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Abstract: A better understanding of the factors that reduce bundle-sheath cell leakage to CO2 (Φ),
enhance 13C carbon isotope discrimination, and enhance the photosynthetic capacity of barley
leaves will be useful to develop a nutrient- and water-saving strategy for dry-land farming systems.
Therefore, barley plants were exposed to a novel nitrification inhibitor (NI) (3,4-dimethyl-1H-pyrazol-
1-yl succinic acid) (DMPSA) and a urease inhibitor (UI) (N-butyl thiophosphorictriamide (NBPT))
with mulched drip fertigation treatments, which included HF (high-drip fertigation (370 mm) under
a ridge furrow system), MF (75% of HF, moderate-drip fertigation under a ridge furrow system), LF
(50% of HF, low-drip fertigation under a ridge furrow system), and TP (traditional planting with no
inhibitors or drip fertigation strategies). The results indicated that the nitrification inhibitor combined
with mulched drip fertigation significantly reduced bundle-sheath cell leakage to CO2 (Φ) as a result
of increased soil water content; this was demonstrated by the light and CO2 response curves of
the photosynthesis capacity (An), the apparent quantum efficiency (α), and the 13C-photosynthate
distribution. In the inhibitor-based strategy, the use of the urease and nitrification inhibitors reduced
Φ by 35% and 39% compared with TP. In the NI-HF strategy, it was found that barley could retain the
maximum photosynthesis capacity by increasing the leaf area index (LAI), An, rubisco content, soluble
protein, dry matter per plant, and productivity. The CO2 and light response curves were considerably
improved in the NI-HF and NI-MF treatments due to a higher 13C carbon isotope (∆‰), respiration
rate (Rd), and Ci/Ca, therefore obtaining the minimum Φ value. With both inhibitors, there was
a significant difference between HF and LF drip fertigation. The NI-MF treatment significantly
increased the grain yield, total chlorophyll content, WUE, and NUE by 52%, 47%, 57%, and 45%,
respectively. Collectively, the results suggest that the new nitrification inhibitor (DMPSA) with
HF or MF mulched drip fertigation could be promoted in semi-arid regions in order to mitigate
bundle-sheath cell leakage to CO2 (Φ), without negatively affecting barley production and leading to
the nutrient and water use efficiency of barley.

Keywords: mulched drip fertigation; bundle-sheath cell leakage; inhibitor strategies; photosynthetic
capacity; 13C carbon isotope; barley productivity

1. Introduction

The shortage of irrigation water constrains crop production worldwide, and, with the
projected climate change, its impacts will become more significant in the near future [1]. To
cope with the water shortage, it is necessary to develop water-saving agriculture counter-
measures, thereby producing more crops per drop. Rainwater is the main factor influencing
barley production in the rain-fed areas of Northwest China [2]. Water shortages in semi-arid
regions are also a severe ecological issue [3]. The shortage of irrigation water is the main
constraint on worldwide crop productivity. Mulched drip fertigation with inhibitors is
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the best nutrient- and water-saving farming approach, widely used in dry-land farming
systems [1]. Plastic film mulching is a technique that reduces soil water loss via evaporation,
with the objectives of reducing water stress and improving crop production [4]. As the
global population continues to grow, the demand for food is increasing, and the use of
fertilizers is also increasing in farming systems [5]. Due to the high demand for water
and fertilizers, especially nitrogen fertilizers, barley cultivation may result in significant
nitrogen losses due to NH3 evaporation and nitrate leaching [6–8]. Finding the best man-
agement practices that lead to lower N losses while maintaining yields is therefore crucial
in barley cropping areas to ensure both the economic and environmental sustainability of
these agro-ecosystems.

Many physiological processes have an effect on crop yields, in which photosynthesis
is the foundation of dry matter accumulation. Drought stress during the flowering stage
has a deleterious effect on the photosynthetic capacity due to leaf senescence and pho-
tosynthesis reduction [9]. The senescence of leaves speeds up the degradation of stored
dry matter, resulting in decreased ∆13C and negatively affecting the net photosynthetic
rates of crops [10,11]. Understanding the effect of mulched drip fertigation with two novel
nitrification and urease inhibitors on yields through photosynthesis will help to increase
crop production [2]. Nitrification and urease inhibitors [12,13], water-saving drip ferti-
gation approaches [14], and distributed nitrogen fertilization have been used to improve
the management of the nitrogen supply and barley production [15], resulting in increased
yields, reduced water consumption, and reduced agricultural costs [8]. Drip irrigation
is often used for plant production in water-poor areas [14]. Mulched drip fertigation is
combined with inhibitors to achieve the integrated fertigation of water and fertilizers, save
irrigation water, reduce the evapotranspiration (ET) rate, and improve production and
resource use efficiency [16,17]. Therefore, it is necessary to study the effects of nitrification
and urease inhibitors on photosynthetic capacity and water use efficiency and the impact
of drip irrigation on the ∆13C and barley yield.

Basic photosynthesis parameters are associated with leaf chlorophyll content and the
bundle-sheath cell leakiness of CO2 (Φ). There is a considerable relationship between the
leaf photosynthesis capacity and chlorophyll content [18]. However, it remains unclear
how various mulched drip fertigation treatments with nitrification and urease inhibitors
affect this relationship. Moreover, the carbon assimilation rates of barley leaves may be
considerably improved by slight improvements in the soil water content [19]. The use of
urease inhibitors is an effective strategy to mitigate Φ [20]. Nitrification inhibitors have been
defined as suitable tools to improve the nitrogen utilization efficiency, thereby reducing
nitrogen loss [21,22], which can also improve photosynthesis, the chlorophyl content,
and the barley yield [13]. In addition, in C4 crops, the ratio of the carboxylation rate of
phosphoenolpyruvate (PEP) to the decarboxylation acid rate of C4 to the bundle-sheath
leakage of the CO2 rate is in equilibrium, maximizing the C4 photosynthesis capacity [23,24],
indicating a negative correlation between PEP and photosynthesis [25,26]. Research on C4
grasses and crops has shown that Φ may be considerably influenced by environmental
stress, such as rainwater stress, thus considerably increasing Φ [27,28]. However, so far, it
is not clear whether it is influenced by nutrition and water-saving management strategies,
such as mulched drip irrigation using nitrification and urease inhibitors [29].

In view of these challenges, there is limited research on the synergistic influence of
urease (NBPT) and nitrification (DMPSA) inhibitors in mulched drip fertigation strategies.
Mulched drip fertigation is a modern and innovative irrigation method that uses a drip fer-
tigation system to apply fertilizer and irrigation water together, with the aim of improving
the photosynthetic CO2 and light response curves, carbon isotope discrimination, nitrogen
use efficiency (NUE), and water use efficiency (WUE); reducing CO2 sheath cell leakage (Φ)
and surface evaporation; and increasing barley production. Still, it is unknown whether
∆13C is affected by water-saving agricultural strategies, such as mulched drip fertigation
with nitrification and urease inhibitors, where the barley crop is exposed to moderate water
stress. The specific aims of this study were to reveal the effect of mulched drip fertigation
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on physiological processes, CO2 sheath cell leakage (Φ), and production and to improve the
photosynthesis capacity of barley using two novel nitrification and urease inhibitors. These
mechanisms are examined in semi-arid areas where the photosynthesis capacity of barley
leaves and Φ are affected by various nutrient- and water-saving agricultural strategies.

2. Results

2.1. Dry Matter Partitioning and 13C-Photosynthates in Different Organs

The synergistic influence of the urease (NBPT) and nitrification (DMPSA) inhibitors
under the mulched drip fertigation strategies considerably affected dry matter partitioning
to various organs under different growth stages (Table 1). At the maturity stage, the
highest dry matter partitioning plant−1 was noted under the NI-HF treatment. There were
significant effects of the mulched drip fertigation strategies on the amount of dry matter
(g plant−1) at various growth stages of barley. On average, the data showed that the dry
matter partitioning (g plant−1) was higher for NI-HF, and the lowest was noted with the
TP planting. Compared with UI-HF, the dry matter (g plant−1) was considerably improved
by 25.4% in the NI-HF treatment and 23.2% in NI-MF, whereas, in NI-HF, it was enhanced
by 71.6%, compared with TP planting at the maturity stage.

Table 1. Effects of different treatments on dry matter partitioning (g plant−1) in different organs (%)
at physiological maturity of barley during 2020–2022.

Year Treatment
Dry Matter (g plant−1)

TS RWS JS FS MS

2020–2021 NI-HF 0.45a 1.41a 5.26a 7.51a 10.45a
NI-MF 0.40b 1.22b 4.32b 6.24b 8.78b
NI-LF 0.33c 0.99c 2.35d 4.46d 6.26d
UI-HF 0.41b 1.21b 4.09b 6.16b 8.76b
UI-MF 0.34c 1.09c 3.24c 5.44c 7.14c
UI-LF 0.27d 0.80d 2.04d 4.01d 4.45e

TP 0.26d 0.68e 1.52e 3.81e 4.32e
2021–2022 NI-HF 0.90a 1.44a 3.20a 8.23a 15.00a

NI-MF 0.89a 1.23c 2.27b 5.32b 12.54b
NI-LF 0.70b 0.99d 1.99c 4.14c 8.31c
UI-HF 0.75b 1.33b 2.80b 5.81b 11.53b
UI-MF 0.57c 1.14c 2.15b 4.58c 10.16b
UI-LF 0.46d 0.96d 1.55c 3.66d 5.45d

TP 0.42d 0.43e 0.97d 2.55e 2.90e
NI-HF: nitrification inhibitor DMPSA with 370 mm high drip fertigation irrigation under ridge furrow system;
NI-MF: nitrification inhibitor DMPSA with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; NI-LF: nitrification inhibitor DMPSA with 50% of H, low drip fertigation irrigation under ridge fur-
row system; UI-HF: urease inhibitor NBPT with 370 mm high drip fertigation irrigation under ridge furrow
system; UI-MF: urease inhibitor NBPT with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; UI-LF: urease inhibitor NBPT with 50% of H, low drip fertigation irrigation under ridge furrow system;
TP: traditional planting with no inhibitor and drip irrigation. TS: tillering stage; RWS: re-wintering stage;
JS: jointing stage; FS: flowering stage; MS: maturity stage. Values are given as means, and different lowercase
letters indicate significant differences at p ≤ 0.05 level in the same line (LSD test) (n = 3).

The application of urease (NBPT) and nitrification (DMPSA) inhibitors under mulched
drip irrigation changed the distribution of 13C photosynthetic patterns among several plant
organs (Table 2). During physiological maturity, the enrichment rate of 13C is relatively
high in the stems, grains, spikes, and leaves of barley crops. The average data show
that under NI-HF treatment, the distribution of 13C photosynthesis in grains was the
highest, followed by UI-HF treatment, and the distribution was the smallest under TP
treatment. Compared with the UI-HF treatment, the distribution of 13C photosynthesis
in the grains of NI-HF treatment and NI-MF treatment significantly increased by 10.1%
and 4.2%, respectively, while that in NI-HF treatment increased by 30.0% compared to
TP treatment. In addition, traditional planting and no drip irrigation and fertilization
significantly reduced the photosynthetic distribution pattern of 13C in the leaves and stems,
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while mulched drip irrigation and fertilization under urease (NBPT) and nitrification
(DMPSA) inhibitors considerably enhanced the 13C in the stems and spikes.

Table 2. Effects of different treatments on 13C-photosynthates distribution in different organs (%) at
physiological maturity of barley during 2020–2022.

Year Treatment
13C-Photosynthate Distribution in Different Organs (%)

Stem Leaves Spike Grain

2020–2021 NI-HF 48.9a 19.9a 1.8a 47.8a
NI-MF 43.1b 19.6a 1.0a 42.2b
NI-LF 38.3c 19.2a 1.0a 39.0c
UI-HF 42.9b 19.7a 1.5a 44.6b
UI-MF 40.7b 19.5a 1.2a 41.0b
UI-LF 37.4c 19.8a 1.4a 36.6d

TP 33.7d 18.7b 0.6b 35.6d
2021–2022 NI-HF 54.5a 24.0a 1.9a 47.3a

NI-MF 52.0b 20.5b 1.8a 40.5b
NI-LF 50.7c 17.9c 1.6a 35.7d
UI-HF 52.3b 21.2b 1.6a 40.9b
UI-MF 51.5b 19.5c 1.6a 38.3c
UI-LF 50.1c 18.4c 1.4a 34.5d

TP 49.4d 15.2d 1.4a 31.0e
NI-HF: nitrification inhibitor DMPSA with 370 mm high drip fertigation irrigation under ridge furrow system;
NI-MF: nitrification inhibitor DMPSA with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; NI-LF: nitrification inhibitor DMPSA with 50% of H, low drip fertigation irrigation under ridge fur-
row system; UI-HF: urease inhibitor NBPT with 370 mm high drip fertigation irrigation under ridge furrow
system; UI-MF: urease inhibitor NBPT with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; UI-LF: urease inhibitor NBPT with 50% of H, low drip fertigation irrigation under ridge furrow system;
TP: traditional planting with no inhibitor and drip irrigation. Values are given as means, and different lowercase
letters indicate significant differences at p ≤ 0.05 levels in the same line (LSD test) (n = 3).

2.2. Ci/Ca Ratio, ∆13C, and Φ

Under both urease (NBPT) and nitrification (DMPSA) inhibitors with mulched drip
fertigation, the Ci/Ca concentration ratio improved considerably (Figure 1). In the NI-HF
treatment, the Ci/Ca was considerably improved by 14.8% compared to TP treatment. The
mean of the two years’ data indicated that the Ci/Ca of the NI-MF and UI-HF treatments
was enhanced by 7.7% and 11.1% compared to TP treatment. The Ci/Ca of the NI-LF
treatment was improved considerably by 7.2%, and that in UI-MF was improved by 6.5%,
compared with the TP treatment. Compared with the TP treatment, in the NI-HF treatment,
(∆13C) carbon isotope discrimination was considerably enhanced by 29.1%. Compared with
TP treatment, the NI-HF, NI-MF, NI-LF, UI-HF, UI-MF, and UI-LF treatments significantly
increased ∆13C by 29.1%, 20.4%, 18.2%, 22.5%, 18.9%, and 12.7%, respectively. Under the TP
treatment, the leakage of bundle-sheath cells to CO2 (Φ) was 35.2% higher compared with
NI-HF. Compared with TP, the NI-HF, NI-MF, NI-LF, UI-HF, UI-MF, and UI-LF treatments
significantly decreased Φ by 35.2%, 22.8%, 22.9%, 38.7%, 29.8%, and 11.0%, respectively.
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Figure 1. Effects of urease and nitrification inhibitor application with drip irrigation fertigation on the
intercellular to ambient CO2 concentration ratio (Ci/Ca), bundle-sheath leakiness to CO2 (Φ), and
carbon isotope discrimination (∆13C) during the flowering stage. Vertical bars represent the (means
± SR) (n = 3), while lowercase letters represent LSD values.

2.3. Respiration Rate and Apparent Quantum Efficiency (α)

For the apparent quantum efficiency (α), in the research years of 2020–2021 and
2021–2022, there were considerable changes under mulched drip irrigation combined with
urease (NBPT) and nitrification (DMPSA) inhibitor strategies (Table 3). Compared to
TP treatment, in the NI-HF and UI-HF treatments, the α increased by 17.1% and 12.6%,
respectively, while that in the NI-MF treatment increased by 9.9%. Compared to TP
treatment, at the grain filling stage, the average α values of the NI-HF and UI-HF treatments
increased by 12.8% and 8.8%, respectively. The two-year average data show that under the
NI-HF and TP treatments at different growth stages, the α also decreased from 0.056 to 0.044
and from 0.046 to 0.039, respectively. Compared with TP treatment, the NI-HF treatment
increased the average respiratory rate (Rd) by 33.6%, 24.0%, and 20.5%. Compared with
TP treatment, the mean Rd of the NI-HF and UI-HF treatments in the grain filling stage
increased by 42.0% and 31.6%.

Table 3. Effects of different treatments on apparent quantum efficiency (α, dimensionless) and
respiration rate (Rd, µmol m−2 s−1) at different growth stages of barley during 2020–2022.

Year Treatment
Apparent Quantum Efficiency (α) Respiration Rate (Rd, µmol m−2 s−1)

FS GFS FS GFS

2020–2021 NI-HF 0.053a 0.047a 3.40a 3.70a
NI-MF 0.051a 0.044b 3.00a 3.10a
NI-LF 0.050b 0.044b 2.80b 2.75b
UI-HF 0.052a 0.046a 2.75b 3.00a
UI-MF 0.050b 0.044b 2.85b 2.50b
UI-LF 0.048b 0.042b 2.50b 2.30b

TP 0.046c 0.040c 2.30c 1.90c
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Table 3. Cont.

Year Treatment
Apparent Quantum Efficiency (α) Respiration Rate (Rd, µmol m−2 s−1)

FS GFS FS GFS

2021–2022 NI-HF 0.058a 0.045a 4.00a 3.20a
NI-MF 0.052b 0.040b 3.60b 2.80b
NI-LF 0.047c 0.040b 3.05b 2.45b
UI-HF 0.053b 0.043a 3.35b 2.85b
UI-MF 0.050b 0.040b 3.20b 2.50b
UI-LF 0.047c 0.038b 2.70c 2.65b

TP 0.042d 0.036c 2.50c 2.10c

NI-HF: nitrification inhibitor DMPSA with 370 mm high drip fertigation irrigation under ridge furrow system;
NI-MF: nitrification inhibitor DMPSA with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; NI-LF: nitrification inhibitor DMPSA with 50% of H, low drip fertigation irrigation under ridge fur-
row system; UI-HF: urease inhibitor NBPT with 370 mm high drip fertigation irrigation under ridge furrow
system; UI-MF: urease inhibitor NBPT with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; UI-LF: urease inhibitor NBPT with 50% of H, low drip fertigation irrigation under ridge furrow system;
TP: traditional planting with no inhibitor and drip irrigation. FS: flowering stage; GFS: grain filling stage. Values
are given as means, and different lowercase letters indicate significant differences at p ≤ 0.05 level in the same line
(LSD test) (n = 3).

2.4. Soil Water Content (SWC) and Chlorophyll Content

The mulched drip fertigation strategies had significant effects on rainfall collection and
enhanced SWC at the 0–200 cm layers compared to traditional planting with no inhibitors
and drip fertigation (Figure 2). The SWC at 0–200 cm under the NI-HF treatment was
significantly different at various growth stages. At the flowering and grain filling stages,
the SWC at the 0–200 cm depth improved considerably under both urease (NBPT) and
nitrification (DMPSA) inhibitors with mulched drip fertigation, while, under the UI-LF and
TP treatments, the SWC gradually decreased as compared to the rest of the treatments. In
addition, the nitrification (DMPSA) inhibitor with high drip mulched fertigation increased
the SWC. Furthermore, at the flowering stage, the SWC under NI-HF and UI-HF was
considerably improved by 55.1% and 49.4% compared to the TP treatment.
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Figure 2. Dynamic changes in the soil water content (%) at different barley growth stages with
0–200 cm depth under different treatments during 2020–2022. Vertical bars represent the means ± SR
(n = 3).

The mulched drip fertigation in combination with urease (NBPT) and nitrification
(DMPSA) inhibitor strategies considerably improved the Chl ab content and chlorophyll
stability index (CSI) of barley flag leaves. In both urease (NBPT) and nitrification (DMPSA)
inhibitor with mulched drip fertigation strategies, the Chl ab content and CSI of barley
improved with increasing mulched drip fertigation, while the CSI was considerably reduced
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with increasing mulched drip fertigation with both urease and nitrification inhibitors
(Table 4). However, when mulched drip fertigation increased from moderate to high, there
was no significant variance noted in the Chl ab content and CSI under both urease and
nitrification inhibitors. The mean data from both years revealed that the NI-HF, NI-MF,
NI-LF, UI-HF, UI-MF, and UI-LF treatments considerably improved the Chl ab content by
48.6%, 46.8%, 32.9%, 42.5%, 39.7%, and 20.3% compared to the TP treatment.

Table 4. Effects of different treatments on grain yield (t ha−1), total chlorophyll ab (mg g−1), and
chlorophyll stability index (CSI, %) at average of three different growth stages (jointing, flowering,
and grain filling stage), as well as nitrogen use efficiency and water use efficiency (WUE kg mm−1) of
barley during 2020–2022.

Year Treatment Grain Yield
(t ha−1)

Total Chl ab
(mg g−1)

WUE
(kg mm−1 ha−1)

CSI
(%)

NUE
(%)

2020–2021 NI-HF 10.3a 15.1a 27.0a 53.0c 36.3a
NI-MF 9.3a 14.6a 25.3a 54.8c 30.5b
NI-LF 6.5c 11.7c 18.7b 68.4b 21.7d
UI-HF 8.6b 13.7b 20.9b 58.4c 29.3b
UI-MF 7.3b 13.1b 18.9b 61.1c 26.0c
UI-LF 5.3c 10.1c 13.8c 79.2a 15.7e

TP 4.6d 8.0d 11.6c - -
2021–2022 NI-HF 9.9a 13.9a 30.0a 49.6d 44.0a

NI-MF 9.1a 13.4a 28.5a 51.5c 40.6b
NI-LF 7.1c 10.5b 22.7b 65.7b 33.0c
UI-HF 8.8b 12.2b 24.1b 56.6c 35.6c
UI-MF 8.1b 11.6b 23.1b 59.5c 27.5d
UI-LF 6.1d 8.6c 18.3c 80.2a 23.4e

TP 4.3e 6.9c 11.6d - -
NI-HF: nitrification inhibitor DMPSA with 370 mm high drip fertigation irrigation under ridge furrow system;
NI-MF: nitrification inhibitor DMPSA with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; NI-LF: nitrification inhibitor DMPSA with 50% of H, low drip fertigation irrigation under ridge fur-
row system; UI-HF: urease inhibitor NBPT with 370 mm high drip fertigation irrigation under ridge furrow
system; UI-MF: urease inhibitor NBPT with 75% of H, moderate drip fertigation irrigation under ridge furrow
system; UI-LF: urease inhibitor NBPT with 50% of H, low drip fertigation irrigation under ridge furrow system;
TP: traditional planting with no inhibitor and drip irrigation. Values are given as means, and different lowercase
letters indicate significant differences at p ≤ 0.05 level in the same line (LSD test) (n = 3).

2.5. Soluble Protein, Rubisco Content, and Leaf Area Index (LAI)

In the two-year study, the soluble protein content in the leaves increased from 0 DAF
to 40 DAF under the NI-HF and UI-HF treatments. The difference between the NI-HF and
UI-HF treatments was significant from 0 to 32 DAF, while the change between NI-MF and
TP was considerable between 0 and 40 DAF (Figure 3). In addition, from 0 to 40 DAF, the
NI-HF and NI-MF treatments led to higher rubisco content in the leaves compared to all
other treatments, and the NI-HF treatment showed the greatest improvement during the
two-year study period (Figure 4). These results showed that, after flowering, mulching drip
irrigation with urease (NBPT) and nitrification (DMPSA) inhibitors increased the content of
soluble protein and rubisco in leaf photosynthesis, which was helpful for the accumulation
of photosynthesis products and improved the photosynthetic capacity.

Under different strategies of mulched drip irrigation combined with urease (NBPT)
and nitrification (DMPSA) inhibitors, the LAI from 2020 to 2022 was significantly higher
(Figure 5). Under NI-HF, there were significant variations in the LAI of barley crops at
various growth stages. The change in LAI started at 60DAP and reached its maximum at
100 DAP; it then gradually decreased at 100–140 DAP due to leaf senescence, indicating that
early leaf senescence occurs due to inadequate rainwater. Under the action of urease and
nitrification inhibitors, except for 30 DAP, different mulching drip irrigation fertilization
strategies had a significant impact on the LAI. For example, the NI-HF treatment increased
the LAI on different days after planting. However, the difference between the NI-MF and
UI-HF treatments was not significant.
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2.6. Photosynthesis Light and CO2 Response Curve

The light response curve of barley leaves under the combined action of various
mulched drip irrigation fertilization and urease (NBPT) and nitrification (DMPSA) in-
hibitor strategies is shown in Figure 6. The photosynthetic response curve indicates the
relationships between important photosynthetic parameters, such as An. The light response
curve shows that, due to the different mulched drip irrigation conditions with different
combinations of urease and nitrification inhibitors, the dynamic changes in the number
of standard stems of An during barley flowering increased (Figure 7). Under different
urease and nitrification inhibitor strategies, the An of the NI-HF and UI-HF treatments
was significantly higher as compared with the rest of the treatments. Compared with the
UI-HF and UI-MF treatments, a higher An was recorded under the NI-HF and NI-MF
treatments. Similarly, when the number of standard rods exceeded 1600 µmol m−2 s−1,
the Pn curve became constant. In descending order, the An at various PAR levels in the
different treatments was as follows: NI-HF > UI-HF > NI-MF > UI-MF > NI-LF > UI-LF
and TP treatments.
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We used the C4 photosynthetic model to simulate the CO2 response curve of photo-
synthesis at the flowering stage of barley flag leaves. The An CO2 response curve indicates
that, at the flowering period of barley, with an increase in Ci, drip irrigation fertilization
combined with urease and nitrification inhibitor strategies under various mulches, the
An rate was significantly increased (Figure 7). When observed under the nitrification
inhibitor strategy, the An content in flag leaves treated with NI-HF was the maximum as
compared with the rest of the treatments. Compared with the TP treatment, NI-HF and
UI-HF indicated the maximum An. Likewise, when Ci exceeded 600 µmol mol−1, the An
curve became constant and saturated.

2.7. Resource Use Efficiency and Barley Production

The field study showed that the grain yield, WUE, and NUE of barley were signifi-
cantly affected by the various mulched drip fertigation strategies in combination with ure-
ase (NBPT) and nitrification (DMPSA) inhibitors (Table 4). As the mulched drip fertigation
increased, the grain yield considerably improved, but the differences were non-significant
when the irrigation exceeded moderate mulched drip fertigation under both urease (NBPT)
and nitrification (DMPSA) inhibitors. In addition, mulched drip fertigation irrigation
combined with DMPSA considerably enhanced the NUE. Compared with UI-LF, the NUE
of the NI-HF, NI-MF, NI-LF, UI-HF, and UI-MF treatments increased by 51.3%, 45.0%, 28.6%,
39.8%, and 27.0%. Meanwhile, the WUE in the NI-HF, NI-MF, NI-LF, UI-HF, UI-MF, and
UI-LF treatments was increased by 59.3%, 56.9%, 44.0%, 48.4%, 44.8%, and 27.7% when
compared with TP treatment. The application of the DMPSA inhibitor had the maximum
effect on the WUE and NUE of barley. The grain yield in the NI-HF, NI-MF, NI-LF, UI-HF,
UI-MF, and UI-LF treatments was increased by 55.8%, 51.5%, 34.5%, 48.7%, 42.1%, and
21.9% compared with TP treatment.

Financial profit is one of the most valuable estimation indexes for the management
productivity of barley. The total costs of the different treatments had clear variations due to
the use of plastic films, growth inhibitors, and irrigation (Table 5). The main output value
for the barley crop was the grain yield. The output value under NI-HF was significantly
higher than that of the rest of the treatments. The net incomes with the NI-HF, NI-MF,
NI-LF, UI-HF, UI-MF, UI-LF, and TP treatments were 16,897, 14,895, 9295, 13,537, 11,295,
6655, and 4965 (Yuan ha−1). Among the various treatments, the net profit of NI-HF was the
highest (16897 CNY ha−1).

Table 5. Average economic benefits in Chinese yuan (CNY ha−1) under different treatments.

Treatment G.Y. LC PFC MCC SFC IC IV OV O/I NI NID

NI-HF 10.1 2627 710 1450 1967 638 7392 24,288 3.29 16,897 11,932
NI-MF 9.2 2627 710 1450 1967 479 7233 22,128 3.06 14,895 9930
NI-LF 6.8 2627 710 1450 1967 319 7073 16,368 2.31 9295 4330
UI-HF 8.7 2627 710 1450 1967 638 7392 20,928 2.83 13,537 8572
UI-MF 7.7 2627 710 1450 1967 479 7233 18,528 2.56 11,295 6330
UI-LF 5.7 2627 710 1450 1967 319 7073 13,728 1.94 6655 1690
TP 4.5 2627 0 1169 1967 0 5763 10,728 1.86 4965 -

Note: G.Y.: grain yield (t ha−1); LC: labor costs (Chinese yuan (CNY) ha−1); PFC: plastic film costs (CNY ha−1);
MCC: machine cultivation costs (CNY ha−1); SFC: seed and fertilizer costs (CNY ha−1); IC: irrigation
cost (CNY ha−1); IV: input value (CNY ha−1); OV: output value (CNY ha−1); O/I: output/input; NI: net
income (CNY ha−1); NID: net income difference (CNY ha−1). Labor cost = 80 CNY per person day−1;
plastic film cost = 12 CNY kg−1; barley grain price = 2.4 CNY kg−1.

3. Discussion

Due to water shortages, barley production can be limited by poor photosynthesis in
rain-fed regions [30,31]. Earlier research works revealed that carbon isotope discrimination
(∆13C) plays a vital role in increasing the photosynthesis capacity and reducing the cell
leakage of a bundle sheath to CO2 [23,32]. Compared with UI-HF, the dry matter (g plant−1)
was considerably improved by 25.4% in the NI-HF treatment and 23.2% in NI-MF, whereas
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the NI-HF treatment enhanced it by 71.6% compared with TP planting at the maturity stage.
In addition, traditional planting and drip irrigation and fertilization significantly reduced
the photosynthetic distribution pattern of 13C in the leaves and stems, while mulched
drip irrigation and fertilization under urease (NBPT) and nitrification (DMPSA) inhibitors
considerably enhanced the 13C distribution in the spikes and stems. Earlier research has also
reported similar results [33–35]. The timing of deficit irrigation can significantly improve
the chlorophyll ab content and photosynthesis capacity and delay leaf senescence [10].
Compared to TP treatment, in the NI-HF treatment, the (∆13C) carbon isotope identification
was significantly improved by 29.1%. Under TP treatment, bundle sheath cell leakage was
sensitive to CO2 (Φ) and was 35.2% higher than in the NI-HF treatment. The barley leaf
carbon ∆13C can reveal the ecological effects of the barley crop Pn [36,37]. Ali et al. [1]
reported that ∆13C was changed with the influence of a greater ρ and was considerably
enhanced under the CF rather than the RB planting technique. Under the NI-HF treatment,
Ci/Ca was considerably enhanced by 14.8% compared to the TP treatment. The Ci/Ca of
the NI-MF and UI-HF treatments increased by 7.7% and 11.1%, respectively, compared to
the TP treatment. The study by Wang et al. [32] showed that the maximum Ci/Ca value can
lead to a significant increase in the ∆13C value. Thomas et al. [38] also found that, compared
to DI treatment, PRI treatment had a significantly better ∆13C value. In the present research,
the estimations of ∆13C and Ci/Ca are similar to those of other C4 crops [39,40].

The barley yield is related to the photosynthetic capacity [41] and decreases under
rain-fed agricultural systems Φ [38]. Compared to TP treatment, the average α of the NI-HF
treatment and UI-HF treatment increased by 17.1% and 12.6%, respectively, while that
of the NI-MF treatment increased by 9.9%. The two-year average data show that under
the NI-HF and TP treatments at different growth stages, α decreased from 0.056 to 0.044
and from 0.046 to 0.039, respectively. Compared with TP treatment, the NI-HF treatment
increased the mean Rd by 33.6%, 24.0%, and 20.5%, respectively. Mulching coverage leads
to a rise in barley production, which is related to the An, Rd, and α values [29]. Greater Pn
and α values and a lower Φ are possible causes. Water scarcity decreases CO2 availability
and stomatal conductance, thus decreasing the An and resource use efficiency [42,43].
Numerous studies have confirmed that DMPSA inhibitors can improve the photosynthesis,
Rd, and α values [44,45]. In irrigation experiments conducted in the same experimental
area, Ali et al. [1] found that the impact of NBPT on the soluble protein and rubisco content
was largely influenced by irrigation management in the weeks after fertilization, and the
impact was negligible at the highest irrigation frequency. In this two-year study, the soluble
protein content in the leaves increased from 0 DAF to 40 DAF under the NI-HF and UI-
HF treatments. The difference between the NI-HF and UI-HF treatments was significant
from 0 to 32 DAF, while the change between NI-MF and TP was considerable between
0 and 40 DAF. The rubisco enzyme in the Calvin cycle accounts for 50% of the soluble
protein of leaves [46,47], so it is the most obvious target to improve the photosynthesis
of barley [48]. These results showed that after flowering, the mulched drip irrigation
with NBPT and DMPSA inhibitors increased the rubisco content under leaf photosynthesis,
which was conducive to the accumulation of photosynthetic products and the improvement
of photosynthesis.

Under the urease (NBPT) and nitrification (DMPSA) inhibitors and film drip irrigation
strategies, the chlorophyll ab content and CSI in barley flag leaves increased with the
increase in film drip irrigation fertilization, while the CSI decreased significantly with the
increase in film irrigation under different urease and nitrification inhibitors. The amount
and duration of irrigation considerably affects leaf senescence and increases the chlorophyll
content and Pn [49,50]. However, when the level of covered drip irrigation fertilization
increased from moderate to high, there was insignificant variance in the Chl ab content and
CSI under the action of the urease and nitrification inhibitors. Increasing photosynthesis
is one of the essential strategies to increase grain yields and biomass [51,52]. Previous
studies have reported that RF systems play a crucial role in improving the water use
efficiency in dry-land agricultural systems [39,49]. In this study, in the flowering and filling
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stages, under the urease (NBPT) and nitrification (DMPSA) inhibitors and the mulched
drip irrigation fertilization strategy, the SWC at a 0–200 cm depth significantly increased
(p < 0.05), while, under UI-LF and TP, the SWC gradually decreased. The light response
curve shows that under the combined action of urease and nitrification inhibitors, the An
and PAR of barley during the flowering period increased under different mulching drip
irrigation and fertilization conditions. Under different urease and nitrification inhibitor
strategies, the An of the NI-HF and UI-HF treatments was considerably greater. Compared
with the UI-HF and UI-MF treatments, a higher An was recorded under the NI-HF and
NI-MF treatments. Similarly, when the PAR exceeded 1600 µmol m−2 s−1, the An curve
became constant. We used the photosynthesis model developed by [53,54] to simulate the
photosynthesis CO2 response curve at the flowering stage for barley flag leaves. Compared
with TP treatment, NI-HF and UI-HF yielded the maximum An values. Likewise, when
Ci exceeded 600 µmol mol−1, the An curve became constant and saturated. When Ci was
400 µmol mol−1, the CO2 response curve of An in the barley leaves was the maximum [50].
Higher ∆13C may also contribute to a higher Pn value, barley yield, and photosynthesis
with low Φ values [11,54]. This is consistent with our research results.

With the increase in the fertilization amount under mulched drip irrigation, the grain
yield significantly increases, but when the fertilization amount under drip irrigation exceeds
the moderate level of NBPT and DMPSA inhibitors, the yield change is not significant. In
addition, the combination of mulched drip irrigation and DMPSA irrigation significantly
improves the NUE. Wang et al. [31] found that the slow release of a nitrogen fertilizer can
promote the transfer of nitrogen to barley grains. The improvement in water and nutrient
utilization efficiency makes drip irrigation fertilization a promising strategy to improve
plant nutrition and reduce nutrient losses (such as N) [48,53,55]. The WUE in the NI-HF,
NI-MF, NI-LF, UI-HF, UI-MF, and UI-LF treatments was increased by 59.3%, 56.9%, 44.0%,
48.4%, 44.8%, and 27.7% when compared with TP treatment. The application of the DMPSA
inhibitor had the maximum effect on the WUE and NUE of barley. The grain yield for
the NI-HF, NI-MF, NI-LF, UI-HF, UI-MF, and UI-LF treatments was 55.8%, 51.5%, 34.5%,
48.7%, 42.1%, and 21.9% higher compared with TP treatment. The impact of nitrogen on
barley yields is indirectly generated by growth effects [52,56]. The interaction between
deficit irrigation and inhibitors is a key factor affecting barley growth and yields [51,54,
57]. Furthermore, urease inhibitors inhibit the hydrolysis rate of amide nitrogen, reduce
the volatilization of NH4

+, prolong nitrogen fertilizer utilization, and ensure a sufficient
nutrient supply for yield formation in the later growth stage [1], ultimately improving the
NUE, WUE, and barley yield.

4. Materials and Methods
4.1. Site Description

This field experiment research was conducted in Huangyang Town, Liangzhou Dis-
trict, Wuwei City, Agricultural Science, Gansu Province, in 2020–2021 and 2021–2022,
located at a latitude of 37◦30′ N and longitude of 103◦50′ E. The annual sunshine duration
was 2360–2920 h, the height above mean sea level was 1766 m, and the frost-free period
was 135–150 days. The rainfall in 2020–2021 was 230 mm, and that in 2021–2022 was
200 mm. The monthly rainfall and temperature in 2020–2021 and 2021–2022, as well as the
monthly average over 40 years (1980–2020), are shown in Figure 8. Table 6 provides the soil
characteristics at a depth of 0–20 cm in farmland over the past two years.

Table 6. The chemical properties of the soil layers at the experimental site (0–20 cm).

Year pH (cm) SOM
(g kg−1)

TN
(g kg−1)

TP
(g kg−1)

TK
(g kg−1)

AP
(mg kg−1)

AK
(mg kg−1)

2020–2021 8.24 25.67 1.18 1.07 18.21 11.20 197.22
2021–2022 8.50 26.33 1.02 1.03 16.34 13.38 196.65
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4.2. Experimental Design

The on-site study was carried out using a random complete block design (RCBD)
with four replicates, each covering an area of 60 square meters (20 × 3 m). The study con-
sisted of seven treatments: NI-HF—nitrification inhibitor (3,4-dimethyl-1H-pyrazole-1-yl
succinic acid) (DMPSA) (Zhongsheng Agricultural Science (Shandong) Fertilizer Co., Ltd.,
Liaocheng City, China) with (370 mm) high drip fertigation irrigation under a ridge furrow
system; NI-MF—nitrification inhibitor DMPSA with 75% of H, moderate drip fertigation
irrigation under a ridge furrow system; NI-LF—nitrification inhibitor DMPSA with 50% of
H, low drip fertigation irrigation under a ridge furrow system; UI-HF—urease inhibitor
(N-butyl thiophosphorictriamide) (NBPT) with (370 mm) high drip fertigation irrigation
under a ridge furrow system; UI-MF—urease inhibitor NBPT with 75% of H, moderate drip
fertigation irrigation under a ridge furrow system; UI-LF—urease inhibitor NBPT with 50%
of H, low drip fertigation irrigation under a ridge furrow system; TP—traditional planting
with no inhibitor and drip irrigation. Drip irrigation under a plastic film cover was used
for fertigation and irrigation. Before sowing, a drip irrigation belt was laid and then the
ridge furrow area was covered with plastic film mulching. Each plot was equipped with
high-precision water meters (LXS-25, Ningbo, China), pressure gauges, and control valves
to ensure accurate discharge and a stable pressure. All experimental plots were irrigated
at 50 mm after sowing to achieve uniform germination. Throughout the growing season,
single water applications (64, 45, and 27 mm) were applied for the H, M, and L treatments,
totaling 5 times. The AZ34 barley variety was sown with a population of 2.25 × 106 seeds
ha−1. The seeds were sown on 5 October 2020 and 9 October 2021, with row spacing of
20 cm. Barley was harvested on 19 May 2021 and 21 May 2022. A large space of 0.8 m was
reserved between the bordering plots to prevent the leakage of water and nutrients. In
these two years, 40 kg N ha−1, 200 kg P2O5 ha−1, and 27.5 kg K ha−1 were applied before
planting, and 160 and 40 kg ha−1 of N were applied through drip irrigation fertilization
during the jointing and flowering stages.

4.3. Soil Water Content

The soil moisture content at different growth stages was measured. A TDR machine
(Time-Domain Reflectometry, Trase System, Soil Moisture Equipment Corp., Germany) was
used to record the soil depth at 0–200 cm, with intervals of 20 cm.
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4.4. δ13C Isotope and Chlorophyll Content

In the mature stage, the biomass of leaves was used for δ13C measurement. A fine
powder was prepared from dry leaf samples using the Isoprime 100 instrument (Isoprime
100%, Cheadle, UK) for 13C analysis.

The 13C composition (δ13C) was calculated as

δ13C = 1000
[Rsample − Rstandard

Rstandard

]
(1)

where Rstandard and Rsample are the Pee Dee Belemnite (PDB) standard and 13C/12C ratios of
the dry leaf sample.

The carbon isotope ∆13C was calculated according to Farquhar et al. [28].

∆13Cplant (‰) =

 δ13Cair (‰)− δ13Cplant (‰)

δ13Cplant (‰)
1000 + 1

 (2)

In addition, five plant samples were obtained from the center of each plot at the
maturity stage and subsequently divided into the ear leaf, stem (including sheath), other
leaves, cob, ear bracts, tassel, and grain. All separated components were oven-dried at
80 ◦C to a constant weight. A sub-sample of 4 mg was used to determine the isotopic
abundance. The total chlorophyll ab content of barley flag leaves was calculated based on
the program and formula explained by von Camemmer and Furbank [29].

4.5. Leakiness of Bundle-Sheath Cells of CO2 (Φ)

Φ was calculated according to Farquhar et al. [28].

Φ =
∆13C − a + (a − b4)Ci/Ca

(b3 − s)Ci/Ca
(3)

PEPC (2.2‰) is b4 (−5.7‰), the fractionation by rubisco is b3 (30‰), and the fractiona-
tion linked with the leakage of CO2 from the bundle sheath to the mesophyll is s (1.8‰);
see Leegood [30].

4.6. Photosynthetic CO2 and Light Response Curve

A LI Cor LI-6400XT portable photosynthesis system (LI-6400XT, LI-Cor, Lincoln,
NE, USA) was used to measure the photosynthetic CO2 response curve at a PPFD level
of 1500 µmol m−2 s−1 during flowering. The CO2 levels were 300, 200, 100, 50, 400,
600, 800, 1200, 1600, and 2000 µmol CO2 mol−1, respectively. An values were plotted
against the intercellular CO2 concentrations (Ci) to produce a response curve. According to
Wang et al. [31], the CO2 response curve was calculated.

An = a
(

1 − e−bx
)
+ c (4)

where An is the net photosynthetic rate and x is Ci.
The light response curves were measured during the same days on which the CO2

response curves were measured. The different PPFD levels were measured using the
LI-Cor LI-6400XT portable photosynthesis system at a CO2 concentration of 400 µL L−1.
PPFD levels were taken at 1800, 1600, 1400, 1000, 600, 400, 200, 100, 80, 60, 40, 20, and
0 µmol m−2 s−1. The light response curve was modeled by a non-rectangular hyperbolic
model. Photosynthetic parameters derived from the light response curves were determined
according to the method described by Ye [30].

An =
αQ + Amax −

√
(αQ + Amax)

2 − 4καQAmax

2κ
− Rd (5)
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Among them, An is photosynthesis; Q is PPFD; Amax is the irradiance saturation rate
of total photosynthesis; Rd is the dark breathing rate; a is the maximum apparent quantum
yield of CO2; J is a dimensionless convexity term (0 < j < 1). The slope of this line is the
apparent quantum efficiency (α), and the absolute value of the intercept is the respiratory
rate (Rd).

4.7. Leaf Area Index (LAI) and Resource Use Efficiency

The LAI was calculated as

LAI = GLA × N/S (6)

where GLA is the green leaf area, N is the number of plants within a unit area of land, and
S is the unit area of land.

The nitrogen use efficiency (NUE) was determined as below [33].

NUE = (NF − NC)/NA × 100 (7)

where NF is the N content in the fertilization plot, NC is the N content in the control plot,
and NA is the nitrogen amount.

The WUE was calculated as WUE = Y/ET (8)

Water use efficiency (WUE), grain yield (Y), and evapotranspiration rate (ET).
The soluble protein content in leaves was measured according to Bradford’s [34]

improved method. As mentioned earlier, the rubisco content in leaves was measured using
SDS-PAGE [35]. Four rows from each plot were manually harvested to determine the
grain yield.

4.8. Economic Analysis

The economic benefit for each plot was determined using the following equations:

OV = Yg × Pg

IV = LC + PMC + MCC + SFC + IC + GI

O/I = OV/IV

NI = OV − IV

where OV: output value (CNY ha−1); Yg: grain yield; Pg: local price of grain, respectively;
IV: input value; LC: labor costs; PMC: plastic mulching costs; MCC: machine cultivation
costs; SFC: seed and fertilizer costs; WC: water costs; IV: input value; O/I: output/input;
NI: net income.

4.9. Statistical Analysis

The data were analyzed for each sampled event separately using the SPSS 22.0 soft-
ware (SPSS Inc., Chicago, IL, USA) and plotted with Origin Pro 8.5 (Origin Lab Corporation,
Northampton, MA, USA). Means and standard errors were calculated for individual mea-
surements taken at each sampling date. To identify significant treatment effects, multiple
comparisons were performed with the least significant difference (LSD) test, and the signif-
icance level was set at the 0.05 probability level.

5. Conclusions

Mulched drip fertigation with a new nitrification inhibitor (DMPSA) had a significant
impact on the soil water content and bundle-sheath cell leakage to CO2 (Φ) and enhanced
the 13C-photosynthate distribution in different organs, the photosynthetic capacity, the
apparent quantum efficiency (α), and barley production. Under the inhibitor-based strategy,
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the use of urease and nitrification reduced Φ by 35% and 39% compared with TP. Under
the NI-HF treatment, barley can maintain a high photosynthetic capacity at the flowering
stage by improving the An, LAI, soluble protein, rubisco content, dry matter per plant, and
barley production. The light and CO2 response curves were significantly enhanced under
the NI-HF or NI-MF treatments due to the higher 13C carbon isotope (∆‰), respiration rate
(Rd), and Ci/Ca as a result of the lower Φ compared to the rest of the treatments. Under
both inhibitors, there was a significant difference between HF and LF drip fertigation. The
NI-MF treatment significantly increased the grain yield, total Chl ab content, WUE, and
NUE by 52%, 47%, 57%, and 45%, respectively. The new nitrification inhibitor (DMPSA)
with HF or MF mulched drip fertigation must be assessed in future studies to confirm
its potential to mitigate bundle-sheath leakiness to CO2 (Φ) without negatively affecting
barley production and resource use efficiency.
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