been reported that species of bacteria and fungi,
including Bacillus, Rhizobium, Pseudomonas, Penicillium, Aspergillus, and Staphylococcus, are
typical phosphorus-enhancing agents [65]. The presence of insoluble phosphate in soil
requires its conversion into soluble phosphate by soil microorganisms. Soil bacteria and
fungi are involved in the solubilization process of soil phosphate by producing different
mechanisms of action. Some of the mechanisms of action include the secretion of organic
acids by beneficial bacteria, the formation of chelates, ion exchange reactions, etc. [66].
These beneficial microorganisms secrete organic acids that lower soil pH, thereby increasing
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the effectiveness of phosphorus in the soil [67]. Through these dissolved phosphorus
microorganisms producing organic acids, secreted enzymes, iron carriers, etc., metal ions
in the soil are chelated to form a complex, which is converted into phosphate, which can
be absorbed and utilized by plants [68,69]. They contribute to phosphate solubilization,
increase phosphate utilization by the plant, and enhance physiological processes in the
plant.

3.1.3. Potassium Dissolution

Potassium is the third most essential nutrient, following nitrogen and phosphorus.
Potassium is abundant in soil and exists in various forms. It plays a pivotal role in a
plant’s growth and development, influencing plant growth, root system development,
and enhancing yield and quality. The majority of potassium exists as in mineral form,
which plants cannot directly assimilate. It has been documented that utilizing the distinct
mechanisms of bacteria and fungi enables the transformation of insoluble potassium into
soluble potassium. For instance, Bacillus, Arthrobacter, Azotobacter, and Aspergillus are
archetypal potassium solubilizers. Research indicates that the Bacillus and Klebsiella isolated
from the root zone of chili could solubilize substantial amounts of potassium in the soil, with
the potential for potassium dissolution to exceed 70% compared to that of the control [70].
Recently, a study has indicated that the isolation of potassium-solubilizing bacteria from the
rice rhizosphere enhances soil potassium availability and subsequently stimulates growth
and yield in rice [71].

3.1.4. Regulating Phytohormone Levels

Additionally, phytohormones, also referred to as plant stimulators, are produced by
PGPR and promote plant development [49]. The growth and development of crops are
controlled by stimulating the plants. Microorganisms manufacture phytohormone, which
are organic substances that regulate various aspects of plant growth, including cell division
and differentiation, organ development, fruit ripening, flower blossoming, and fruiting.
Auxins, cytokinins, gibberellins, ethylene, and abscisic acid are examples of phytohormones.
Table 3 summarizes examples of phytohormones produced by different microorganisms in
crops.

The widespread plant growth regulator auxin (also known as indole-3-acetic acid,
indole-acetic acid, or IAA) is essential for promoting vegetative development [72]. The
majority of PGPR generate indole acetic acid, which is essential for coordinating the host
plant’s and microbiota’s interaction. In the rhizosphere, tryptophan (Trp), a substance
found in root exudates, is exchanged between the plant-beneficial rhizobacterium and the
host plant to facilitate communication [73]. As a signaling molecule that facilitates commu-
nication between Rhizobia and the host plant, tryptophan triggers PGPR to synthesize IAA
through a variety of pathways [74]. IAA is an intrinsic regulator of plant development that
mainly controls the growth of plant roots, promotes the creation of root hair, and stimulates
the genesis of root epidermal cells. Furthermore, IAA influences photosynthesis, promotes
plant cell differentiation and division, and aids in the creation of vascular bundles. One
study used Helicobacter Azotrophicus inoculation to examine the impacts of root develop-
ment in Arabidopsis thaliana in Brazil. The findings indicated that the growth hormone
encouraged the production of lateral root meristematic tissues [75].

An essential plant hormone required for plant growth and development is cytokinin.
It is primarily produced by inter-root bacteria, which use the synthesis of cytokinins to stim-
ulate and support plant growth [76]. Plant growth and development activities, including
root development and hair creation, stem and root elongation, light response regulation,
and stomatal open-in promotion, are primarily driven by cytokinins. Furthermore, research
has demonstrated that gibberellins (GA) are also produced by PGPR. Gibberellins primarily
break dormancy in seeds and encourage germination; they also lengthen stems, induce
the growth of floral organs, and increase fruit set. For example, gibberellin can protect the
host plant against stress-related dangers when environmental conditions are unfavorable.
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Furthermore, certain species of inter-root bacteria release and manufacture ethylene, a
special regulator of plant growth. They primarily control the growth and development
of plants, encourage the growth of roots, and quicken the ripening of fruit. Ethylene’s
mode of action greatly increases plant vegetative growth and development, hastens plant
maturity, which lowers plant consumption of soil nutrients, and increases the amount of
soil nutrients that can be retained in the soil, minimizing the need for phosphorus and
potassium fertilizers.

3.1.5. Iron Carrier Production

Iron is essential for the growth and metabolism of plants, primarily for the regulation
of several physiological processes. For instance, respiration, photosynthesis, and nitrogen
fixation all guarantee the availability of nutrients for plant growth. Because of its great
susceptibility to oxidation, iron in soil can precipitate insoluble iron oxide, which plants
cannot absorb [77]. The slow rate of decomposition of the majority of the inorganic iron
minerals in rhizosphere soil inhibits the growth and development of plants. By employing
a variety of mechanisms, PGPR can increase iron solubility by generating a number of
tiny molecules known as iron carriers [78,79]. Low-molecular-weight, organic secondary
metabolites generated by specific bacteria are called iron carriers [80]. These organic
compounds are mostly used by microorganisms as iron chelators, helping them to absorb
iron. These iron chelators can reduce the stress that heavy metals place on the environment
by chelating iron as well as other heavy metals. Iron carrier complexes are created on the
cell membrane by metabolites released by iron carriers interacting with Fe3+. Eventually,
these complexes are broken down to Fe2+, which plants can absorb and use to support
development. Numerous studies support the idea that rhizobacteria connected to plants that
promote plant growth are also able to produce iron transporters. For example, by producing
iron carriers and P solubilization, PGPR isolated from soil can improve the nutritional
growth features of tomato plants, thus increasing nutrient efficacy [81]. Importantly, the
Burkholderia P10 strain clarifies how the P10 transcriptome affects the transformation of
peanut root exudates. Furthermore, it greatly amplifies the P10 strain’s promotion of plant
development by promoting the biosynthesis of iron carriers, the synthesis of IAA, and the
expression of genes linked to phosphorus dissolution [82].

Table 3. Examples of phytohormones produced by different microorganisms in crops.

Microorganisms Crop Phytohormones Mechanism of Action References

Rhizophila Y1 Corn IAA, ABA Rhizophila Y1 regulates phytohormone levels
and alleviates salt stress in maize growth [83]

Bacillus velezensis Strawberries IAA Bacillus velezensis produces large amounts of
IAA for growth promotion [84]

Bacillus thuringiensis
RZ2MS9 Corn IAA

Genetic basis for the induction of IAA
biosynthesis by Bacillus thuringiensis RZ2MS9

for maize growth
[85]

Leifsonia soli SE134 Cucumbers, Tomato GA GA secretion by L. soli SE134 may favor its
ameliorative role in crop growth [86]

Bacillus subtilis Maize, Brassica
pekinensis GA Bacillus subtilis secretes gibberellins that

promote the growth of rice and cabbage [87]

Bacillus subtilis Wheat GA, IAA Bacillus sp. increases endogenous IAA and
GA levels in all genotypes of wheat [88]

B. subtilis
CNBG-PGPR-1 Tomato Ethylene

B. subtilis CNBG-PGPR-1 regulates the
ethylene pathway in tomato, scavenges ROS,

and enhances plant salt tolerance
[89]

Bacillus subtilis Corn Ethylene
Salt-tolerant Bacillus sp. strains reduce

stress-inducing ethylene levels in host plants
and alleviate salt stress

[90]
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3.2. Increasing Crop Resistance to Environmental Stress

Reactive oxygen species (ROS) produced during environmental stress during plant
growth impair plant productivity by causing organelle damage and eventual cell death [91].
Plants experience both biotic and abiotic stressors during their reproductive processes,
leading to lower agricultural yields [92]. Fungi, bacteria, viruses, nematodes, and other
biological creatures are all included in biotic stress [93]. Fungi, bacteria, viruses, nematodes,
and other biological organisms are all included in biotic stress [94]. To maintain the agri-
cultural ecological balance, according to the pressure encountered, we should implement
effective solutions to the current environmental pressure and deal with the influence of
various pressures [95]. As a result, some defense mechanisms are used to lessen the severe
stresses that plants face [96]. On one hand, the genetic modification of crop varieties can
foster robust crops that can withstand environmental fluctuations. However, it is crucial
to consider that this process of nurturing resistant crop varieties is time-consuming and
demands a considerably high investment in time. Currently, the principal methodology
employed to alleviate plant environmental stress is the utilization of advantageous growth-
promoting microbe of root zone soil [97]. PGPR impart antagonistic substances in the
rhizosphere through suppressing pathogen growth and competing for nutrients [98]. PGPR
mainly use various metabolites and volatiles to regulate the structure of soil microbial
communities, suppress soil pathogens, and improve soil health. For example, PGPR pro-
duce antibiotics, hydrolyte enzymes, and antimicrobial compounds for use in attacking
pathogen growth, thereby protecting plants from pathogens. PGPR improve plant growth
and resistance through a number of mechanisms of action, providing effective alternatives
to traditional control methods [99].

3.2.1. Biotic Stress

• Biological Control of Pest Management

Previously utilized pesticides and insecticides for biological control have a discernible
negative impact on soil and human health. Some plant growth-inducing bacteria can
protect plants from pests through pathogenic mechanisms, metabolites, and secretions.
However, PGPR-based biocontrol agents are effective alternatives to synthetic pesticides
and insecticides. For example, Bacillus and Pseudomonas are effective against pests [100].
Bacillus thuringiensis (Bt) is a prominent plant growth-promoting rhizobacterial biological
insecticide, extensively applied to noctuidae, coleoptera, and diptera in insect
classification [101]. Bacillus thuringiensis is a bactericidal protein and a quick-acting insecti-
cide possessing minimal side effects on host plants and other beneficial micro-organisms [102].
It has been reported that Bacillus 90 and Pseudomonas aeruginosa strain 91k were evaluated
in wheat studies and found to be effective against aphid populations [103]. PGPR secretion
of volatile organic compounds helps defend against nematode damage and triggers ISR
to resist pathogen attack [93]. It has been reported that the use of PGPR is effective in
controlling potato nematode damage without secondary environmental pollution to the
environment [104].

• Plant Pathogen Management

The defense mechanisms of PGPR protect against pathogenic bacteria, viruses, and
fungi by inducing systemic resistance (ISR) and systemic acquired resistance (SAR) in
plants [105,106]. PGPR-dominant strains that induce ISR include Pseudomonas, Bacillus,
and Serratia. ISR is an activation response induced by a diverse array of beneficial and
detrimental microorganisms, as well as environmental stressors. It is not possible to
unequivocally discern the mechanism that induces ISR [106,107]. The primary mecha-
nism by which PGPRs defend plants from biotic stress is their capacity to synthesize
antibiotics [108]. Antibiotics are polyvalent microbe-derived substances of a low molecular
weight possessing toxic organic components that can enhance plant growth and various
metabolic activities [109]. Antibiotics are classified into two categories, namely volatile
complex compounds and non-volatile complex compounds. Significantly, different types
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of beneficial bacterial genera in PGPR can produce antibiotics as a potent method to com-
bat the invasion of pathogens. The dominant genus taxa producing antibiotics include
Pseudomonas fluorescens, Bacillus, Actinobacteria, Enterobacteriaceae, and Arthrobacter. Antibi-
otics not only provide direct resistance to pathogens but also promote disease suppression
in plant systems by inducing systemic resistance, conferring a competitive advantage to
biocontrol agents. Nowadays, Pseudomonas fluorescens has the potential to protect against
plant pathogen attacks as an effective control agent against plant pathogens [110]. Bacillus
is a dominant genus within PGPR, efficiently combating plant pathogens. Bacillus also pro-
duces distinct antibiotic classes, primarily Bacillomycin, Rhizobiumin, and Mycobacteriumin.
It is also known to generate antimicrobial surface-active agents [106]. In particular, Bacillus
subtilis stops pathogens through biological control. In addition to this, Bacillus can produce
iron carriers and extracellular polysaccharides to help regulate ionic balance and synthesize
microbial metabolites to help control the threat of plant diseases. In addition, hydrolytic en-
zymes mainly include cellulases, proteases, chitinases, and lipases. Their main mechanism
of action contributes to the hydrolysis of polymeric compounds, cleaving the cell walls,
proteins, and DNA of pathogens to protect plants from pathogens. These volatile organic
compounds can regulate the structure of soil microbial communities, in turn affecting the
growth and development of fungi, plants, and animals. The accumulation of beneficial
soil microorganisms can be stimulated via the application of biofertilizer with exogenous
beneficial bacteria, in turn leading to the formation of beneficial flora against pathogens
and ultimately to the recruitment of more disease-resistant microorganisms.

3.2.2. Abiotic Stress

• Drought Stress

Among abiotic stresses, drought is an important factor affecting agricultural produc-
tion. Water scarcity affects plant physiological processes, water–nutrient relationships, and
the normal metabolic activities of the plant body [111,112]. Currently, several strategies
are necessary to overcome drought stress. The use of PGPR as inoculants alleviates water
supply deficiencies and effectively promotes water utilization. The primary mechanism for
the palliative effect of PGPR in drought is derived from the regulation of plant hormones,
volatile compounds, and cell wall polysaccharides, which influence the normal growth of
crops [113]. Through these mechanisms of action, they helps plants maintain survival under
extreme drought conditions. The synthesis of phytohormones by Pseudomonas, Bacillus and
Rhizobium isolated by PGPR is conducted to stimulate plant growth and overcome the stress
of drought stress [114]. Under arid conditions, the introduction of beneficial microbial
agents can generate extracellular polysaccharides (EPS), synthesize proline, and secrete
phenolic compounds, and regulate plant growth and development to resist dehydration
stress [115]. Salicylic acid (SA), primarily produced by microorganism-derived phenolic
compounds, serves as a critical signaling molecule in arid conditions. It effectively activates
antioxidant genes and underived metabolic gene products to manage plant growth and
development [116]. ACC is a precursor of ethylene, and PGPR-produced ACC deaminase
can degrade ACC levels, preventing an excessive increase in ethylene and thereby resisting
abiotic stress [117]. It has been reported that PGPR strains produce 1-aminocyclopropane-
1-carboxylic acid (ACC) deaminase, which protects tomato from the negative effects of
drought stress and significantly enhances the drought tolerance of plants [118]. Another
study also reported that under drought and salt stress conditions, three beneficial PGPR
isolates increased the IAA content, decreased the ABA/ACC content and improved the
photosynthetic efficiency of wheat, thereby increasing its tolerance to abiotic stresses [119].
Research suggests that interspecific hybrid corn employs the PGPR-based isolation of
Pseudomonas putida, Pseudomonas fluorescens, and Bacillus megaterium under conditions of
drought stress. In the case of Pseudomonas putida treatment, seedling germination vitality,
fresh and dry weight, dry matter content, and grain yield exhibit superior outcomes [120].
The inoculation of wheat in potting soil under drought conditions using two novel PGPR
isolates, Bacillus subtilis-FAB1 and Pseudomonas aeruginosa-FAP3, stimulated plant growth
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and effective inter-root colonization, resulting in normal plant growth [121]. In recent years,
the latest mechanisms of drought resistance have been mainly based on molecular and
histological techniques to study some drought-resistant genes, contributing to our under-
standing of the multiple functions of rhizobia under drought conditions. It was shown that,
using a metabolomics approach with untargeted liquid chromatography using UHPLC,
sorghum was inoculated with key molecules for PGPR-induced tolerance to drought stress
in sorghum [122]. Similarly, the characterization of chickpea physiological and biochemical
traits under drought conditions via 16S-rRNA gene sequencing and the identification of
the dominant PGPR strains such as Bacillus subtilis and Bacillus thuringiensis led to changes
in the metabolome to reduce the effects of stress [123].

• Salt Stress

In recent years, salt stress has become an important factor limiting plant growth.
Excessive salinity leads to soil crusting, which further reduces the effective use of water
by plants. Salinity directly affects the growth of the plant root system, which further
impacts the entire growth process and metabolic activities of the plant [124]. Salinity
directly affects chlorophyll content and carotenoids, denaturing the ultrastructure of the
chloroplast, thereby reducing stomatal conductance and curtailing leaf photosynthesis.
Increased levels of reactive oxygen species in plant cells are due to salt accumulation in
the soil, leading to oxidative stress in plants [125]. Salinity can induce the accumulation
of Na+ and Cl-, and at the same time impair the absorption of K+ and Ca2+, leading to
an imbalance in ion homeostasis [126]. Consequently, it is necessary to employ strategic
measures to mitigate the effects of salinity stress on plants. Extensive research indicates that
PGPR can be leveraged to reduce crop yield losses resulting from salinity. PGPR influences
plant physiological and biochemical processes through diverse mechanisms, mitigating
the restrictions caused by salt stress on plant growth. Its primary mechanisms encompass
the regulation of ion homeostasis, synthesis of protective agents against osmotic stress,
activation of antioxidant enzymes, etc., all of which contribute to crop development [127].
Through the interplay of mechanisms and root zone microbiology, intricate signal networks
regulate defensive mechanisms, alleviating stress [128]. It has been shown that inoculating
rice seedlings with Pseudomonas aeruginosa and Klebsiella significantly increased plant
height, root length, and plant dry weight, as well as promoting rice growth under salt
stress conditions [129]. It has been reported that using Bacillus to investigate the growth of
tomatoes under salt stress was found to induce systemic tolerance in tomato plants and
had a significant impact on the diversity of the bacterial community [130]. It has also been
reported that the beneficial Bacillus sphaericus SQR9 secretes spermidine, which induces
salt tolerance in Arabidopsis thaliana and maize, enhancing their salt tolerance [131].
Therefore, PGPR can effectively resist the negative effects of salt stress, improve the salt
tolerance of plants, and induce the development of resistance systems in plants.

• Heavy Metal Stress

In addition to drought and salt stress, heavy metal pollution also has a negative impact
on sustainable agricultural development. Due to increased heavy metal concentrations
attributed to various anthropogenic activities, soil health has been compromised, directly
influencing plant enzyme activity and nutrient transformation. Consequently, plant growth
and development are hindered [132]. Thus, it is imperative to implement certain strategies
to remediate contaminated soil. The utilization of microorganisms, specifically PGPR, in
support of bioremediation technology has garnered widespread attention [133]. The pri-
mary objective of the microbiological remediation of soil heavy metals is to first immobilize
the heavy metal, subsequently reduce its mobility, and ultimately remove it from the soil.
The primary heavy metals include manganese, cadmium, iron, and zinc; the majority of
microorganisms can absorb soil heavy metals through various mechanisms. The deposition
in the affected soil exerts a detrimental effect on plant growth, root system development,
photochemical properties, and nutrient assimilation [134]. The mechanism predominantly
involves the binding of certain surface heavy metals by live microbial cells and surface-
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active substances. Concurrently, microorganisms undergo growth and metabolic processes
that generate certain inorganic salts and hydrogen peroxide metabolites. These substances
react with heavy metal ions to form precipitates [135,136]. In heavy metal-contaminated
environments, microorganisms produce iron carrier chelators that can bind to various
heavy metals, reducing their toxicity and promoting the growth of barley [137]. In a study
on spinach, Bacillus subtilis and Pseudomonas aeruginosa were inoculated to enhance tran-
spiration rate, stomatal conductance, and relative water content, as well as to improve
resistance to heavy metal stress. This process also increased the capabilities of the antiox-
idant defense system [138]. Husna et al. found that rhizobial Rhizobium bioinoculants,
which solubilize phosphate and release glycosides, helped alleviate metal stress in soybean
seedlings, enabling them to better cope with chromium and arsenic toxicity [139].

In Table 4, we summarize the mechanism of beneficial microorganisms to alleviate the
abiotic stress of crops.

Table 4. Examples of abiotic stress mitigation by different species of PGPRs.

Microorganisms Crop Type of Abiotic Stress Mechanism of Action References

Bacillus licheniformis
K11 Pepper Drought stress

Auxin and ACC deaminase
producing PGPR B. licheniformis
K11 could reduce drought stress

in drought-affected regions

[140]

Bacillus subtilis-FAB1,
Pseudomonas

azotoformans-FAP3
Wheat Drought stress

FAB1 and FAP3 strains show
unique multifunctional plant

growth-stimulating properties
and effective root and rhizosphere

colonization to promote wheat
growth during drought

[121]

Phyllobacterium
brassicacearum Arabidopsis thaliana Drought stress

Bacteria induce growth and
development and coordinate to

improve water use efficiency
in plants

[141]

Bacillus subtilis,
Bacillus pumilus Cotton Salt stress

B. subtilis and B. pumilus
significantly enhance salt stress

tolerance in cotton plants during
salt stress conditions.

[142]

B. subtilis
CNBG-PGPR-1 Tomato Salt stress

CNBG-PGPR-1 significantly
improved the cellular

homeostasis and photosynthetic
efficiency of leaves and reduced
ion toxicity and osmotic stress

caused by salt in tomato

[89]

Pseudomonas fluorescens Mustard Salt stress
Two strains increase cell viability

and reduce leaf damage and
superoxide production

[143]

Viridibacillus sp. Maize Heavy mental stress

Inoculation with the strain
promoted plant growth and

development and alleviated the
effects of stress on the plant

[144]

Morganella morganii
strains Arabidopsis thaliana Heavy mental stress

PGPR can protect plants from Cd
toxicity, and Cd-tolerant
rhizobacterial strains can

remediate heavy metal-polluted
sites and improve plant growth

[145]

Acinetobacter beijerinckii,
Raoultella planticola Soybean Heavy mental stress

PGPR strain promotes host
antioxidant production and alters

physiological and metabolic
responses in soybean, enabling it
to better cope with chromate and

arsenic toxicity and grow well
under stress

[139]
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4. Soil Remediation

Soil is the culmination of enduring formation processes, a virtually non-renewable
resource and an indispensable element of the environment. It serves as a filter and reservoir
for water, provides water and nutrients for plants to grow, and provides a habitat for a large
number of organisms. Due to the relentless pursuit of crop yield, the repeated application
of chemical fertilizers, pesticides, and toxic substances has led to their accumulation in the
soil, culminating in environmental degradation globally. Healthy soil has been irrevocably
lost. Revitalizing the health of soil and addressing the environmental issues impacting
current soil conditions is a significant endeavor.

In the past, conventional restoration strategies encompassed physical and chemical
methodologies; however, these techniques presented limitations such as high costs, lengthy
temporal durations, and potentially induced secondary soil pollution. The paramount
task at present is to identify methodologies for the sustainable restoration of the ecological
environment. In addition to traditional approaches, microbial remediation has emerged
as a contemporary, effective, and sustainable instrument for rejuvenating soil health [146].
Plants and microorganisms are usually utilized in the remediation of contaminated soil.
Plants primarily utilize their inherent capacity to absorb contaminants, while microor-
ganisms predominantly degrade them. Bioremediation technology primarily relies on
microorganisms and is considered a sustainable and environmentally friendly approach
to degrading environmental pollutants [147]. The soil microbiome, which is a crucial
element of bioremediation, plays a significant role in the mechanisms of soil microbial
remediation [148]. The essence of bioremediation technology lies in harnessing the capabil-
ity of microorganisms to degrade metabolites and facilitate the transformation of pollutants
in the soil [149]. Presently, within agricultural practices cognizant of biotechnological
reparation, the recuperation of soil fertility via microbial fertilizers composed of diverse
beneficial microbial strains is implemented. The interplay between plants, microorganisms,
and soil is considered in rectifying soil pollutants thereby facilitating healthy plant growth
by providing an advantageous environment.

Microorganisms employ diverse mechanisms to degrade toxic pollutants and pesticide
residues within the soil. Currently, biofertilizers containing plant growth-promoting rhizo-
bia represent crucial tools for remediating soil degradation [150]. The microbial remediation
strategy will evolve into a vital soil management methodology. PGPR exhibit a positive
influence on the soil itself, recruiting a larger number of beneficial microorganisms to
effectively decompose the accumulation of toxic substances in soil [151]. They have the ca-
pacity to convert toxic organic compounds into nontoxic forms. The degradation of organic
pollutants by microorganisms mainly occurs through the enzymes they break down, which
help to catalyze the transformation of soil pollutants [152]. In addition, several hydrolytic
enzymes can degrade the toxicity of toxic molecules and act as biodegraders [153]. The
utilization of the symbiotic relationship among plants, microorganisms, and soil can be
employed to remediate pollutants in soil and promote healthy plant growth. The process
of decontaminating soil heavy metals used by PGPR involves various methods, including
iron carrier chelation, biological adsorption, and biodegradation [154]. The bioremediation
of soil heavy metals primarily occurs through the interaction of inter-root microorganisms
with soil physicochemical properties, which in turn regulates plant growth and stimulates
the detoxification of heavy metals in the soil [155]. Soil microorganisms secrete metabolites
that can release iron carriers and organic acids, which aid in the chelation of soil toxic
metal ions and contribute to the adsorption of heavy metals [156]. The EPS produced by
PGPR can adsorb some metal ions such as Cu2+, Pb2+Cr6+, etc., and at the same time, it can
degrade polycyclic aromatic hydrocarbons (PAHs) and alkane compounds, thus degrading
pollutants in the soil [157]. Exploiting the beneficial rhizosphere microorganisms in soil to
mitigate heavy metal stress, these organisms can accumulate, transform, and decompose
the soil heavy metals [158]. Furthermore, the organic acids produced by microorganisms
react with soil metal ions to dissolve heavy metal ions [159]. Previously conducted studies
have indicated that microbial inoculation, including PGPR, has a notable impact on soil
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properties. These organisms decrease the toxicity of the soil, enhance the resistance of
plants to stressors, and stimulate plant growth [160]. Microbial fertilizers not only dras-
tically reduce the application of chemical fertilizers but also minimize the utilization of
pesticides [161]. Reports have shown that the use of resilient plant growth-promoting
inter-root microorganisms can be used to convert chemical pesticides into non-toxic chem-
icals through detoxification, degradation, complex formation and activation using the
microorganisms’ own mechanism of action [162]. Finally, Table 5 summarizes the examples
of the microbial remediation of soil pollutants in recent years.

Table 5. A case study of microbial remediation of contaminated and degraded soils.

Microorganisms Main Pollutants Repair Results References

Pseudomonas spp.,
Bacillus substilis,

B. megaterium
saline–alkaline soil0

These complex microbial agents could not
only reduce the salt content and pH but
also increase the organic content of the

saline soil

[163]

Klebsiella sp. Pyrene–nickel-contaminated soil
The pyrene degradation rate was 97.3%

and 97.1% in pyrene-contaminated soil and
pyrene–Ni-contaminated soil, respectively

[164]

Pseudomonas pesticide-contaminated
agricultural soil

Pseudomonas stutzeri CGMCC 22915
rapidly degraded sulfoxaflor to
sulfoxaflor-amide via hydration.

[165]

Bacillus megaterium Boron (B)- lead (Pb)- and
cadmium (Cd)-contaminated soil

Reduced boron (B), lead (Pb) and cadmium
(Cd) in soil and remediation of

soil environment
[166]

Mycolicibacterium sp. Pb113
and Chitinophaga sp. Zn19 Heavy metal-contaminated soil

Two inoculants promote manzanita growth
and improve soil zinc pollution

remediation efficiency
[167]

plant growth-promoting
rhizobacterium strain MD36 Heavy metal-contaminated soil

Strain MD36 effectively improves growth
and yield of heavy metal-contaminated

soils and bioremediation of
HM-contaminated saline soils and water

[137]

Stenotrophomonas maltophilia Cadmium (Cd)-contaminated soil
The SY-2 strain of S. maltophilia possesses

significant metal tolerance and
bioremediation potential against cadmium

[168]

Acinetobacter oleivorans Soil contamination
by hydrocarbons

Acinetobacter oleivorans S4 promoted plant
growth and degraded total oil

hydrocarbons in soil
[169]

5. Future Perspective and Challenges

Microbial fertilizers are currently being used as an effective method of increasing
crop yields. On one hand, they improve the nutrients necessary for plant growth and
development. On the other hand, they are environmentally friendly to the soil and protect
plants from environmental stresses. In recent years, biofertilizer has emerged as a green and
sustainable development strategy that contributes to the future agricultural ecosystem’s
sustainability. Additionally, the accurate application of microbial fertilizers should include
a consideration of the interaction between soil properties, the soil environment, and host
plants of strains to ensure precise biological fertilizer application. This approach helps
minimize the impact on the agricultural ecosystem and enhance its efficiency. Overall,
microbial fertilizers have a wide range of applications and serve as a green strategy to
promote the sustainable development of agriculture [170]. We should have confidence in
conducting further in-depth research for future investigations.

As we said, microbial fertilizer is a promising biofertilizer; however, it has some
limitations and challenges. We should focus on the main challenges in the production
of microbial fertilizer in view of food security. The most important choice in microbial
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production is that of a suitable carrier [171,172]. Apart from traditional organic wastes
like straw and feces, carriers such as domestic garbage, coal powder, and nutrient soil
are now being used. However, these carriers have complex compositions, and there is
a risk of heavy metal and pathogenic bacteria residues, which could harm agricultural
products. Microbial fertilizers are beneficial to plant growth, but they do not fully satisfy
the needs of the plant and are subject to a number of environmental conditions. In addition,
microorganisms may produce other substances in the process of degrading soil pollutants,
which may disturb the ecological balance. Therefore, further research is necessary to
understand microbial fertilizer in this context and enable its large-scale application and
commercialization. In order to overcome these challenges, researchers should continue
to explore several related strategies to achieve sustainable agricultural development and
solve food security problems.

6. Conclusions

Despite the escalating state of soil environmental degradation and limited cropland,
the growing population necessitates an augmentation of food production. Chemical fertiliz-
ers significantly augment crop yield in a short time span. To circumvent the adverse effects
of chemicals, eco-friendly substitutes have been identified. The utilization of microbial
fertilizers synthesized from PGPR is an ecologically sustainable agricultural strategy. By es-
tablishing a mutually beneficial interaction model among host plants, PGPR, and soil, these
interactions regulate plant growth, resist environmental stress, rehabilitate contaminated
soil (Figure 1). In summation, an overwhelming reliance on chemical fertilizers perpetuates
ecological imbalance. Biological fertilizer composed of beneficial PGPR strains possesses
numerous advantages. It is cost-effective, has significant potential for plant growth en-
hancement, improves plant resilience, and serves as a pivotal strategy for sustainable green
agricultural development.
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