
Citation: Sun, W.; Shahrajabian, M.H.;

Kuang, Y.; Wang, N. Amino Acids

Biostimulants and Protein

Hydrolysates in Agricultural Sciences.

Plants 2024, 13, 210. https://doi.org/

10.3390/plants13020210

Academic Editor: Daniela Businelli

Received: 8 December 2023

Revised: 9 January 2024

Accepted: 10 January 2024

Published: 11 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

plants

Review

Amino Acids Biostimulants and Protein Hydrolysates in
Agricultural Sciences
Wenli Sun *,†, Mohamad Hesam Shahrajabian † , Yue Kuang and Na Wang

National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of
Agricultural Sciences, Beijing 100086, China; hesamshahrajabian@gmail.com (M.H.S.);
apcolyptyo@163.com (Y.K.); WangNa@163.com (N.W.)
* Correspondence: sunwenli@caas.cn; Tel.: +86-13-4260-83836
† These authors contributed equally to this work.

Abstract: The effects of different types of biostimulants on crops include improving the visual
quality of the final products, stimulating the immune systems of plants, inducing the biosynthesis
of plant defensive biomolecules, removing heavy metals from contaminated soil, improving crop
performance, reducing leaching, improving root development and seed germination, inducing
tolerance to abiotic and biotic stressors, promoting crop establishment and increasing nutrient-use
efficiency. Protein hydrolysates are mixtures of polypeptides and free amino acids resulting from
enzymatic and chemical hydrolysis of agro-industrial protein by-products obtained from animal
or plant origins, and they are able to alleviate environmental stress effects, improve growth, and
promote crop productivity. Amino acids involve various advantages such as increased yield and yield
components, increased nutrient assimilation and stress tolerance, and improved yield components
and quality characteristics. They are generally achieved through chemical or enzymatic protein
hydrolysis, with significant capabilities to influence the synthesis and activity of some enzymes, gene
expression, and redox-homeostasis. Increased yield, yield components, and crop quality; improved
and regulated oxidation-reduction process, photosynthesis, and physiological activities; decreased
negative effects of toxic components; and improved anti-fungal activities of plants are just some of
the more important benefits of the application of phenols and phenolic biostimulants. The aim of this
manuscript is to survey the impacts of amino acids, different types of protein hydrolysates, phenols,
and phenolic biostimulants on different plants by presenting case studies and successful paradigms
in several horticultural and agricultural crops.

Keywords: amino acids; biostimulants; medicinal plants; phenols; protein hydrolysates

1. Introduction

Biostimulants are considered bioactive substances that are either inorganic or organic
microorganisms that can increase crop performance when utilized in small quantities [1] as
they can enhance both performance and growth as well as improve nutrient- and water-use
efficiencies of different crops [2–8]. Amino acids have a dual function as building blocks for
proteins and as providers of organic nitrogen, which can alleviate the negative impacts of
drought and salt stress [9], and promote cell growth. They are vital in metabolite synthesis,
growth, and development, and appropriate in plants because of their structure as protein
units [10–14]. The positive effects of the foliar application of amino acids and biostimulants
based on amino acids on both the qualitative and quantitative characteristics of Foeniculum
vulgare Mill, Coriandrum sativum L., Achillea millefolium L., Nigella sativa L., Ocimum basilicum
L., Urtica pilulifera L., Mentha piperita, Calendula officinalis L., and Satureja hortensis L. plants
have been reported [11–25].

Amino acids used for the production of biostimulants are obtained from the chemi-
cal synthesis of plant proteins, such as algae, soybean, and corn, as well as from animal
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proteins by both chemical and enzymatic hydrolysis. Amino acids that have been used
for foliar usage are the result of enzymatic hydrolysis from both animal and plant protein
hydrolysates, and as it is very energy-consuming, foliar application is a common process in
the agricultural industry. Protein hydrolysate is related to the product of the hydrolytic ac-
tion of protease(s) on a pure protein sample, or a complicated proteinaceous sample [26,27],
which is necessarily a mixture of peptides, free amino acids, and probably partially de-
graded proteins [28,29]. Protein hydrolysates and amino acids, which are also known as
protein-based biostimulants, are usually readily available because of the abundance of raw
materials and their affordable cost [30–32]. Protein-based biostimulants can usually be
obtained from the hydrolysis of protein-rich agro-wastes, which includes chemical, thermal,
and enzymatic processes, or a combination of them [33–36]. They are usually considered as
a crude peptide mixture, and they are usually used as the initial raw material for bioactivity
testing [37–39]. Fish protein hydrolysates are famous in different parts of the world for
pharmaceutical, cosmetic, and nutritional usage [40–42].

Several studies have reported that biostimulants promote plant resilience, especially
by improving antioxidant activity within the plant under negative environmental condi-
tions [43,44]. It could behave directly on the plant through an adjustment of the nitrogen
and carbon metabolisms and the plant hormonal profile, or indirectly through the mi-
crobiome [45]. Food-derived bioactive proteins have physiological impacts on major
body systems, such as opioid agonists and opioid antagonists on the nervous system;
anti-hyperlipidemic, anti-thrombotic, anti-oxidative, and anti-hypertensive effects on the
cardiovascular system; cytomodulatory, immunomodulatory, and anti-microbial effects
on the immune system; and mineral binding, anti-appetizing, and anti-microbial impacts
on the gastrointestinal system [46–50]. Phenols have notable roles in plant development
and growth [51–53], as they are products of secondary metabolic procedures and are gener-
ally converted from sugars via the pentose phosphate pathway, the manganiferous acid
pathway, the glycolytic pathway, or the benzene-propane pathway [54–56]. Phenolic acids
include a carboxylic acid group in addition to the basic phenolic structure and are catego-
rized into hydroxybenzoic and hydroxycinnamic acids. Phenolic acids can be utilized to
grow crops by soil and foliar application as well as seed treatment, but foliar utilization
of phenolic acids is usually suggested. This research examines the scientific literature
on biostimulants from 1990 to October 2022 by conducting a bibliometric analysis of the
literature published on the Web of Science database, including more than one thousand
articles. The goal of this review article is to survey the effects of different biostimulants,
such as amino acids, protein hydrolysates, and phenols, by presenting case studies and
successful paradigms in different agricultural and horticultural crops. The information
provided is obtained from randomized control experiments, review articles, and analytical
observations and studies that have been gathered from various literature sources such as
PubMed, Science Direct, Scopus, and Google Scholar. The keywords used were the Latin
and common names of different agricultural and horticultural species, amino acids, protein
hydrolysates, phenols, phenolic biostimulants, and medicinal plants.

2. Amino Acids

Amino acids for the production of biostimulants are derived by chemical synthesis
from plant proteins such as soybean, corn, algae, corn, etc., as well as from animal proteins
by enzymatic and chemical hydrolysis [57–62]. Amino acids act as vital molecules with
various physiological roles [63] and play an important function in seed germination [64,65],
and under salinity stress, they can behave as osmolytes, which can promote stomatal
opening control, transport regulation, enzyme activation, heavy metals detoxification,
redox homeostasis maintenance, and gene expression [66–70]. Supplementing plants
with environmentally friendly amino acid biostimulants can decrease the application of
inorganic fertilizers [71,72].

Amino acids are also important in the agriculture industry as chelates of metal ions and
microelements chelated with amino acids from very small, electrically neutral molecules
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increase their transport and absorption within the plant [73–75]. Some of the most important
products in the market which contain amino acids are Delfan Plus (Tradecorp, Madrid,
Spain), Natural Crop SL (Natural Crop Poland Sp. Z o.o., Warsaw, Poland), Bosfoliar
Activ (COMPO EXPERT, Munster, Germany), Amino Quelant Ca (Bioiberica, Barcelona,
Spain), Tecamin Max, Tecamin Brix, Tecnokel Amino Mix, Terra-Sorb Foliar (Agritecno
Fertilizants, Valencia, Spain), Agrocean B (Agrimer, Plouguerneau, France), Metalosate
Calcium and Metalosate Fe (Albion Minerals, Layton, UT, USA) [76–79]. The usage of
amino acids can increase co-enzyme formation and the photosynthesis procedure [80], and
supports different plant organisms that may face environmental stresses [81]. It has been
also reported that the exogenous utilization of amino acids can enhance nitrogen status,
and the contents of mineral elements in plant tissues [82,83]. Depending on environmental
conditions and plant species, plants reduce inorganic nitrogen to amino acids in roots,
nodules, and leaves [84–86]. Many studies have reported the important and notable effects
of the foliar application of concentrations with phenylalanine and tyrosine solutions on
essential oil, the total amount of phenols, and their compositions in Ocimum basilicum L.,
Melissa officinalis L., and Coleus blumei L. plants [87–89]. Phenylalanine is an amino acid [90,
91], and its foliar application can help mustard (Brassica campestris L.) plants overcome
drought stress and increase total chlorophyll contents, shoot length, and biological yield [92].
Roman et al. [93] reported that foliar application of methyl jasmonate and phenylalanine
can increase the content of volatile compounds in grapes, and Portu et al. [94] introduced
it as an important management tool for boosting grape quality. The impacts of different
amino acids on several experimental plants are shown in Table 1. The roles of different
amino acids as biostimulants are shown in Table 2. The main mechanisms of amino acids
biostimulants are shown in Figure 1.

Table 1. The effects of amino acids on different plants.

Plant Plant Family Key Point Reference

Chickpea
(Cicer arietinum L.) Fabaceae

The combined application of amino acids of commercial compounds with
proline + valine, and proline + alanine can reduce the negative impacts of

drought stress on chickpeas.
[95]

Cowpea
(Vigna unguiculata) Fabaceae The foliar application of amino acid liquid fertilizer and liquid biological

fertilizer can enhance crop yield. [96]

Grapevine
(Vitis vinifera L.) Vitaceae A biostimulant that contains amino acids can enhance the growth of the

microbial community on berry skin. [97]

Lettuce
(Lactuca sativa L.) Asteraceae The foliar utilization of amino acids biostimulants (PerfectoseTM, liquid)

can improve the nutritive value and yield of lettuce.
[98]

An amino-acid-based Phytostim® biostimulant can improve growth and
yield attributes.

[99]

The biostimulant Codasil®, which is composed of amino acids, can
improve lettuce physiology and growth, and enhance the crop resistance to

water stress.
[100]

The application of proline and methionine increased proteinogenic amino
acid expression. [101]

Terra Sorb® radicular and Terramin® Pro, which contain high amino-acid
content, are useful biostimulants for plant development in

nitrogen-limiting areas.
[102]

Mint
(Mentha × Piperita

L.)
Lamiaceae The application of phenylalanine at 100 mg L−1 concentration enhanced

the essential oil.
[103]

Moldavian balm
(Dracocephalum

moldavica L.)
Lamiaceae

Leaf spraying of biostimulants based on amino acids can notably mitigate
the adverse impact of salinity stress on the growth and physiological

growth of plants.
[104]

Strawberry
(Fragaria ×
ananassa)

Rosaceae
The combined application of humic acids and amino acids can improve

strawberry nutritional traits such as phenolic compounds, and commercial
characteristics such as external color and firmness.

[105]
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Table 1. Cont.

Plant Plant Family Key Point Reference

Sunflower
(Helianthus annuus

L.)
Asteraceae Plant biostimulant Amino Expert® Impuls can increase sunflower plant

height, head diameter, seed yield, seed oil, and absolute seed mass.
[106]

Tomato
(Solanum

lycopersicum L.)
Solanaceae The combined application of amino acids and humic acids could

significantly influence yield in conventional nutrition. [107]

The combined application of amino acids and humic acids could positively
improve total antioxidant capacity, total flavonoid content, and total

phenol content.
[108]

Biostimulants that contain amino acids could increase the accumulation of
plant biomass as well as improve the tolerance of plants to water deficit. [109]

The application of amino acids can induce a higher accumulation of total
soluble sugars. [110]

Olive
(Olea europaea L.) Oleaceae

The complex of natural amino acids, such as hydroxyproline, proline, and
glycine, can induce higher stomatal conductance and leaf photosynthetic

rates.
[111]

The combined application of amino acids, fulvic acid, and humic acid can
significantly increase the quality and the oil content of olives. [111]

Peanut
(Arachis hypogaea

L.)
Fabaceae Foliar utilization of 100 mg/L aspartic acid can increase seed and oil yield. [112]

Pepper
(Capsicum annuum

L.)
Solanaceae

Actium®, provided by Grupo Agrotecnologia (Alicante, Spain), contains
amino acids that could enhance carotenoids, total monosaccharides, and

phenylalanine in plants.
[113]

The application of biostimulants that contain amino acids can boost the
activity of important enzymes such as peroxidase, phenylalanine ammonia

lyase, and capsaicin synthase.
[114]

Rice
(Oryza sativa L.) Poaceae Zinc-enriched amino acids (Zn-AAC) increased salt-stressed rice yield,

chlorophyll content, and quality of rice. [115]

The combined application of potassic fertilizer with amino acids can
improve both the yield and quality of rice. [116]

Soybean
(Glycine max L.) Fabaceae Amino acid application can increase plant height, the number of seeds and

pods, flavonoid content, and phenolic content. [117]

The application of phenylalanine and cysteine could enhance the
production of soybean plants by at least 21%. [118]

Spinach
(Spinacia oleracea L.) Amaranthaceae

The application of different amino acid treatments such as tyrosine,
methionine, proline, and phenylalanine could increase dry and fresh

weight, shoot length, root length, leaf area, and final yield.
[119]

Weeping
alkaligrass

(Puccinellia distans)
Poaceae

Two biostimulants, namely Bonamid® at 2 g/L, and Algabon® at 0.5 g/L,
which contained amino acids could positively increase K+ content,

chlorophyll content, K+/Na+ ratio, leaf relative water content, and biomass
as well as reduce the adverse effects of NaCl-caused stress in vacuoles.

[120]

Winter wheat
(Triticum aestivum

L.)
Poaceae

INTERMAG Co. (Olkusz, Poland)—AminoHort and AminoPrim,
containing 20% and 15% amino acids at 1.25 L/ha and 1.0 L/ha, could
significantly increase nutrient contents such as molybdenum, calcium,

sodium, and copper in grains.

[121]

The application of amino acids together with yeast extract can significantly
boost physiological yield and traits. [122]
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Table 2. The roles of different amino acids as biostimulants.

Amino Acids Function References

Deflan Plus Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Natural Crop SL Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Tecamin Max Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Tecamin Brix Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Agrocean B Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Metalosate Calcium Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Metalosate Fe Increase co-enzyme formation; improve photosynthesis procedure; increase
resistant of plants to environmental stresses [76–81]

Phenylalanine and tyrosine
solutions Improve essential oil, and increase the total amount of phenols [87–89]

Phenylalanine An important amino acid that can enhance shoot length, biological yield, and total
chlorophyll contents [90–93]

Methyl jasmonate Enhance the content of volatile components [93,94]
Proline, Valine, Alanine They can reduce the adverse effects of drought stress [95]

PerfectoseTM It can increase the yield and nutritive value of plants [98]
Phytostim® It can increase final yield and growth [99]

Codasil® It can increase resistance to drought stress [100]
Sorb®, Radicular, Terramin® They are appropriate to improve the yield of plants in nitrogen-limiting regions [102]

Amino Expert® It may increase yield and yield components [106]
Actium® It can increase carotenoids and quality parameters [113]

Bonamid®, Algabon® They can increase chlorophyll content, biomass, and leaf relative water content [120]
INTERMAG Co. (Olkusz,

Poland)—AminoHort, and
AminoPrim

It can improve mineral components in plants [121]Plants 2024, 13, x FOR PEER REVIEW 5 of 22 
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3. Protein Hydrolysates

Protein hydrolysates, especially those that contain antioxidant peptides, are obtained
from natural components, and many researchers and scholars consider them biostimulants
because of their minimum side effects, easy absorption, low cost, high activity, and lower
molecular weight [123–130]. Protein hydrolysates and peptides can be used as notable in-
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gredients in the formulation of functional foods [131–141]. They can be used as foliar sprays
or through drip irrigation systems, and the amino acids can be absorbed through both
leaves and roots [142–144]. Their utilization can significantly affect nitrogen metabolism
in plants, and boost productivity, particularly when applied as a seed pre-treatment [144].
For separating the amino acids in protein hydrolysates, a liquid chromatography process
can be used [145,146]. Numerous methods have been considered to produce hydrolysates
from fish and fish by-products such as thermal hydrolysis, autolysis, chemical hydrolysis,
and enzymatic hydrolysis [146,147]. The basic procedures utilized following hydrolysis
of protein are heat inactivation, which has a function in the inactivation of proteolytic
enzymes; ultrafiltration, which is important in the removal of high molecular weight
peptides and proteins; use of specific enzymes, which can reduce the content of specific
amino acids; hydrolysis by exoproteases, which is active in hydrolysis and the reduction
of bitterness; carob activation, which has a notable role in the reduction of bitterness;
and absorption chromatography, which can decrease the content of aromatic amino acids.
Microbial-based biostimulants such as Environoc 401®, Bioyield®, Rootshield Plus+ WP ®,
Spectrum + Myco®, Select®, and Endomaxx® inconsistently increased the quality of bell
pepper (Capsicum annuum L.) in a greenhouse experiment [148]. Ghorbel-Bellaaj et al. [149]
reported that five proteolytic enzymes, namely Alcalase®, trypsin, a crude enzyme extract
from sardinelle (Sardinella aurita) viscera, and an enzyme preparation from Aspergillus clava-
tus ESA and Bacillus licheniformis NH1, which are protein hydrolysates, were obtained from
shrimp via by-products processing, and they have revealed notable degrees of antioxidant
activities, such as β-carotene bleaching, reducing power, and 1,1-diphenyl-2-picrylhydrazyl
(DPPH)-scavenging activity assays, which can be a promising and helpful alternative for
accessible commercial nitrogen sources from other origins. It can be a good source for mi-
crobial growth and protease production by Saccharomyces cerevisiae, Escherichia coli, Bacillus
subtilis A26, and Bacillus mojavensis A21.

Some of the available plant biostimulants, their composition, and application strate-
gies are C Fish, which contain peptides and amino acids that are used on vegetables and
fruits to increase the plant’s resistance to insect pressure, disease and drought or heat stress
which originates from white fish/mixed fish composition autolysates and hydrolysates in
fruits and vegetables; Radifarm, which contains peptides, amino acids, betaines, saponins,
vitamins, polysaccharides, and microelements, has been used to promote the formation
of an extensive root system by speeding up the elongation of adventitious and lateral
roots of vegetables and fruits; Megafol, which contains betaines, amino acids, auxin, vi-
tamins, proteins, cytokine, and gibberellin, can improve the balance between vegetative
productivity and development as well as plant resistance to stressors such as hail, weeding,
root asphyxia, and frost; Biozyme, which includes plant hormones, algae extract, and
chelated micronutrients, can boost nutrient uptake, photosynthesis, and the activity of
chlorophyll of legumes, vegetables and fruits; BioRoot, which contains humates, plant and
mineral-derived organic acids, enhances rooting ability, protein content, and chlorophyll
of fruits and vegetables; Grow-plex SP, which contain humic acids, can increase soil bac-
teria, shoot and root growth, and zinc and iron uptake of vegetables and fruits; Ergonfil,
which has cysteine, animal protein hydrolysates, keratin derivatives, and folic acid, can
promote chlorophyll synthesis and indole acetic acid, increase chelation, and improve
translocation in fruits and vegetables; Benefit, which contains nucleotides, amino acids,
vitamins, free enzymatic proteins, can improve cell division and increase the number of
cells per fruit [150–153]. Animal-derived gelatin, which has peptides and amino acids, can
improve shoot dry weight and promote root nitrogen assimilation in broccoli, arugula,
tomato, pepper, cucumber, and field corn [154]. There are notable reports and evidence
that the application of non-structural and structural amino acids, such as histidine, proline,
taurine, and glutamate, can provide protection to the plant from environmental stresses
or play an important function in metabolic signaling by regulating nitrogen acquisition
by the roots [155,156]. Amino acids can act as osmoprotectants, which stabilize mem-
branes, enzymes, and proteins against denaturing caused by high salt components and
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non-physiological temperatures [157]; moreover, arginine has been proven to have an
important function in nitrogen transport and storage in plants during biotic and abiotic
stress conditions [158]. Amino acids can also reduce plant toxicity by heavy metals by
acting as metal chelators [159,160]. Rouphael et al. [161] reported that the application
of vegetal-protein hydrolysates based microgranules can increase carotenoids and total
chlorophyll content. Protein hydrolysate has a positive influence on total root area and
on root length, which can increase mineral-nutrient and water-use efficiency as well as
promote plant productivity and resistance to harmful conditions [162–164]. It can also
positively influence the leaf area and yield of horticultural plants and fruit trees [165,166].
The exogenous utilization of protein hydrolysate and isolated amino acids can promote
plant antioxidant performance by improving the non-enzymatic and enzymatic antioxidant
defense machinery of the cell [167]. The most important effects of different kinds of protein
hydrolysates have been shown in Table 3.

Table 3. The impacts of different protein hydrolysates on various plants.

Plant Plant Family Protein Hydrolysate Key Point Reference

Apple
(Malus domestica) Rosaceae Alfalfa protein

hydrolysate

It can improve sensorial characteristics and
fruit quality.

Promote nutraceutical value, and decrease
post-harvest disease.

[168]

Banana
(Musa acuminata) Musaceae Chicken feathers

hydrolysate

Promote chlorophyll content and increase
photosynthetic.

Increase fruit yield, filling, and set as well as
antioxidants and decrease time to flowering

[169]

Basil
(Ocimum basilicum) Lamiaceae Protein hydrolysate It can decrease nitrate leaf content, and

enhance basil resilience. [170]

Castor
(Ricinus communis) Euphorbiaceae Soybean protein

hydrolysate (SPH)
It could lead to a significant increase in castor

husks and final yield. [171]

Celery
(Apium graveolens

L.)
Apiaceae Protein hydrolysates It can boost the total phenolic content in

plants. [172]

Chickpea
(Cicer arietinum L.) Fabaceae Chicken feathers

hydrolysate

Increases secondary roots and biomass
production, and reveals phytohormone-like

activities.
[173]

Common bean
(Phaseolus vulgaris

L.)
Fabaceae Pumpkin seed protein

hydrolysate

Application of 2000 µL L−1 to obtain
appropriate yield and growth of plants under

salt stress.
[174]

Coriander
(Coriandrum

sativum)
Apiaceae Commercial amino acid

preparation

It has glycine. which can improve the growth
of shoots and leaves and increase the

micronutrient content of leaves.
[175]

Florist’s daisy
(Chrysanthemum

morifolium)
Asteraceae

Two plant protein
hydrolysates (Trainer®,

and Vegamin©), and
one animal protein

hydrolysate (Hicure®)

Plant protein hydrolysates could decrease
nitrate concentration in flowers and leaves.
Animal protein hydrolysate caused a faster

duration of flower stems to wilt stage.

[176]

Grape tomatoes
(Solanum

lycopersicum var.
cerasiforme)

Solanaceae Fish-derived protein
hydrolysates

Application of fish-derived protein
hydrolysates could reduce the negative

impacts of drought, and improve total plant
biomass yield, leaf dry weight, and fruit

number.

[177]

Grapevine
(Vitis vinifera L.) Vitaceae Protein hydrolysates

Trainer and Stimtide

Both of them induced alterations in leaf
metabolome and proteome, which can delay

physiological maturity and keep higher
acidity.

[178]
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Table 3. Cont.

Plant Plant Family Protein Hydrolysate Key Point Reference

Animal- and
plant-derived protein
hydrolysates, namely
lupin, soybean, and

casein

It can increase fruit parameters and alleviate
the adverse effects of water stress. [179]

Hemp
(Cannabis sativa L.) Cannabaceae

A commercial
legume-derived protein

hydrolysate

It can increase seed yield and improve fiber
production. [180]

Fish hydrolysate, Aloe
vera, and Kelp

It can increase branching, root growth, and
propagation effectiveness as well as improve

potassium and phosphorous uptake.
[181]

Hibiscus
(Hibiscus moscheutos
L. subsp. palustris)

Malvaceae
Protein hydrolysates

from biowaste as
biostimulants

It could improve leaf gaseous exchanges,
biometric parameters, nitrogen-use efficiency,

and biomass accumulation.
[182]

Kiwifruit
(Actinidia deliciosa) Actinidiaceae Gelatin hydrolysate

Increase root and shoot biomass.
Boost metabolism and assimilation of

nitrogen.
[183]

Lettuce
(Lactuca sativa L.)

Fish-derived protein
hydrolysate

It contains amino acids and peptides, which
can improve root biomass and leaf number

and enhance photosynthetic rate and
chlorophyll content.

[184]

Lettuce
(Lactuca sativa L.) Asteraceae Commercial amino

acids preparation

It has glutamine and glycine, which can
enhance vitamin C content, leaf chlorophyll,

and yield.
[185]

Protein hydrolysates

Application of Molybdenum dosage together
with protein hydrolysates can increase yield,

nutritional, morphology, and functional
features.

[186]

Soy protein hydrolysate
Application of 0.01 mg/mL protein

hydrolysate can promote lettuce weight and
length.

[187]

A Graminaceae-derived
protein hydrolysate

It can improve the growth and yield of plants
and improve the resistance of plants under

mild salinity conditions.
[188]

Plant-derived protein
hydrolysates

It can improve root dry weight and dry
biomass and increase fresh yield. [189]

Protein hydrolysate
derived from pig blood

Its application can improve anthocyanins and
flavonoids as well as root and shoot fresh

weight.
[190]

Maize
(Zea mays L.) Poaceae Soybean protein

hydrolysate (SPH)

Application of fertilizer with SPH can
increase one thousand grain weight, the grain

number per ear, and total yield.
[188,189]

A solid biostimulant
(AA309) derived

through thermobaric
hydrolysis applied on

trimmings and
shavings of bovine
hides tanned with

wet-blue technology

It can improve the yield of crops.
It can influence plant physiology because of
changes they can induce in plant-associated

microbes, composition and activity.

[190]

Kaishi, a protein
hydrolysate-based

biostimulant

It can promote root and shoot growth and
increase lipid peroxidation. [191]

Meat flour protein
hydrolysate

It contains amino acids and peptides, which
can improve leaf and root biomass and

promote effective nutrient utilization by
plants.

[192]
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Table 3. Cont.

Plant Plant Family Protein Hydrolysate Key Point Reference

Chicken feather
hydrolysates

Amino acids and peptides can increase
macronutrient and micronutrient

concentrations of leaves and grain protein
content.

[193]

A novel biostimulant
(APR®, ILSA S.p.A.,
Arzigano VI, Italy)

It can influence shoot and root growth and
improve the resistance of plants to various

stresses.
[194]

A commercial
collagen-derived

protein hydrolysate

It can stimulate lateral root growth and final
yield. [195]

Melon
(Cucumis melo L.) Cucurbitaceae Fish protein

hydrolysates

It can promote the activity of sucrose
phosphate synthase.

It can improve fructose and glucose contents
by increasing the activity of acid invertase.

It can boost the synthesis direction of sucrose
synthase.

[196]

Oregano
(Origanum vulgare

L.)
Lamiaceae

Fish protein
hydrolysates at 1000

mg/L

It can prevent vitrification in oregano shoot
clones regenerated from axillary bud explants.
Fish protein hydrolysate-treated shoots can

decrease elongation and induce higher
chlorophyll content.

[197]

Passion fruit
(Passiflora Edulis) Passifloraceae

Commercial
preparation of peptides

and amino acids

It has peptides and amino acids, which can
increase the photosynthetic process in plants

and increase transplanting success.
[198]

Pea
(Pisum sativum L.) Fabaceae

Papain and
pepsin-hydrolyzed

whey protein

Application of 2000 mg/L of biostimulant can
increase pod length, pod growth, and the

number of seeds per pod.
[199]

Peppermint
(Mentha × piperita

L.)
Lamiaceae

Amino16®, a
commercial protein

hydrolysate

It could not impact dry or fresh weight;
however, it decreased plant height.

It promoted total soluble phenol and total
antioxidant capacity.

[200]

Persimmon
(Diospyros kaki) Ebenaceae Protein hydrolysate Increases the biosynthesis of salt stress

response proteins [201]

Rapeseed
(Brassica napus
subsp. napus)

Brassicaceae Soybean protein
hydrolysate (SPH)

It improved yield and promote the growth of
plants. [202]

Rice
(Oryza sativa L.) Poaceae Soybean protein

hydrolysates
It can decrease long- and short-term

retrogradation of gelatinized rice starch. [203]

Sea grape
(Coccoloba uvifera L.) Polygonaceae

Jackfruit (Artocarpus
heteropyllus L.) leaf

protein hydrolysates

It has shown emulsifying properties, and it
could be used as an alternative to

conventional emulsifiers.
[204]

Snapdragon
(Antirrhinum majus

L.)
Plantaginaceae Protein hydrolysates

The combined application of protein
hydrolysates, humic acids, and seaweed

extracts could increase the number of leaves
and improve the performance of ornamental

plants.

[205]

Soybean
(Glycine max L.) Fabaceae Protein hydrolysates It can improve the final yield of plants. [206]

Spearmint
(Mentha spicata L.) Lamiaceae

Amino16®, a
commercial protein

hydrolysate

It could increase the quality of spearmint
without negative impacts on crop yield. [207]

Spinach
(Spinacia oleracea L.) Amaranthaceae

Xcell Boost, a mixture of
fish protein

hydrolysates and kelp
extract

It is highly beneficial for promoting the
tolerance of spinach to water shortage stress. [208]
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Table 3. Cont.

Plant Plant Family Protein Hydrolysate Key Point Reference

Trainer®, a
plant-derived protein

hydrolysates

It can increase total amino acid content, but
reduce polyphenol content and increase final

yield.
[209]

Sweet basil
(Ocimum basilicum

L.)
Lamiaceae Animal-derived protein

hydrolysate
It can decrease plant growth, photosynthetic

performance, and yield. [210]

Sugar beet
(Beta vulgaris) Amaranthaceae Protein-based

biostimulants (PBBs)

The application of 2 g/kg soil PBBs increased
protein-related characteristics in samples and
induced higher photosynthesis, growth, and

quality of plants.

[211]

Hydrolyzed wheat
gluten and potato

protein
It can enhance final yield and plant growth. [212]

Sweet cherry
(Prunus avium L.) Rosaceae

An organic fertilizer
(Defender Ca; Kenya

Biologics Ltd.,
Runyenjes, Kenya)

It can improve fruit yield, soluble solids
content, and calcium concentration in fruits. [213]

Sweet pepper
(Capsicum annuum

L.)
Solanaceae Organic fertilizer based

on hydrolyzed proteins

It could improve the performance in nitrogen
uptake, increase resistance to tolerance, and

mitigate the negative impacts of toxic
elements.

[214]

Sweet potato
(Ipomoea batatas L.) Convolvulaceae Whey protein

hydrolysates (WPH)

Foliar application of WPH at 0.10 and 0.20%
could improve uptake of K, P, and N by

shoots, shoot dry weight per plant, final yield,
marketable yield, and total yield.

[215]

Tea
(Camellia sinensis) Theaceae Chicken feather protein

hydrolysate
It can be applied as a growth booster for

gaining higher yields. [216]

Tomato
(Solanum

lycopersicum L.)
Solanaceae

CycoFlow, Agriges, BN,
Italy, a novel protein
hydrolysate-based

biostimulant

It can induce better pollen viability and water
status as well as improve antioxidant contents

in fruits and leaves.
[217]

Soy protein
hydrolysates (SPH13

and SPH18 at 10 g L−1)

It can notably improve plant resistance to
foliar inoculation with Pseudomonas syringae

pv. tomato DC3000.
[218]

Protein hydrolysates Its usage can stimulate plant growth. [219]

Protein hydrolysates
Its application could enhance fruit

antioxidants such as ascorbic acid levels,
polyphenols, and lycopene.

[220]

Plant-derived protein
hydrolysates

It can enhance nitrogen use and uptake as
well as tomato yield. [221]

Protein hydrolysates
It can be considered an important

biostimulant to improve plant resilience to
abiotic stresses.

[222]

Arthrospira platensis
protein hydrolyzate

Its application as 68.9 mg mL− free amino
acids can improve plant yield and growth. [223]

The pig blood-derived
protein hydrolysate

It can increase salt tolerance in tomatoes and
improve photosynthetic efficiency,

chlorophyll levels, and plant growth.
[224]

Pig blood-derived
protein hydrolysate

It can increase yield and mitigate the negative
impacts of drought stress by regulating
chloroplast ultrastructure, antioxidant

systems, stomatal aperture, and osmotic
changes.

[225]

Legume-derived
protein hydrolysate

Its application at 5.0 mL L−1 improved
mineral composition, total soluble solids, and

antioxidant activities.
[226]
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Plant Plant Family Protein Hydrolysate Key Point Reference

An enzymatically
hydrolyzed animal

protein-based
biostimulant (Pepton)

It can show a positive impact, increasing the
lateral and primary growth of tomato plants. [227]

Wall rocket
(Diplotaxis tenuifolia

(L.) DC.)
Brassicaceae

Legume-derived
protein hydrolysates

and Trichoderma
harzianum T22; Protein

hydrolysates +
Trichoderma harzianum

T22

They can boost the hydrophilic and lipophilic
antioxidant activity. [228]

Wheat
(Triticum aestivum

L.)
Poaceae

AGROMOREE, a
biostimulant based on a

protein hydrolysate
rainbow trout

(Oncorhynchus mykiss)

It can increase gluten content, seed protein,
and final productivity, and reduce the use of

nitrogen fertilizers.
[229]

Protein hydrolysate It can improve wheat grain seed germination
and improve final production. [230]

Papain-produced whey
protein hydrolysates

It can improve spike number, flag leaf area,
and grain yield. [231]

White mustard
(Sinapis alba L.) Brassicaceae Protein hydrolysate

(Hemozym)

It can significantly increase the
physicochemical properties and microbial

activity of the soil.
[232]

4. Phenols and Phenolic Biostimulants

Phenols are a major type of antioxidant phytochemical, which have significant im-
portance because of their free radical scavenging and biological characteristics [233–236].
Phenolic compounds are the most abundant secondary metabolites in many plants which
are usually discovered in the cell walls of subepidermal and in the vacuoles of epidermal
cells [237,238]. Endogenous phenolic components in plants have different functions, which
can be used by plants to defend themselves against pathogens, herbivores, and weeds. They
are implicated in seed germination and dormancy, appropriate as screens against damaging
UV radiation, and act as pigments to attract seed dispersal agents and pollinators [239–241].
The function of phenolic acids as signaling molecules in plant-microbe symbioses has been
reported in previous research [242]. Some of the most important phenolic compounds
with bioprotectant activities are ferulic acid, curcumin, ellagic acid, catechol, gallic acid,
coumarin, caffeic acid, catechin, quercetin, sinapic acid, rutin, resveratrol, salicylic acid,
and syringic acid [243,244]. The accumulation of phenolic compounds and the subsequent
production of quinones in turnip (Brassica rapa L.) may happen when plants are suscepti-
ble to Boron deficiency [245]. Phenolic compound concentration can be important in the
biochemical pathway of toxigenic fungal species because of the induction of stress via sub-
lethal contents and depletion of the phenolic compounds [246]. Phenolics have meaningful
functions in plant development, especially in pigment and lignin biosynthesis as well as
considerable roles in plant protection against stress. It has been reported the correlation be-
tween antifungal activity and total phenolics of plants [247] and the accumulation of amino
acids and phenolics may boost tolerance to both copper and cobalt stress in barley [248].
Silva et al. [249] reported that tyrosol, which is a phenolic compound from olive oil and
several endophytic fungi such as Phomopsis sp., can be used as an important biostimulant
in soybean seed treatment, which can alter soybean plant metabolism without meaningful
impacts on crop yield. Masondo et al. [250] reported that two phenolic biostimulants,
namely eckol and phloroglucinol, isolated from brown algae Ecklonia maxima can have a
significant effect on the phytochemical and growth of Eucomis autumnalis. While the pheno-
lic acid metabolism in Kandelia obovata may decrease the negative impacts of cadmium and
zinc [251], it has been reported that the phenolic compounds of leave extracts of Calligonum
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arich L. are effectual against pathogenic bacteria [252], and the phenolic compounds of
apricot branches have shown antifungal activity against Monilinia laxa growth [253–255].
One of the notable impacts of phenolics is to improve the resistance of Nicotiana langsdorffii
to Cr(VI) [256–259].

5. Conclusions and Future Prospects

The innovative agronomic tools of agriculture are biostimulants, which are composed
of inorganic and organic substances that consist of several microorganisms and substances.
Biostimulants can do various agronomic functions such as increasing the growth and devel-
opment of plants during their entire life cycle; promoting the resistance of plants to abiotic
stresses such as cold, heat, and lack of water; improving soil fertility, especially increasing
the development of soil microorganisms; promoting the use efficiency of nutrients by plants;
and finally, increasing yield and crop quality. They can also be used as the best alternative
for chemical fertilizers and are the best strategy for promoting organic agriculture. Amino
acids are appropriate candidates to boost stress tolerance through metal chelation, nutrient
availability, osmo-protection, and reactive oxygen species (ROS), which can notably affect
the synthesis and stimulation of gene expression and some enzymes. Amino acids are
organic components, which contain amine and carboxyl C(=O)OH) functional groups
together with a side chain (R group). They can promote and stimulate the process of protein
synthesis and photosynthesis; promote nutrient assimilation, translocation, and utilization;
and strengthen plant growth and yield formation. Protein hydrolysates are manufactured
from plant-derived protein sources using partial thermal hydrolysis, chemical hydrolysis,
and enzymatic hydrolysis. Different sources of protein hydrolysates on the basis of pro-
tein sources are animal origin, leather by-products, blood meal, fish by-products, chicken
feathers, casein, plant origin, legume seeds, alfalfa hay, and vegetable by-products. The
positive impacts of the utilization of amino acids have been discovered; however, there
is not enough knowledge about the effects of each amino acid on both the physiological
and metabolic processes of plants. A better understanding of biostimulants, such as amino
acids, protein hydrolysates, phenols, and phenolic biostimulants, while considering their
various effects on different functions of crops, namely crop yield and yield components,
growth promotion, and nutrient availability, may help agricultural scientists and farmers
to better understanding and utilization of them.
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