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Abstract: Rice lodging seriously affects rice quality and production. Traditional manual methods of
detecting rice lodging are labour-intensive and can result in delayed action, leading to production
loss. With the development of the Internet of Things (IoT), unmanned aerial vehicles (UAVs) provide
imminent assistance for crop stress monitoring. In this paper, we proposed a novel lightweight
detection system with UAVs for rice lodging. We leverage UAVs to acquire the distribution of rice
growth, and then our proposed global attention network (GloAN) utilizes the acquisition to detect the
lodging areas efficiently and accurately. Our methods aim to accelerate the processing of diagnosis
and reduce production loss caused by lodging. The experimental results show that our GloAN can
lead to a significant increase in accuracy with negligible computational costs. We further tested the
generalization ability of our GloAN and the results show that the GloAN generalizes well in peers’
models (Xception, VGG, ResNet, and MobileNetV2) with knowledge distillation and obtains the
optimal mean intersection over union (mIoU) of 92.85%. The experimental results show the flexibility
of GloAN in rice lodging detection.

Keywords: rice lodging; global attention network; sematic segmentation; knowledge distillation;
transfer learning; unmanned aerial vehicles; smart agriculture

1. Introduction

Rice is a crucial agricultural product, and its yield and grain quality can be affected by
the illness of lodging [1]. Typically, rice lodging is caused by a strong wind after heavy rain
or overuse of nitrogen fertilizers [2]. When lodging occurs, it blocks the transportation of
water in rice and negatively affects its nutrient absorption [1]. Severe lodging can result
in up to a 50% loss in yield [2]. To mitigate the losses caused by rice lodging, accurate
localization of the lodging area and timely treatment are of great importance. By tradition,
the status of rice is diagnosed by agricultural experts and experienced farmers by the
naked eyes, which is unsustainably labour-intensive in vast rice fields [3]. Fortunately,
advancements in deep learning and remote sensing techniques provide a solution to
this problem.

Remote sensing techniques, such as unmanned aerial vehicles (UAVs) and satellite
imaging, have enabled quick detection of rice lodging over vast areas [4]. Over the past
decade, deep learning techniques, especially convolution neural networks (CNNs), have
enabled the successful applications of computer vision in various areas of human life [5].
Previous studies have demonstrated the efficacy of deep learning models and remote
sensing techniques in automatically identifying rice lodging [6–8]. However, efficiency
of the deep learning models is not an essential consideration in these works. In practice
settings, the deployment of a rice lodging detection system requires consideration of
computational resources. Lightweight models with satisfactory performance in detecting
rice lodging are, therefore, crucial. Large-sized models tend to perform better, but their
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high computational cost makes them difficult to deploy. To improve the performance of
small-sized models in detecting rice lodging, we adopt knowledge distillation [9] as an
efficient technique to train the models in our study. By employing knowledge distillation,
the small-sized models can achieve comparable performance to larger ones, which is
advantageous in practical applications.

Previous research has explored the use of attention blocks to enhance the performance
of CNNs in an efficient manner. These lightweight modules are able to refine feature maps
and show potential for improving the performance of small-sized models with only a few
additional parameters [10–12]. However, in many attention modules, such as those that
use average-pooling and max-pooling to shrink feature maps, information may be lost,
limiting the module’s ability to improve performance in practice [13]. As such, there is a
need to explore alternative approaches that can more effectively leverage the information
contained in feature maps.

In this study, we propose a novel attention mechanism, named the global attention
network (GloAN) (shown in Figure 1), to enable efficient and accurate detection of rice
lodging. The proposed GloAN takes advantage of the global receptive field and infers
attention maps by simultaneously extracting spatial and channel information. Unlike the
traditional attention modules, GloAN does not rely on max-pooling or average-pooling to
shrink the feature maps before attention operations, which enables full utilization of the
input feature maps.
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Figure 1. Diagram of the global attention network.

In the experiments, we implemented all the segmentation models based on transfer
learning [14] as it is an effective skill to improve the performance of semantic segmenta-
tion models [15–17]. By applying transfer learning, the implemented models can avoid
training from scratch on the rice lodging dataset and can learn to distinguish subtle differ-
ences between input images before training begins. The experimental results demonstrate
the effectiveness of our methods in detecting rice lodging. We summarized the main
contributions of this study as follows:

• We propose a novel attention module, named global attention network (GloAN), which
can seamlessly integrate into CNN architectures and brings notable performance gains
in rice lodging detection with minimal computational cost.

• Our proposed methods enable accurate rice lodging detection that can be deployed
with limited computational resources, which is practical for real-world applications.

• Our proposed methods provide a new alternative to improve the performance of
semantic segmentation models in rice lodging detection. Instead of directly changing
the implemented models or the backbone networks, one can improve the segmentation
performance more effectively by adopting GloAN.

The remainder of this paper presents related literature in Section 2, the overview of our
rice lodging detection methods in Section 3, experimental results in Section 4, discussion of
our research findings in Section 5, and concluding remarks in Section 6.
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2. Related Work
2.1. Remote Sensing of UAV on Rice Lodging Detection

Lodging is the most common sickness that constrains the high grain yield of rice [18,19].
Various measures have been studied to prevent rice lodging, including rice height reduction [20],
applying organic fertilizer [21], precision artificial transplanting [22], and cultivation of
lodging-resistance rice varieties [23,24]. However, determining the status of rice requires
the assessment of experienced agricultural experts, which is time-consuming. Given that
quick detection of lodging on a large scale is needed for timely treatments [6], UAV remote
sensing techniques combined with deep learning can be employed to detect rice lodging.

UAV remote sensing has recently drawn broad attention from both academia and
industry due to its high efficiency, flexibility, and low cost [25,26]. It provides an effective
solution to monitor and detect rice lodging over vast areas [3,4,27,28]. Compared to satellite
remote sensing, UAV remote sensing can use high-resolution cameras to capture high-quality
images that are appropriate for lodging assessment [6,29]. By analysing UAV-captured
images using deep learning techniques [30,31], rice lodging can be effectively detected.

Previous studies have shown that semantic segmentation algorithms applied to seg-
ment rice lodging produce encouraging results [6,29]. In rice lodging detection, semantic
segmentation models are commonly used to localize the lodging areas and segment them
from healthy rice [7]. However, most previous studies on rice lodging detection concentrate
on improving model performance without reporting the computational costs of the imple-
mented models. To achieve a reasonable trade-off between performance and computational
burden, it is essential to focus on both aspects.

2.2. Attention Mechanism and Knowledge Distillation

For humans, attention plays a crucial part in vision understanding [32]. Usually,
we perceive our surroundings by focusing on salient parts of the scene, rather than the
entire scene [33]. Likewise, in deep learning architectures, attention plays a similar role
and has been applied in a wide range of tasks, including image classification [10], object
detection [34], and scene segmentation [35]. Instead of allocating equal weights to all
positions in an input image, attention mechanisms differentiate the salient parts and
unimportant parts. This means that informative features in an image are emphasized while
less informative ones are suppressed [36].

SE-Net [11] has been proposed to exploit inter-channel relationships, where weights
of every channel in the feature map are re-allocated. The channel attention of SE-Net is
efficiently inferred only using a pooling layer and two consecutive fully connected layers.
Besides channel attention, CBAM [12] also introduces spatial attention, which experimen-
tally achieves promising performance. Typically, spatial attention plays an important role
in deciding which parts of an image the model should focus on. In contrast, our proposed
GloAN takes advantage of the global receptive field of the vision transformer [37] and
computes channel and spatial attention simultaneously. In particular, GloAN enhances the
representation power of the implemented models by modelling the inter-spatial relationship
of the input features.

Models of larger size and deeper structure tend to achieve better performance [38,39].
However, compact models are preferable for deployment as they require less computational
resources. Knowledge distillation was first proposed by [9] to improve the performance of
a compact model by utilizing the knowledge learned by a well-trained teacher network.
Based on this idea, a later work by [33] improved the student model by forcing it to
mimic the feature maps produced by a powerful teacher network in the forward process.
Experimental results show that this skill can yield decent performance improvement.

Knowledge distillation methods specifically designed for semantic segmentation have
also been explored. To enable fast and accurate segmentation, Xie et al. [40] facilitated
the learning of the student network by minimizing the probability output discrepancy
and logit output discrepancy between teacher and student networks. By employing this
training strategy they improved the performance of the compact segmentation model with-
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out incurring extra computational resources. A recent knowledge distillation study [41]
reported to align the activation maps of teacher and student in a a channel-wise fash-
ion. Experimental results showed that the proposed channel-wise knowledge distilla-
tion outperformed state-of-the-art distillation methods in terms of promoting training of
student networks.

3. Materials and Methods
3.1. Dataset Overview

The rice lodging dataset used in this study was collected by DJI Mavic 2 Pro (DJI
Innovation Technology, Shenzhen, China) in the agricultural experimental field of South
China Agricultural University located in Zengcheng, Guangzhou, China (23◦24′ N 113◦64′ E).
The UAV was equipped with a Hasselblad L1D-20C digital camera (Hasselblad, Sweden,
Goteborg) that captured images in 5472× 3648 resolution and the data was collected at
noon in sunny weather when the experimental field was well lit. To capture the dataset, we
set up an automatic flight route for the UAV using DJI GS Pro software. The UAV flew at
the height of 15 m and the speed of 5 m/s, resulting in 144 captured images that covered a
paddy field of 1.5 acres. Then we used Pix4Dmapper to stitch the captured images, resulting
in a single overall image with a resolution of 18,779 × 12,929. We manually annotated the
healthy rice and rice lodging areas using the Labelme software (CSAIL, Boston, MA, USA).
Furthermore, we carried out a field investigation to verify the ground truth of the rice
paddy to ensure the accuracy of our annotations. The overview of the experimental paddy
field and samples of healthy rice and rice lodging are shown in Figure 2. We highlight
the rice lodging areas with a faint red colour so that they are easier to see. Note that rice
lodging covers 42% of the experimental paddy field.

Guangdong province

China

(a) Study area.

(b) Healthy rice. (c) Rice lodging.

Figure 2. Dataset overview. The lodging areas in the rice field are highlighted in red.
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To created a suitable dataset for deep learning architectures, we divided the overall
single image into a training set, a validation set, and a testing set at a ratio of 60, 20, and 20%,
respectively. We randomly cropped 2000 images to the resolution of 224× 224 from the
overall image, covering 40% of the paddy field without overlaps. The resulting 2000 images
were then equally divided into the validation and testing sets (1000 images for each set).
After this, we randomly cropped 9000 images with overlaps at the same resolution from
the remaining 60% of the area. During the training process, we conducted horizontal
flipping, colour jittering and resizing for data augmentation. As a result, we generated
a training set with 9000 images, a validation set with 1000 images, and a testing set with
1000 images.

3.2. Global Attention Network

The GloAN is a computationally efficient unit that can be seamlessly integrated into
any CNN architecture. In detail, GloAN was built based on a mechanism called query–
key–value (QKV) multiplication that helps attention-based models to selectively focus on
the relevant parts of the input sequence, where query (Q), key (K), and value (V) are three
matrices [42]. The QKV multiplication was originally used in natural language processing
(NLP) but has been shown to be effective in computer vision tasks as well [37,43,44], where
the QKV multiplication0based models are called vision transformers.

Based on the above works, we designed GloAN and applied it as an attention module
for rice lodging detection. Note that GloAN is designed in a computationally efficient
manner and differs from conventional vision transformers in the following distinct aspects:
(1) GloAN employs a linear layer to map the input features to a low-dimensional space to
reduce computational complexity. This allows GloAN to be inserted into any layer of a
CNN without concern for excessive computational burden, even when the input features
have a large size. (2) GloAN functions as an attention module to enhance the performance
of a CNN rather than being utilized independently for result prediction or as a backbone
for tasks such as object detection and semantic segmentation. (3) GloAN is a compact unit
in comparison to other vision transformers which tend to be much larger in size.

As illustrated in Figure 1, given an input feature X ∈ RH×W×C, GloAN infers an
attention map A ∈ RH×W×C′ that captures the inter-spatial relationship of the input feature.
To be specific, the input feature is firstly reshaped into a 2D vector, and subsequently
forwarded to a linear layer. When propagating through the linear layer, the channel
dimension of the input feature is shrunk to C′ (C′ is set as 64 by default and its value can
vary based on the computational resources). This lessens the computational complexity,
since outputs of a convolution layer generally have a huge channel dimension (e.g., 256 or
512). Secondly, we forward the reshaped feature to the second linear layer, where the
output will be chunked into three matrices of the same size (denoted as M1, M2, M3, and
∈ R(H×W)×C′ ). Note that the generated matrices have the same spatial resolution as the
input feature (that is, H×W), except the spatial dimension is reshaped into one-dimension
in the matrices.

Since dot-product results between vectors measure the vectors similarities [45], we
perform a matrix multiplication between M1, M2 and M3 to infer an inter-spatial re-
lationship of the input feature map. Derived from M1 ·MT

2 , the intermediate matrix
MI ∈ R(H×W)×(H×W) deduces the similarity between every pixel in the input features. For
instance, the (H ×W) elements of the first row of MI indicate the similarities between
the first pixel and all pixels from the input feature map. Subsequently, the result matrix
MR ∈ R(H×W)×C′ is derived by the dot product of MI and M3, which encodes where
emphasis or suppression should be applied in the feature map, as each of its elements
are inferred through global information of the input feature map, endowing it with a
global receptive field. At last, a two-layer multilayer perception (MLP) is employed to
recalibrate and produce the final attention map A ∈ RH×W×C′ . Note that we do not reduce
the channels of the input feature when it propagates through the MLP in contrast to what



Plants 2023, 12, 1595 6 of 16

many other works do [12,43], given that the number of channels is already computationally
efficient enough.

To apply attention to the input feature, we first use an average-pool to squeeze the
channel of the attention map A ∈ RH×W×C′ , which results in a refined attention map
AR ∈ RH×W×1. Subsequently, the input feature is multiplied by the refined attention map
AR, where AR is broadcast accordingly along the channel dimension. The overall process
can be summarized as:

AR = AvgPool(Attention(X)), X̃ = (AR + 1)⊗ X, (1)

where X denotes the input feature, X̃ denotes the final output of the attention transforma-
tion, and ⊗ refers to the element-wise multiplication. Figure 3 depicts the schema of the
integration of GloAN into a ResNet block [39]. When applying the GloAN, an additional
branch is presented in the ResNet block to infer the attention map. The attention map can
perform feature recalibration by selectively emphasizing the informative parts of the feature.
More variants of GloAN integrating into other CNN architectures, such as VGGNet [46],
Xception [47] and MobileNet [48], can be implemented by following this scheme. Note that
GloAN can be inserted into any layer of a CNN, depending on the computational budget.

Conv

Feature maps

H × W × C

+

Output feature

H × W × CH × W × C

ResNet block

Conv

AvgpoolFeature maps

H × W × C H × W × C

Attention map

× ++
H × W × C’ H × W × 1

Output feature

H × W × C

ResNet block integrated with GloAN

Input feature 
for GloAN

Refined 
attention map

Figure 3. The schema of GloAN integrated into a ResNet block.

3.3. Semantic Segmentation Models

To select a proper semantic segmentation model for rice lodging detection, we imple-
mented three dominant algorithms, namely, U-Net [49], SegNet [17], and DeepLabv3+ [16],
in this study. All of these models are composed of two parts, i.e., an encoder and a decoder.
Typically, the encoder progressively downsamples the feature maps and extracts semantic
information, whereas the following decoder gradually restores spatial information and
enables precise object boundary recovery. In general, state-of-the-art classification, such as
like VGG [46], ResNet [39], or MobileNets [48], is employed as the encoder for a semantic
segmentation model, and transpose convolution or interpolation is adopted to upsample
the feature maps and allow spatial resolution restoration.

Notably, unlike other semantic segmentation models we implemented, the DeepLabv3+
encoder also includes an atrous spatial pyramid pooling (ASPP) module [50], where three
atrous convolutions with different atrous rates are used to capture multi-scale semantic
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information. More precisely, atrous convolution can effectively enlarge the receptive field
of filters without learning additional parameters. Figure 4 illustrates the mechanism of
atrous convolution by comparing the receptive field of atrous convolution (atrous rate set
as two) and standard convolution (equivalent to the atrous rate set as one). It shows that
when applying a 3× 3 standard convolutional filter, the value of a pixel in a feature map II
is determined by the 3× 3 pixel block in the feature map I. Likewise, the values of the 3× 3
pixel block in a feature map I are determined by the 5× 5 pixel block from the input. As
a result, the value of a pixel in a feature map II is related to the 5× 5 pixels in the input,
which means the feature map II has a receptive field of 5× 5. In contrast, when applying a
3× 3 atrous convolutional filter, the value of one pixel in a feature map II is determined
by the 3× 3 separated pixels in the feature map I, which are in turn related to the 7× 7
pixel block in the input. As a result, a pixel in a feature map II represents the information
contained in a 7× 7 pixel block in the input. Thus, a larger receptive field is enabled by
atrous convolution, conducive to accurate object boundaries recovery.

3×3 conv
3×3 atrous conv

3×3 conv3×3 conv
3×3 conv3×3 conv

(a) Standard convolution.

3×3 conv
3×3 atrous conv

(b) Atrous convolution.

Figure 4. Standard convolution and atrous convolution. The receptive field of a feature map II is
enlarged by implementing atrous convolution.

3.4. Knowledge Distillation

The key idea of knowledge distillation is to use the knowledge learned by a large,
complex, well-trained teacher network to promote the training of a relatively smaller,
simpler student network, so that the models in small size can achieve a better performance
without learning additional parameters. In classification tasks, the So f tmax function is
usually used to convert the network output logits into a probability distribution. Inspired
by the encouraging results achieved by channel-wise knowledge distillation [41], we
employed channel-wise, instead of spatial, knowledge distillation to train the student
network, where the So f tmax function was applied on every single channel of outputs
across the spatial dimension.

Given an input image I ∈ RH×W×C, the output of a semantic segmentation model
Y ∈ RH×W×C′ can be derived by Y = Model(I), where C′ is the number of total classes
of the dataset. In the traditional So f tmax function, a well-trained teacher network tends
to predict the correct class with high confidence, whereas the incorrect classes are usually
assigned with probabilities close to zero, which limits their influence on model optimization.
In fact, differences between incorrect classes should also be learned by the student network
since they describe the similarity structure of the data. Similar to previous work in [9],
a hyperparameter T was introduced in the So f tmax function to alleviate its tendency to
produce probabilities close to zero:

θ(Yc) =
exp(Yc,i

T )

∑H·W
i=1 exp(Yc,i

T )
, (2)

where Yc refers to one channel of the output, i refers to every spatial location of this
channel, and H and W refer to height and width of the output. With the inclusion of the
hypeparameter T, it mitigates the tendency of the So f tmax function to produce probabilities
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close to zero. In practice, setting the value of T greater than 1 leads to a softer probability
distribution, which means that the differences between the probabilities assigned to the
different classes are less pronounced. In our experiment, T was set as 4 by default as it is
commonly adopted in knowledge distillation and has been found to be effective in previous
studies [9,33,41].

The total loss of training the student network contains two parts, i.e., knowledge
distillation (KD) loss and cross-entropy (CE) loss. To be certain, Kullback–Leibler (KL) di-
vergence is used to measure the KD loss by evaluating the channel distribution discrepancy
between the student and teacher networks, and CE loss is commonly employed in semantic
segmentation tasks. The total loss of student training is formulated as [41]:

LTotal = LCE + α · LKD, (3)

LkD =
T2

C

C

∑
c=1

H·W
∑
i=1

θ(YT
c,i) · log

[ θ(YT
c,i)

θ(YS
c,i)

]
, (4)

where C refers to the total channel of the output, α is the weight of the KD loss, and YT and
YS denote the output of the teacher and student, respectively. The introduction of T2 is
due to the magnitudes of the gradients are scales as 1/T2 with the introduction of T in the
So f tmax function. The training process of the student network is illustrated in Figure 5.

Channel-wise
Softmax Cross entropy Loss

)( tTSoftmax =

)( tTSoftmax =

Student

Teacher

Output

Output

KLDivLoss

True label

CELoss
Input

Softmax

Figure 5. Training the student network with knowledge distillation.

3.5. Transfer Learning Strategy

Inspired by the notable performance of transfer learning in semantic segmenta-
tion [15–17], we applied transfer learning in this work. In detail, all the semantic seg-
mentation model backbones in this study were pre-trained on the ImageNet dataset [51].
ImageNet is a large-scale dataset that contains more than a million images and 1000 object
categories. Models trained on the ImageNet dataset gain the ability to distinguish betwen
similar objects as well as extract high-level features such as textures, corners, and edges of
the input image. Since rice lodging and healthy rice share similar colours and contexts, it is
important for the models to be able to recognize subtle differences. When applying transfer
learning to a semantic segmentation model, it is generally recommended to use a large and
diverse dataset, such as COCO [52], to pre-train the network. However, training a model
on COCO requires significant computational resources. Furthermore, using a pre-trained
model that is too complex for the new dataset can cause overfitting. Thus, we trained
the complete network using the augmented PASCAL VOC 2012 dataset [53], which is a
smaller, but well-known dataset for semantic segmentation. This dataset comprises pixel-
wise annotated images of 20 object classes, with 10,528 images allocated for training and
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1449 images reserved for validation purposes. In this way, we can prevent the model from
overfitting and all parameters in the semantic segmentation model can avoid being trained
from scratch, experimentally proven as an efficient skill to yield satisfactory results [16].

4. Results
4.1. Configuration of Experiment

To make an extensive investigation into rice lodging detection and evaluate the ef-
fectiveness of the proposed GloAN, our experiments included three sections. Firstly, we
evaluated the performance of the GloAN when integrated into different prevailing semantic
segmentation models for rice lodging segmentation. After verifying the best performing
model, we proceeded to test the performance of the GloAN when integrated with different
network backbones. Further, we compared the performance of knowledge distillation and
GloAN in improving rice lodging segmentation accuracy. The effectiveness of the GloAN
combined with knowledge distillation was also explored.

With the transfer learning strategy described in Section 3.5, the implemented models
quickly converged within 40 epochs when trained on our rice lodging dataset. Since the
backbone is the key unit for a semantic segmentation model to extract semantic information,
we froze the backbone parameters in the first 20 training epochs and merely fine-tuned
the decoder parameters. In the latter 20 epochs, we unfroze the backbone and fine-tuned
the parameters of the entire network. Notice that all the parameters in our models were
initialized with [54] default PyTorch initialization methods except those in the pre-trained
backbones.

In our experiment, the initial learning rate started from 5e−4 and was multiplied by
0.92 every epoch. Considering computational resources, we set the batch size to 16 when
the backbone was frozen and set the batch size to 4 when we unfroze the backbone. For
knowledge distillation, we set the hyperparameter T to 4 and the hyperparameter α to
3, as shown in Equations (2) and (3). Note that we did not tune the hyperparameters
very hard in our experiments since we aimed to present impartial comparisons among the
different methods and produce unbiased results. The evaluation metrics in our experiments
included mean intersection over union (mIoU), network parameters, and Giga floating-
point of operations (GFLOPs).

4.2. GloAN Integrated into Semantic Segmentation Models

In this experiment, we evaluated the performance of various semantic segmentation
architectures, including SegNet [17], U-Net [49], and DeepLabV3+ [16] in detecting rice
lodging. We then integrated GloAN into each of these architectures and evaluated its
performance. The effectiveness of transfer learning was also evaluated. We report the
experimental results in Table 1. Note that all the segmentation architectures adopted the
same backbone, VGG-16 [46], for the sake of impartiality.

Table 1. Segmentation results on the rice lodging dataset.

Model Parameters GFLOPs mIoU

SegNet * [17] 25.63M 135.36 52.29%
U-Net * [49] 28.04M 196.89 56.92%

DeepLabV3+ * [16] 20.16M 105.98 30.41%

SegNet [17] 25.63M 135.36 83.91%
U-Net [49] 28.04M 196.89 86.61%

DeepLabV3+ [16] 20.16M 105.98 91.16%

SegNet [17] + GloAN 25.82M 136.18 87.71%
U-Net [49] + GloAN 28.23M 197.72 90.41%

DeepLabV3+ [16] + GloAN 20.35M 106.70 92.85%
* trained without transfer learning.



Plants 2023, 12, 1595 10 of 16

Firstly, the experimental results show that transfer learning is a fundamental skill
enhancing the performance of the segmentation models in detecting rice lodging. Secondly,
all the architectures integrated with GloAN outperformed the original models by a clear
margin, demonstrating that GloAN generalizes well in detecting rice lodging. Specifically,
the integration of GloAN led to a 3.80% increase in mIoU for U-Net and SegNet. Fur-
thermore, the GloAN was efficient in terms of computational complexity and model size,
enabling an improvement in performance with only a slight increase in computational
overhead. The experimental results highlight the great potential for the GloAN to be ap-
plied in real-world application of detecting rice lodging. Our following experiments were
conducted based on DeepLabV3+ as it achieved the best performance in our evaluation.

4.3. GloAN Integrated into Different Backbones

Based on DeepLabV3+, we report the performance of GloAN integrated into dif-
ferent well-established backbones, including VGG [46], Xception [47], ResNet [39], and
MobileNetV2 [48]. Table 2 summarizes the experimental results, which show that all the
models incorporating GloAN yield significant improvement in performance in detecting
rice lodging, demonstrating that GloAN is not only effective in different segmentation
models but also performs well with different backbones, indicating its potential for practical
applications.

Table 2. Rice lodging segmentation based on DeepLabV3+.

Backbone Parameters GFLOPs mIoU

ResNext-101 [38] 105.63M 111.36 92.66%

Xception [47] 37.64M 65.06 87.34%
VGG-16 [46] 20.16M 105.98 91.16%

ResNet-18 [39] 17.12M 31.77 86.07%
MobileNetV2 [48] 5.81M 26.39 83.92%

Xception [47] + GloAN 38.61M 66.67 90.90%
VGG-16 [46] + GloAN 20.35M 106.70 92.85%

ResNet-18 [39] + GloAN 17.50M 33.09 89.30%
MobileNetV2 [48] + GloAN 5.94M 27.00 85.66%

ResNet-18 * 17.12M 31.77 88.70%
* trained with knowledge distillation [41].

In Table 2, we first present the performance of a large-sized backbone, ResNext-101 [38],
in rice lodging detection. It shows that ResNext-101 is substantially larger in size compared
to the other employed backbones, and therefore achieved the best mIoU in segmenting
rice lodging (without GloAN). In practice, however, deploying such a large model would
be challenging, hence smaller backbones are preferred. By inserting GloAN into these
relatively smaller backbones, GloAN improved the accuracy of all the models with only
a few additional parameters. In particular, GloAN led to a 3.56% mIoU improvement
when integrated into the Xception backbone. Notably, smaller models even outperformed
ResNext-101 in detecting rice lodging when incorporatedv with GloAN. For example, with
five times fewer parameters, the VGG-16 integrated with GloAN outperformed ResNext-
101 backbone in detecting rice lodging. In addition, GloAN improved the performance
of ResNet-18 by 3.23%. With only half the computational complexity and model size
as Xception, ResNet-18 integrated with GloAN outperformed Xception in detecting rice
lodging. Making use of the GloAN, we can choose models of appropriate sizes to detect
rice lodging based on our computational resources. In particular, When using MobileNetV2
integrated with GloAN as the backbone, DeepLabV3+ only occupied 5.94 MB of the
memory, highly convenient for deployment even in mobile devices [48]. Figure 6 presents
the confusion matrix of DeepLabV3+ with VGG-16 incorporating GloAN as the backbone
in segmenting rice lodging.
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Figure 6. Predicting rice lodging using DeepLabV3+ with VGG-16 + GloAN as the backbone.

Furthermore, we tested the performance of knowledge distillation in improving the
performance of small-sized models. Table 2 reports the results of channel-wise knowledge
distillation when taking ResNext-101 as the teacher model and ResNet-18 as the student
model. The table shows that the model yielded more than 2% mIoU improvement in
rice lodging detection without imposing any increase in model size or computational
complexity. This demonstrates the great potential of knowledge distillation in practical
applications where computational resources are limited. Figure 7 presents the effectiveness
of knowledge distillation in improving the performance of small network. Note that the
backbones were frozen in the first 20 training epochs.

0 5 10 15 20 25 30 35 40
epochs

60

65

70

75

80

85

90

m
Io

U 
(%

)
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Figure 7. Performance of channel-wise knowledge distillation. Note that ResNet18 is the backbone
network of DeepLabV3+.
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4.4. GloAN Combined with Knowledge Distillation

Since both GloAN and knowledge distillation benefit model performance in rice
lodging detection. We explored the potential to enhance rice lodging detection accuracy by
combining GloAN with knowledge distillation. We conducted experiments to evaluate this
strategy and the results are reported in Table 3.

Table 3. Rice lodging segmentation based on DeepLabv3+. KD denotes knowledge distillation.

Backbone GloAN KD [41] Parameters mIoU

ResNet-18 [39] 17.12M 86.07%
ResNet-18 [39] X 17.12M 88.70%
ResNet-18 [39] X 17.50M 89.30%
ResNet-18 [39] X X 17.50M 90.50%

As shown the table, GloAN yielded a 3.23% mIoU improvement and outperformed
knowledge distillation in promoting model performance on rice lodging detection. More
importantly, the performance of GloAN was further improved by knowledge distillation,
leading to a 4.43% mIoU gain. This combination of techniques resulted in a more effi-
cient module for enhancing model performance in rice lodging detection. Based on the
ResNet-18 backbone, we visualize the rice lodging detection results in Figure 8, and com-
pare the performance of DeepLabV3+ with and without integrating GloAN. DeepLabV3+
with the ResNet-18 backbone produced detection results where rice lodging areas were
roughly localized. In contrast, DeepLabV3+ incorporating GloAN (trained with knowledge
distillation) localized the rice lodging areas much more precisely.

Figure 8. Samples of rice lodging detection.

5. Discussion

In this study, we aimed to achieve accurate and efficient rice lodging detection with
the help of UAV remote sensing and deep learning techniques. We collected rice lodging
data using a UAV equipped with a high-resolution camera. The captured images were
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stitched using Pix4Dmapper, and we generated the dataset by cropping the overall image
to a resolution of 224× 224. We divided the dataset into a training set with 9000 images, a
validation set with 1000 images, and a testing set with 1000 images.

We employed prevailing semantic segmentation models to identify rice lodging based
on transfer learning and knowledge distillation. We proposed a lightweight attention mod-
ule, named GloAN, to detect rice lodging. GloAN was integrated into different semantic
segmentation models and backbone networks, resulting in significant performance gains.

In our experiments, we evaluated the performance of GloAN in enhancing the ac-
curacy of different semantic segmentation models in detecting rice lodging. The results
showed that GloAN improved the performance of all the semantic segmentation models
by a significant margin with minimal additional computational costs. We also tested the
performance of GloAN by inserting it into different backbone networks and observed
how the rice lodging detection accuracy varied. GloAN showed excellent performance
and proved its generalization ability. In particular, GloAN improved the performance of
Xception by 3.56% with a negligible number of parameters. Table 3 shows that GloAN
outperformed knowledge distillation in promoting the accuracy of small models and
showed the potential of combining GloAN and knowledge distillation to produce even
better performance improvements.

Detecting crop lodging with UAV remote sensing and deep learning techniques has
been widely investigated in recent years. Previous studies [8,29] have used deep learning
models to extract rice lodging based on both digital and multispectral images and obtained
decent experimental results. These studies may provide us with the idea of using mul-
tispectral cameras to collect rice lodging datasets it is difficult to accurately detect rice
lodging with digital images. Zhang et al. [7] employed DeepLabV3+ to extract wheat
lodging at different wheat growth stages and found that DeepLabV3+ outperformed U-Net
in detecting wheat lodging, consistent with our findings in this study. Yang et al. [6] used
FCN and SegNet to detect rice lodging based on visible images and achieved a top F1-score
of 0.80. However, these previous studies did not report the computational cost of their
models or comprehensively explore the potential of deep learning techniques to improve
the results, a major shortcoming of these studies in our opinion. Our study attempted to
addresses this gap by proposing GloAN and report the computational costs of each imple-
mented model in our experiment, which we believe facilitates a more in-depth analysis of
the experimental results.

6. Conclusions

In this paper, we introduced a novel approach to improving the performance of small
models to detect rice lodging. We aimed to bring considerable performance gains at a
minimal computational cost. To achieve this, we proposed the GloAN that effectively refines
the intermediate feature maps by taking advantage of the global receptive field. Specifically,
the GloAN can fully utilize the information contained in the input features by inferring
the inter-spatial and inter-channel relationship simultaneously. Our extensive experiments
demonstrate that the proposed GloAN can bring significant performance improvements in
detecting rice lodging. In addition, we observed that our GloAN performed well combined
with knowledge distillation, which further promoted the performance of deep learning
architectures. Integrating GloAN yielded substantial performance improvements with a
negligible number of additional parameters, enabling small models to achieve satisfactory
performances in detecting rice lodging. In contrast, directly applying larger models or
complex backbones, traditionally performed to improve rice lodging detection accuracy,
becomes inefficient. We believe our study can provide insights into how to efficiently detect
rice lodging and serve as technical support for future research on rice lodging detection.
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