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Abstract: The impact of ammonium (NH4
+) stress on plant growth varies across species and cultivars,

necessitating an in-depth exploration of the underlying response mechanisms. This study delves into
elucidating the photosynthetic responses and differences in tolerance to NH4

+ stress by investigating
the effects on two wheat (Triticum aestivum L.) cultivars, Xumai25 (NH4

+-less sensitive) and Yang-
mai20 (NH4

+-sensitive). The cultivars were grown under hydroponic conditions with either sole
ammonium nitrogen (NH4

+, AN) or nitrate nitrogen (NO3
−, NN) as the nitrogen source. NH4

+ stress
exerted a profound inhibitory effect on seedling growth and photosynthesis in wheat. However,
these effects were less pronounced in Xumai25 than in Yangmai20. Dynamic photosynthetic analysis
revealed that the suppression in photosynthesis was primarily attributed to stomatal limitation asso-
ciated with a decrease in leaf water status and osmotic potential. Compared to Yangmai20, Xumai25
exhibited a significantly higher leaf K+ concentration and TaAKT1 upregulation, leading to a stronger
stomatal opening and, consequently, a better photosynthetic performance under NH4

+ stress. In
conclusion, our study suggested stomatal limitation as the primary factor restricting photosynthesis
under NH4

+ stress. Furthermore, we demonstrated that improved regulation of osmotic substances
contributed to higher stomatal conductance and enhanced photosynthetic performance in Xumai25.

Keywords: ammonium stress; photosynthesis; wheat; stomatal conductance; osmatic potential

1. Introduction

It is well known that ammonium (NH4
+), though a principal nitrogen source, can in-

duce plant toxicity, particularly when used as the sole or predominant nitrogen source [1–3].
Several studies have investigated the manifestations of NH4

+ stress in plants, including
diminished biomass, elevated reactive oxygen species (ROS) production, disruptions in pH
equilibrium, and ion regulation [2,4]. The sensitivity of plants to NH4

+ stress is inherently
variable, contingent upon factors such as species, genotypes, and soil conditions [1,4,5].
Though NH4

+ assimilation heavily relies on the sugar generated during photosynthesis in
the leaves, extant research has predominantly concentrated on the mechanisms underlying
NH4

+ uptake and assimilation in plant roots [6,7]. A discernible knowledge gap exists in
how NH4

+ stress affects photosynthesis, especially in susceptible plant species.
During photosynthesis, the diffusion of CO2 from the atmosphere to the chloroplast

sites for carboxylation encounters multiple resistances within leaves. The regulatory
mechanism underlying stomatal opening is well elucidated [8]. It comprises an initial
influx of K+, which is later replaced by sucrose, culminating in a reduction of sucrose
levels [9]. Recent investigations in rice plants have demonstrated that K+ deficiency can
reduce stomatal conductance, restricting gas exchange [10]. Furthermore, NH4

+ absorption
has been shown to impede the uptake of other cations, such as K+ or Ca2+, and elevate
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ABA content [4,11]. Thus, NH4
+ stress might instigate a reduction in stomatal conductance,

adversely impacting photosynthesis.
While the regulation of stomatal conductance (gs) and transpiration by nitrogen nutri-

tion is a well-established tenet in plant physiology, the impact of excess NH4
+ on transpira-

tion and water use efficiency (WUE) remains unclear. Intriguingly, distinct nitrogen forms
can impart divergent effects on plant water uptake, this phenomenon is intricately linked
to the nitrogen preference of various plant species [12]. Some studies posit that excessive
NH4

+ can inhibit plant water uptake [13] or induce symptoms akin to water deficit, termed
“ammoniacal syndrome” [14]. Conversely, other studies argue that compared to NO3

−

nutrition, NH4
+ nutrition can further strengthen water stress resistance in rice via marked

upregulation of AQP genes [12,15]. Thus, the influence of NH4
+ stress on the water status

of plants and its intricate relationship to stomatal opening and subsequent photosynthetic
capacity remain unclear.

Chlorophyll fluorescence, closely linked to chlorophyll content, emerges as a crucial
indicator of the photosynthetic response to stress [16]. NH4

+ stress adversely impacts the
chlorophyll content of plants, however, the degree of impact depends on the severity of
stress and the plant species [17,18]. Previous studies have postulated that NH4

+ stress can
disrupt the stability of leaf membrane lipids, hindering electron transfer and consequently
impeding photosynthesis [19]. In contrast, a previous study in Arabidopsis showed that
NH4

+ stress elevates mitochondrial ROS levels without significant impacts on photosyn-
thesis [20]. Such divergent findings warrant the need to comprehensively elucidate the
regulatory mechanisms governing chlorophyll content and chlorophyll fluorescence under
NH4

+ stress.
Wheat, a key part of global food production, is well known for its high susceptibility

to NH4
+ toxicity [21,22]. In wheat seedlings, NH4

+ stress is manifested as stunted seedling
growth and the onset of oxidative stress [21]. The pivotal role of nitrogen in the metabolism
of photosynthetic pigments and the efficient functioning of the photosynthetic apparatus
underscores its profound impact on overall plant growth and development, including in
wheat. Despite the indispensable role of nitrogen in photosynthesis, the specific photosyn-
thetic response of wheat seedlings to NH4

+ stress remains unknown. The primary objective
of this study was to delve into the mechanism underlying the tolerance and photosynthetic
response of wheat seedlings to NH4

+ stress. Here, we conducted a comparative analysis
of two wheat cultivars: NH4

+-less sensitive Xumai25 and NH4
+-sensitive Yangmai20. We

focused on growth responses, gas exchange, leaf water status, and adjustments in osmotic
balance in both these cultivars in response to NH4

+ stress.

2. Results
2.1. Plant Growth and Nitrogen Concentration

The impact of NH4
+ stress (AN) on plant growth was evident from the significantly

lower dry weight of AN-treated plants than NN-treated plants at 10 DAT, with a more
pronounced decrease in Yangmai20 (25%) than Xumai25 (7%). Similarly, the AN-treated
plants exhibited reduced leaf area, with a more pronounced reduction in Yangmai20 than
Xumai25 (Table 1). In contrast, the AN-treated plants showed higher specific leaf weight
(SLW) and nitrogen concentration than the NN-treated plants, with a more pronounced
increase in Yangmai20.

2.2. Photosynthesis and Related Attributes

The AN-treated plants exhibited a progressive decline in the net photosynthetic rate (A)
(Figure 1A) from 1 to 10 DAT, with a more pronounced decline observed in NH4

+-sensitive
Yangmai20. At 5 DAT, the value of A was significantly reduced in Yangmai20 under
NH4

+ stress compared to NN-treated plants, but this phenomenon was not observed in
Xumai25. Furthermore, AN significantly reduced stomatal conductance (gs), sub-stomatal
CO2 concentration (Ci), and transpiration rate (Tr) in Yangmai20 (Figure 1B,D,E), compared
to the NN (17%, 11%, and 13%, respectively). In contrast, AN substantially increased
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stomatal limitation (l) in both cultivars, with consistently higher stomatal limitation, evi-
denced by lower gs, in Yangmai20 than in Xumai25 (Figure 1B,F). Additionally, AN did not
significantly affect leaf mesophyll conductance (gm) (Figure 1C), carboxylation efficiency
(CE), electron transfer rate (Je), maximum carboxylation rate (Vmax), or maximum electron
transport rate (Jmax) in either cultivar (Figure 2A–D).

Table 1. Effects of ammonium stress on dry weight, leaf area, leaf nitrogen concentration, and specific
leaf weight of wheat seedling at 10 days after treatment.

Cultivar Treatment Plant Dry Weight
(mg plant−1)

Plant Leaf Area
(cm2 plant−1)

Leaf Nitrogen Concentration
(mg g−1)

Specific Leaf Weight of 4th Leaf
(mg cm−2 DW)

Yangmai20 NN 1266 ± 39.7 a 100 ± 4.6 a 69 ± 1.9 b 0.30 ± 0.008 b
AN 980 ± 31.2 c 82 ± 5.4 c 77 ± 2.5 a 0.38 ± 0.017 a

Xumai25
NN 1128 ± 50.3 b 97 ± 4.7 ab 65 ± 3.1 b 0.29 ± 0.013 b
AN 1033 ± 50.2 c 86 ± 3.4 bc 75 ± 2.2 a 0.37 ± 0.006 a

Note: NN, nitrate treatment; AN, ammonium treatment. Data are means ± standard deviation (SD) of
three biological replicates, and different letters indicate significant differences (p < 0.05) according to ANOVA.
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Figure 1. Effects of ammonium stress on (A) net photosynthetic rate (A), (B) stomatal conductance
(gs), (C) leaf mesophyll conductance (gm), (D) sub-stomatal CO2 concentration (Ci), (E) transpiration
rate (Tr), and (F) stomatal limitation (l) of wheat seedlings at 0, 1, 3, 5, and 10 days after treatment. NN,
nitrate treatment; AN, ammonium treatment. YM20, Yangmai20 (NH4

+-sensitive); XM25, Xumai25
(NH4

+-less sensitive).

Furthermore, at 10 DAT, AN led to a significant decline in CE, Vmax, and Je of Yangmai20
but did not markedly impact the corresponding parameters in Xumai25 (Figure 2A–C).

2.3. Chlorophyll Content and Chlorophyll Fluorescence Parameters

Changes in chlorophyll content and chlorophyll fluorescence were concurrently mea-
sured alongside photosynthetic parameters. The AN-treated Yangmai20 exhibited slightly
elevated total chlorophyll content at 3 and 5 DAT, while this phenomenon was not ob-
served in Xumai25. However, there was no significant difference in the total chlorophyll
content of the AN- and NN-treated plants at 10 DAT (Figure 3A). Notably, no significant
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differences were observed in the actual photochemical efficiency (Y(II)) of AN- and NN-
treated Xumai25 (Figure 3B–D). In contrast, the Y(II) value of AN-treated Yangmai20 was
significantly lower than NN-treated Yangmai20 at 10 DAT (Figure 3B). Furthermore, no
significant differences were observed in the maximum quantum yield (Fv/Fm) of the AN-
and NN-treated plants. The non-photochemical quenching (NPQ) of AN-treated plants
was significantly higher than NN-treated plants at 10 DAT.
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Figure 2. Effects of ammonium stress on the (A) carboxylation efficiency (CE), (B) electron transfer
rate (Je), (C) maximum carboxylation rate (Vmax), and (D) the maximum electron transport rate (Jmax,)
at 0, 1, 3, 5, and 10 days after treatment NN, nitrate treatment; AN, ammonium treatment. YM20,
Yangmai20 (NH4

+-sensitive); XM25, Xumai25 (NH4
+-less sensitive).
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Figure 3. Effects of ammonium stress on (A) total chlorophyll content, (B) actual photochemical
efficiency (Y(II)), (C) maximum quantum yield (Fv/Fm), and (D) non-photochemical quenching (NPQ)
of wheat seedlings at 0, 1, 3, 5, and 10 days after treatment. NN, nitrate treatment; AN, ammonium
treatment. YM20, Yangmai20 (NH4

+-sensitive); XM25, Xumai25 (NH4
+-less sensitive).

2.4. Leaf Moisture Status

AN treatment adversely impacted the leaf moisture status compared to the NN treat-
ment. At 5 DAT, AN-treated Yangmai20 exhibited significantly reduced relative water
content (RWC), pre-dawn water potential (ψp), osmotic potential (ψs), and midday water
potential (ψm) compared to NN-treated Yangmai20, while no significant differences were
observed between AN- and NN-treated Xumai25. At 10 DAT, the AN-treated plants exhib-
ited a decrease in RWC, ψs, ψp, and ψm, with a more pronounced decrease in Yangmai20
(Figure 4A–D).
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Figure 4. Effects of ammonium stress on the (A) relative water content (RWC), (B) leaf osmotic
potential (ψs), (C) pre-dawn water potential (ψp), and (D) midday water potential (ψm) of wheat
seedlings at 0, 1, 3, 5, and 10 days after treatment (DAT). NN, nitrate treatment; AN, ammonium
treatment. YM20, Yangmai20 (NH4

+-sensitive); XM25, Xumai25 (NH4
+-less sensitive).

2.5. Concentration of K+, Sucrose and ABA

AN treatment significantly impacted the parameters related to osmotic homeostasis
and stomatal opening. All AN-treated plants exhibited consistently decreasing K+ and
sucrose levels (Figure 5A,B). Although, Xumai25 exhibited substantially less pronounced K+

reduction than Yangmai20 (Figure 5A). In addition, AN-treated Yangmai20 exhibited higher
ABA concentration in the leaves than NN-treated plants at 5 DAT, while no significant
differences were observed between AN- and NN-treated Xumai25. At 10 DAT, ABA
concentration was significantly increased in both cultivars under AN treatment (Figure 5C).
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Figure 5. Effects of ammonium stress on (A) K+, (B) sucrose, and (C) ABA concentration of wheat
seedlings at 5 and 10 days after treatment. Different letters indicate significant differences (p < 0.05)
according to ANOVA. NN, nitrate treatment; AN, ammonium treatment. YM, Yangmai20 (NH4

+-
sensitive); XM, Xumai25 (NH4

+-less sensitive).

2.6. Relative Gene Expression

In leaves, the AN-treated plants exhibited higher TaHA1 and TaAKT1 expression than
NN-treated plants in both cultivars (Figure 6A,B). Furthermore, AN-treated Yangmai20
exhibited significantly lower TaKOR1 expression than NN-treated Yangmai20, while no
significant difference was observed between AN- and NN-treated Xumai25 (Figure 6C).
However, the TaKAT1 expressions of AN- and NN-treated Yangmai20 were comparable to
AN- and NN-treated Xumai25, respectively (Figure 6D).

In roots, AN-treated Yangmai20 exhibited significantly lower TaTIP2.3 and TaPIP1.1
expression than NN-treated Yangmai20, while this phenomenon is not observed in Xumai25
(Figure 6E,F). Moreover, the AN-treated plants exhibited higher TaAKT1 expression than
NN-treated plants, with significantly higher expression in AN-treated Xumai25 than NN-
treated Xumai25 (Figure 6G).
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Figure 6. Effects of ammonium stress on the expressions of genes encoding K+ channel, water
channel, and proton transport protein in leaves and roots of wheat seedlings at 5 days after treatment,
including (A) TaHA1, (B) TaAKT1, (C) TaKOR1, (D) TaKAT1, (E) TaTIP2.3, (F) TaPIP1.1, (G) TaAKT1.
Data are expressed as means of three biological replicates, and different letters indicate significant
differences (p < 0.05) according to ANOVA. NN, nitrate treatment; AN, ammonium treatment. YM,
Yangmai20 (NH4

+-sensitive); XM, Xumai25 (NH4
+-less sensitive).

2.7. The Relationships between Photosynthetic Parameters and Physiological Traits with
Nitrogen Forms

Principal component analysis (PCA) demonstrated that PC1 and PC2 explained 74.3%
of the total trait variance for the two wheat cultivars under the two treatments (AN
and NN) (Figure 7). The eigenvalue and cumulative contribution of PC1 and PC2 of
photosynthetic parameter and physiological traits and their corresponding loading are
shown in Supplementary Table S1. PC1 explained 56.8% of total variation and had a positive
association with ψm, ψs, ψp, K+, gs, and A, and a negative association with l. Thus, PC1
tended to represent traits like leaf moisture status, osmotic substance, and photosynthetic
parameters. Alternatively, PC2 explained 17.5% of the total variation and was positively
associated with NPQ and Y(II), representing the chlorophyll fluorescence. These results
indicated that photosynthetic traits might be positively related to leaf moisture status and
osmotic substance, and were negatively correlated to l.
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3. Discussion

Diverse plant species and cultivars manifest distinctive responses to NH4
+ stress,

as demonstrated by studies on peas [23], tomatoes [24], and Arabidopsis [25]. Several
studies have extensively reported the NH4

+ sensitivity of wheat [21,26]. In this study, the
deleterious impact of NH4

+ stress on the biomass and photosynthesis of wheat seedlings
(Table 1 and Figure 1A) is similar to the effects reported in other plant species [2,27].
Notably, upon NH4

+ stress, the NH4
+-less sensitive cultivar Xumai25 demonstrated a

mitigated reduction in net photosynthetic rate (A) compared to the NH4
+-sensitive cultivar

Yangmai20, resulting in superior dry matter production (Table 1, Figure 1A).

3.1. Variation in Photosynthetic Response and Stomatal Limitation

Photosynthesis, intricately linked to NH4
+ tolerance [28], involves limitation and

biochemical limitations influencing photosynthetic capacity. Our findings indicated that
Yangmai20 exhibited a notable reduction in A, gs, Ci, and an increase in l (Figure 1A–D).
However, parameters related to the photosynthetic dark reaction, such as CE, Je, Vmax,
and Jmax, did not differ significantly between AN- and NN-treated plants (Figure 2A–D).
Previous studies have demonstrated l to be a critical factor in reducing A when both Ci
and gs decrease [29,30]. Thus, in the present study, l might predominantly contribute to the
reduced photosynthesis in wheat under NH4

+ stress. Consistent with our findings, NH4
+

stress has previously been found to induce stomatal closure in tomatoes [28], and reduction
in rice [31] and wheat [32]. Notably, Xumai25 exhibited a less pronounced decrease in gs at
5 DAT, indicating its superior ability to maintain the open state of stomata, contributing
to enhanced photosynthetic performance under NH4

+ stress. Furthermore, at 10 DAT, the
dark reaction parameters (CE, Vmax, and Je) significantly decreased in Yangmai20 under
prolonged NH4

+ stress (Figure 2A,C,D), illustrating a delayed response, which might be
attributed to initial CO2 assimilation induced by reduced gs [33].

3.2. Leaf Mesophyll Conductance (gm) under NH4
+ Stress

The impact of NH4
+ on gm varies based on the plant species and severity of the stress.

For instance, Liu et al. (2021) [34] found a significantly lower gm in female Populous
cathayana plants after being supplied with NH4

+ under salt stress than after being sup-
plied with NO3

−. In contrast, Li et al. (2012) [35] reported a significantly higher gm in
NH4

+- supplied rice than NO3
−-supplied rice under drought stress. In the present study,

however, we did not observe a significant difference in gm between AN- and NN-treated
plants (Figure 1C). The observed variations in gm can be attributed to two factors. First,
increased NH4

+ assimilation products augmented the specific leaf weight (SLW) in both
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cultivars (Table 1), influencing CO2 partial pressure inside chloroplasts, which can increase
gm [36]. Second, heightened leaf nitrogen content (Table 1) after NH4

+ stress possibly led to
increased cell wall thickness [37].

3.3. Chlorophyll Concentration and Fluorescence under NH4
+ Stress

The impact of NH4
+ stress on chlorophyll content varies based on stress severity,

plant species, and cultivars [18]. For instance, several studies have reported a decrease
in the chlorophyll content of Arabidopsis in the presence of high NH4

+ levels [17,38]. In
contrast, some studies have reported increased and decreased chlorophyll content after
mild and severe NH4

+ stress, respectively [18]. In the present study, the chlorophyll content
in both cultivars was not markedly different between NN-treated and AN-treated plants
(Figure 3A), suggesting that 5 mM NH4

+ was considered a moderate stress level for wheat
seedlings. Additionally, chlorophyll content is closely associated with the efficiency of
electron transport and photosynthesis. For instance, Chen et al. (2023) [27] demonstrated
that NH4

+ exposure disrupts the electron transport chain in citrus plants. Interestingly, in
this study, we did not observe any significant difference in Je as A decreased in Yangmai20
at 5 DAT and in Xumai25 at 10 DAT. Chlorophyll fluorescence measurements indicated no
significant damage to the PSII reaction centers during the treatment period, as evident by
the unchanged Fv/Fm in both cultivars (Figure 3C). The reduction in Y(II) in AN-treated
Yangmai20 (Figure 3B) might be responsible for the decrease in Je (Figure 2B). In addition,
the increase in NPQ in AN-treated plants was possibly related to photorespiration [39].

3.4. Decline in Stomatal Conductance and Osmotic Potential under NH4
+ Stress

Several factors, such as stomatal morphology, distribution, and movement, influence
gs, a pivotal determinant of photosynthesis [40]. The focus of the current investigation was
the nuanced impact of NH4

+ stress on gs, with specific attention to the intricate regulation
of stomatal movement. We meticulously examined the newest fully expanded leaves before
treatment initiation to circumvent potential confounding effects from stomatal morphology
and distribution. Stomatal movement, primarily orchestrated by the changes in the turgor
pressure and volume of the guard cells, is governed by major osmotic entities, such as K+

and sucrose [8]. Our findings revealed a marked reduction in the leaf osmotic potential (Ψs)
of Yangmai20 since 5 DAT (Figure 4B), aligning with the decline in gs. This finding indicates
a direct correlation between diminishing Ψs under NH4

+ stress and the consequential
reduction in stomatal aperture.

Recent research emphasizes the pivotal role of sucrose and K+ as primary solutes
influencing the guard cell osmotic potential [8,9]. K+ deficiency has been shown to reduce
leaf water potential and stomatal area in rice, resulting in a decline in photosynthesis [10].
In the current study, a notable reduction in leaf K+ concentration was observed for both
wheat cultivars under NH4

+ stress, with a more pronounced reduction in Yangmai20
(Figure 5A). Intriguingly, our study unveiled a higher TaAKT1 upregulation under NH4

+

stress in the roots of Xumai25 than Yangmai20 (Figure 6G), potentially contributing to the
higher K+ concentration in Xumai25. Moreover, we observed a significant decrease in the
sucrose level of both cultivars under NH4

+ stress (Figure 1A), which potentially decreases
osmotic potential. The decreased sucrose concentration is potentially linked to inhibited
photosynthesis (Figure 1A) and increased carbon skeleton requirements due to ammonium
assimilation in the roots [2]. Taken together, the reduction in K+ and sucrose levels under
NH4

+ stress led to a decrease in leaf osmotic potential, which in turn resulted in a decrease
in gs. Xumai25, benefiting from its higher leaf K+ concentration, sustained an elevated Ψs
under NH4

+ stress, thus maintaining an enhanced gs.
Additionally, meticulous K+ flux regulation in guard cells, facilitated by inward (KAT)

and outward rectifying K+ channels (KOR), also plays a crucial role [41]. Our study
revealed a significant TaKOR1 downregulation in Yangmai20 in response to NH4

+ stress
(Figure 6C), with no significant response in Xumai25. In contrast, no significant alteration in
TaKAT1 expression was observed in any of the cultivars (Figure 6D). This finding indicates
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that the high K+ concentration and influx in NH4
+-less sensitive cultivars contributed to

the consistently high osmotic potential under NH4
+ stress. Additionally, both cultivars

exhibited TaHA1 upregulation (Figure 6A), indicating the crucial role of K+ flow [42] in
NH4

+ stress responses. Further, ABA has been demonstrated to activate anion channels
in the plasma membrane of guard cells, leading to anion efflux and subsequent release of
K+ from guard cells, resulting in stomatal closure under drought stress [42]. The elevated
ABA level observed in our study (Figure 5C) further contributes to decreased gs. However,
the nuanced interplay of NH4

+ stress with ion channels governing osmotic potential in
stomatal guard cells warrants further exploration. Our results provide an initial foundation
for understanding this intricate relationship.

3.5. Water Uptake under NH4
+ Stress

In the current study, the impact of NH4
+ exposure on water uptake in the plants

remained non-definitive. Some studies suggested that NH4
+ nutrition enhances water

absorption [15,43] while some studies proposed that exposure to NH4
+ significantly inhibits

water uptake in plants [13]. The present study observed a significant reduction in RWC and
ψm in both cultivars, with a more pronounced effect in Yangmai20 (Figure 4A,D). Moreover,
NH4

+ stress prompted a substantial downregulation of TaTIP2.3 and TaPIP1.1 in Yangmai20
(Figure 6E,F). These findings indicate a more pronounced impact of NH4

+ stress on water
uptake in Yangmai20 than in Xumai25. Based on the existing literature, we postulate that
this phenomenon might be attributed to two factors. First, the downregulation of AQPs
under NH4

+ stress to mitigate NH3/NH4
+ absorption and transport, as some studies have

reported that aquaporins (AQPs) can transport NH3/NH4
+ [12,44]. Second, the cellular

acidification induced by NH4
+ stress [2], as evidenced by TaHA1 upregulation (Figure 6A),

adversely impacts the activity of AQPs [45].

4. Materials and Methods
4.1. Plant Materials and Experimental Design

Two wheat cultivars, Xumai25 (NH4
+-less sensitive) and Yangmai20 (NH4

+-sensitive),
were subjected to hydroponic experiments. The seeds were surface-sterilized using a 10%
(v/v) H2O2 solution for 15 min and subsequently rinsed thoroughly with sterile distilled
water. Subsequently, the seeds were germinated under dark conditions in Petri dishes
until the seed bud length reached approximately 1 cm (typically 36 h). Then, the seedlings
were transplanted into water-filled opaque plastic containers (45 cm × 32 cm × 25 cm,
volume 36 L). When the seedlings reached the two-leaf stage, they were transferred to
a modified 50% Hoagland nutrient solution and grown until they reached the four-leaf
stage. After this pre-treatment, the seedlings were divided into two groups, each group
comprising seedlings from both cultivars. One group was treated with nitrate nitrogen (NN,
5 mM NO3

−-N) nutrient solution and the other with NH4
+ nitrogen (AN, 5 mM NH4

+-N)
nutrient solution. The macronutrient compositions of both treatment solutions are detailed
in Supplementary Table S2. The micronutrient composition was kept consistent in both
treatment solutions, as described previously [21]. The solutions were refreshed every three
days to ensure a consistent nitrogen supply in each solution and were continuously aerated
to prevent anoxia. The pH of each solution was adjusted daily to 5.8 using either 0.1 mM
H2SO4 or 0.1 mM NaOH. The entire experiment was conducted in a controlled greenhouse
environment with a 16 h/8 h light/dark cycle and temperature maintained at 18 ◦C during
the day and 8.5 ◦C at night. The light intensity and relative air humidity in the greenhouse
were set at 400 µmol m−2 s−1 and 60%, respectively. We adopted a completely randomized
block design, and each experiment was replicated three times. Each replication consisted
of 3 containers, and each container housed 60 plants.

The random seedlings (belonging to both cultivars) from both groups were collected at
0, 1, 3, 5, and 10 days after treatment (DAT). The fourth leaf (the newest fully expanded leaf
before treatment) was used for the measurement of photosynthetic, fluorescence, and leaf
water status parameters. The fourth leaves, other leaves, stems, and roots of the collected
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seedlings were separated and divided into two segments. One segment was oven-dried at
105 ◦C for 20 min, followed by drying at 85 ◦C, to determine the dry weight and nitrogen
concentration measurements. The other segment was promptly frozen in liquid nitrogen
and stored at −80 ◦C for subsequent analyses.

4.2. Gas Exchange Measurements

Gas exchange measurements were constructed using a gas exchange system (Li-Cor
6800, Li-Cor Inc. Lincoln, NE, USA) equipped with a standard chamber (2 cm2) and a
Multiphase Flash Fluorometer (6800-01F). The parameters were set as follows: leaf temper-
ature, 25.0 ± 0.5 ◦C; steady-state photosynthetic photon flux density (PPFD), 1200 µmol
photons m−2 s−1; vapor pressure deficit (VPD), 1.1 ± 0.05 kPa; and relative humidity,
55–65%. Leaves were introduced into the chamber at a reference CO2 concentration of
400 µmol mol−1 for 10 min for stabilization before measurement. Parameters including net
photosynthetic rate (A), sub-stomatal CO2 concentration (Ci), stomatal conductance (gs),
transpiration rate (Tr), and electron transport rate (Je) were recorded after stabilization.

For the A–Ci curves, the reference CO2 concentration was systematically adjusted to the
following levels: 400, 200, 150, 100, 50, 400, 400, 600, 800, 1000, 1200, and 1500 µmol mol−1. Data
were recorded, following a stabilization period of 2–3 min at each level. Six leaves from each
treatment group were selected for this experiment. Carboxylation efficiency (CE) was calculated
as the initial slope of the A–Ci curves when Ci was <200 µmol mol−1 [46]. Parameters such as
maximum carboxylation rate (Vmax), RuBP regeneration (Jmax), mesophyll conductance (gm),
and stomatal limitation (l) were determined using a modified equation derived from the works
of S. P. Long and C. J. Bernacchi [47] and Li et al. [46].

The photosynthetic rate (A) was expressed mathematically as:

A = vc − 0.5vo − Rd = vc (1 − Γ*/Ci) − Rd (1)

Here, vc is the Rubisco carboxylation rate, vo is the Rubisco oxygenation rate, Rd is the
mitochondrial respiration rate in the light, and Γ* is the CO2 compensation point related
to the Ci [46]. Here, vc is determined by the minimum of three potential rates: potential
Rubisco carboxylation rate, RuBP regeneration rate, and triose phosphate utilization (TPU)
rate, (wc, wj, and wp, respectively):

vc = min (wc, wj, wp) (2)
Also:

wc = (Vmax × Ci)/(Ci + Kc × (1 + O/Ko)) (3)

wj = (Jmax ×Ci)/(4.5 Ci + 10.5 Γ*) (4)

Here, O is the O2 concentration (210 mmol mol−1). Furthermore,

Kc = exp(38.05 − 79.43/(R × (T + 273.15))) (5)

Ko = exp(20.30 − 36.38/(R × (T + 273.15))) (6)

Here, Kc and Ko are the Michaelis constants of carboxylation and oxygenation, respec-
tively. T is the leaf temperature (◦C).

The A–Ci curve comprises three phases. In the first phase, Rubisco is limiting and Je
increases with the increase in Ci. Thus Equation (3) can be fitted to Equations (1) and (2)
as follows:

A = Vmax × Ci × (1 − Γ*/Ci)/(Ci + Kc × (1 + O/Ko)) − Rd (7)

Setting f as a variable changing with Ci:

f = Ci × (1 − Γ*/Ci)/(Ci + Kc × (1 + O/Ko)) (8)

Equation (8) can then be rewritten as follows:

A = Vmax × f − Rd (9)
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Thus, A can be plotted as a linear function of f, where Vmax is the slope and Rd is
the intercept.

In the second phase, RuBP regeneration is limiting and Je remains constant with
increasing Ci. Thus, Equation (4) can be fitted to Equations (1) and (2) as follows:

A = Jmax × Ci × (1 − Γ*/Ci)/(4.5 Ci + 10.5 Γ*) − Rd (10)

Setting g as a variable changing with Ci:

g = Ci × (1 − Γ*/Ci)/(4.5 Ci + 10.5 Γ*) (11)

Equation (11) can then be written as follows:

A = Jmax × g − Rd (12)

Thus, A can be plotted as a linear function of g, where Jmax is the slope and Rd is
the intercept.

Stomatal limitation (l) was calculated as follows:

l = (A′′ − A′)/A′′ (13)

Here, A′ is the net photosynthetic rate at the ambient atmospheric CO2 concentration
(400 µmol mol−1) and A′′ is the net photosynthetic rate when Ci is equal to ambient
atmospheric CO2 concentration (Ci = 400 µmol mol−1).

The leaf mesophyll conductance (gm) was calculated using the constant J method [47,48]:

gm = A/(Ci − Γ* (Je + 8(A+ Rd))/(Je − 4(A+ Rd))) (14)

Here, Je is the electron transport rate.

4.3. Leaf Area and Chlorophyll Fluorescence Measurements

Plant leaf areas were measured using an LI-3100 AREA METER (Li-Cor, Inc., Lincoln,
NE, USA).

After the photosynthetic measurements, the fluorescence characteristics of the fourth
leaves were determined using a PAM-2500 portable chlorophyll fluorescence apparatus
(PAM-2500, Walz, Germany). The leaves were dark-adapted for 30 min before measure-
ments. The minimum fluorescence, Fo, and the maximal fluorescence yield, Fm, were
recorded after executing a saturation pulse. Then the actinic light (497 µmol photons
m−2 s−1) was opened, and the saturation pulses were generated. The initial fluorescence
Fo’, the maximum fluorescence Fm’, and the steady fluorescence Ft were recorded during
this progress. The maximum quantum yield of the PSII reaction center (Fv/Fm), the actual
photochemical efficiency (Y(II)), and the non-photochemical quenching (NPQ) were cal-
culated using a modified equation developed by Christof Klughammer (2008) [49]. The
equation is as follows:

Fv/Fm = (Fm − Fo)/Fm (15)

Y(II) = (Fm′ − F)/Fm′ (16)

NPQ = Fm/Fm′ − 1 (17)

4.4. Leaf Water Status

The pre-dawn water potential (ψp) and midday water potential (ψm) of the fourth leaf
were determined during the pre-dawn period (between 04:00 and 05:00) and noon (between
12:00 and 13:00), respectively, using a Model 1505D-EXP Pressure Chamber Instrument
(1505D-EXP, Decagon, Albany, OR, USA). Briefly, the leaf veins were vertically cut using a
sharp blade and the leaf veins were immediately placed into the pressure chamber. The
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water potential was recorded as the pressure at which blisters emerged on the cross-section
of the leaf.

The osmotic potential (Ψs) of the fourth leaf was determined using a vapor pressure
osmometer (Wescor 5600, Wescor Inc., Logan, UT, USA) at 25 ◦C. Briefly, the leaf was
flash-frozen in liquid nitrogen at 9:00–10:00 a.m. Then, cell sap was extracted through
maceration and filtration using fine nylon mesh and a syringe. The osmotic potential was
then calculated from the instrument, as per the manufacturer’s instructions.

The leaf relative water content (RWC) of the fourth leaf was measured using a previ-
ously described protocol [50]. Briefly, the leaves were weighed immediately after harvest
and the weight was recorded as Wf. Then, the leaves were immersed in distilled water for
12 h and weighed to obtain the saturated fresh weight (Wt). Subsequently, the leaves were
dried to a constant weight in an oven at 85 ◦C and weighed to obtain the dry weight (Wd).
The RWC was calculated using the formula: (Wf − Wd) / (Wt − Wd) × 100%.

4.5. Determination of N, K+ and Sucrose Concentration

Fresh fourth leaves were freeze-dried and then ground into a powder.
For N and K concentration analyses, approximately 0.1 g of the sample powder was

mixed with 5 mL of H2SO4. The resulting mixture was heated to 200 ◦C until a clear
solution was obtained. Subsequently, the reaction was terminated by adding H2O2. The
resulting solutions were then analyzed using inductively coupled plasma optical emission
spectrometry (ICP-OES, Optima 8000, Perkin Elmer, Waltham, MA, USA).

The sucrose concentration was determined using the resorcinol method as described
by Zeng et al. (2014) [51]. Briefly, 0.1 g of the sample powder was weighed and extracted
with a sugar extraction solution. The mixture was centrifuged (15,000× g, 15 min), and
the supernatant was collected. Next, 0.3 mL of the supernatant was mixed with 0.1 mL
of 2 M NaOH, and the solution was incubated at 95 ◦C for 10 min. Next, 1 mL of 0.1 M
resorcinol and 3.5 mL of 10 M HCl were added to the mixture, and the solution was
incubated at 80 ◦C for 60 min. The OD of the solution was measured at 500 nm using
UV/VIS spectrophotometer (Pharmacia, Cambridge, UK). The sucrose concentration was
calculated using the standard curve.

4.6. Determination of ABA Concentration

ABA concentration was determined using the method described by Greco et al.
(2012) [52], with some modifications. Briefly, approximately 0.5 g of the fresh leaf sample
was weighed and added to a pre-cooled mortar with 5 mL of 50% chromatographic grade
methanol (v/v) and ground into a slurry in an ice bath. The slurry was then extracted
at 4 ◦C in the dark for 12 h. Afterward, the mixture was centrifuged at 10,000 r/min for
10 min at 4 ◦C, and the supernatant was collected and stored in a refrigerator. The residue
from the first extraction was subjected to two more extractions. For the second extraction,
4 mL pre-cooled 80% chromatographic grade methanol was added to the residue, and
the mixture was again extracted for 12 h, followed by centrifugation. The same progress
was repeated for the third extraction using 2 mL of pre-cooled 100% chromatographic
grade methanol. All supernatants from the three extractions were combined. To adsorb
phenols and pigments, PVPP (0.2 g/g FW) was added to the supernatants, which were then
shaken at 4 ◦C for 60 min and centrifuged as mentioned above. The resulting supernatant
was slowly passed through a prepared C18 column, and the effluent was collected and
freeze-dried in the dark. After freeze-drying, the sample was dissolved in 3 mL of 50% chro-
matographic grade methanol, filtered through a 0.22 µm membrane, and finally injected
into an ultra-performance liquid chromatography (UPLC) system (ACQUITY UPLC H-
Class system, Waters, Milford, MA, USA) for analysis. The UPLC analysis was performed
using an ACQUITY UPLC HSS T3 column (100 mm × 2.1 mm × 1.8 µm, Waters).
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4.7. RT-PCR Analysis

Total RNA was extracted from root and leaf samples using TRIzol reagent (Vazyme
Bio, Nanjing, China). The HiScript III Q RT SuperMix (Vazyme Bio, Nanjing, China) was
used for cDNA synthesis as per the manufacturer’s instructions. The cDNA samples were
then diluted 5-fold and subjected to qPCR analysis. qRT-PCR was conducted using the
CFX Connect Real-Time PCR Detection System (Bio-Rad, Hercules, CA, USA) with ChamQ
SYBR qPCR Master Mix (Vazyme Bio, China).

The primer sequence for TaHa1 was sourced from Jiang et al. [53]. The primers for
aquaporins (TaTIP2.3, and TaPIP1.1) were sourced from Wu et al. [54]. The primers for
potassium transport channel (AKT1) were designed using Primer 5 software. The primers
for potassium ion inflow channel (KAT1), and potassium ion outflow channel (KOR1) were
sourced from the work of Yang et al. [55]. ACT and ADP genes were used as internal
references. All primer sequence is listed in Supplementary Table S3. Relative expression
levels were determined using a previously described method [56].

4.8. Statistical Analysis

Physiological data derived from both dry and fresh samples were calculated using
three biological replicates, while the data pertaining to photosynthetic, fluorescence, and
water status parameters of the leaves were derived from six leaf replicates. Analysis of
variance (ANOVA), followed by the Tukey HSD test was used for multiple comparisons.
SPSS 26 (IBM, Armonk, NY, US) was used for all statistical analyses. Graphs and tables
were generated using Origin 2021 software (OriginLab, Northampton, MA, USA) and
Microsoft Excel.

5. Conclusions

In conclusion, our study showed that 5 mM NH4
+ stress significantly disrupted the

crucial photosynthetic processes in wheat plants. Our findings highlight the predominant
stomatal limitation in photosynthesis under NH4

+ stress conditions. In this process, K+

mediated Ψs decrease played a vital role in the decline of gs. In addition, the NH4
+-less

sensitive cultivar exhibited a robust ability to maintain osmotic homeostasis, resulting
in higher gs and improved photosynthetic performance and growth under NH4

+ stress.
Further studies are still needed to elucidate how high NH4

+ concentrations might impact,
at the molecular and electrophysiological levels, the stomatal opening in higher plants.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants13010086/s1. Table S1. Eigenvalue and cumulative contribution
of PCs of photosynthetic parameter and their corresponding loading. Table S2. The concentration and
components of macronutrients in both treatments. Table S3. The primer sequence in this study.
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