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Abstract: Planting suitability determines the distribution and yield of crops in a given region which
can be greatly affected by climate change. In recent years, many studies have shown that carbon
dioxide fertilization effects increase the productivity of temperate deciduous fruit trees under a
changing climate, but the potential risks to fruit tree planting caused by a reduction in suitable
planting areas are rarely reported. In this study, Maxent was first used to investigate the spatial
distribution of five Pyrus species in China, and the consistency between the actual production area
and the modeled climatically suitable area under the current climatic conditions were determined.
In addition, based on Coupled Model Intercomparison Project Phase 6, three climate models were
used to simulate the change in suitable area and the migration trend for different species under
different emission scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5). The results showed that
the suitable area for pear was highly consistent with the actual main production area under current
climate conditions. The potential planting areas of P. ussuriensis showed a downward trend under all
emission paths from 2020 to 2100; other species showed a trend of increasing first and then decreasing
or slowing down and this growth effect was the most obvious in 2020–2040. Except for P. pashia, other
species showed a migration trend toward a high latitude, and the trend was more prominent under
the high emission path. Our results emphasize the response difference between species to climate
change, and the method of consistency analysis between suitable planting area and actual production
regions cannot only evaluate the potential planting risk but also provide a reasonable idea for the
accuracy test of the modeled results. This work has certain guiding and reference significance for the
protection of pear germplasm resources and the prediction of yield.

Keywords: Pyrus; climate change; CMIP6; Maxent; planting distribution

1. Introduction

The climate plays a key role in defining the geographic range of plants, and climate
change is expected to severely influence plant distributions in the forthcoming decades [1,2].
As a perennial crop that is affected by the climate throughout the year, fruit trees are
considered to be vulnerable to climate change [3]. A temperature rise due to climate
change leads to an advance in the spring phenology of fruit trees in high-altitude areas of
Switzerland, which increases the risk of frost [4], and the amount of winter cold required
for temperate trees to overcome dormancy is expected to be greatly reduced in the future in
the most deciduous fruit-growing areas [5]. In this context, determining how species and
cultivars adapt to certain climates is of primary interest in research and decision-making,
to explore the potential for cultivation in new areas and to allow for the development of
adaptation strategies to climate change in current locations.

The pear (Pyrus communis L.) belongs to the rosaceous family, and is a typical fruit of
temperate regions. It is the fifth most widely produced fruit in the world, being produced
mainly in China, Europe and the United States [6]. Among them, the pear industry has
become the third largest fruit industry following the apple and citrus industries in China [7].
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As the largest producer and exporter of pears, China accounted for about 71%, 69% and 18%
of pear output, cultivation area and export volume of the world, respectively, in 2020 [8].

The growing range of plant species and cultivar adaptation to a given area is strongly
influenced by the climate, and, in particular, by temperature and moisture regimes. The
annual average surface temperature in China rose at a rate of 0.26 ◦C/10 years, which was
significantly higher than the global average (0.15 ◦C/10 years) during the same period
from 1951 to 2020 [9]. The average annual precipitation in China shows an increasing
trend, and the regional precipitation differences are prominent, whereby among which the
northwest region has had the most significant increase in precipitation [10]. Studies have
shown that with the further intensification of climate warming, the phenological period
of Pyrus bretschneideri in Shaanxi Province has tended to be an early phenological period
in spring and delayed phenological period in autumn [11,12], showing that with climate
warming, the climate-suitable area of Pyrus xerophila will be further reduced in the future.
Many studies have focused on the impact of climate change on pear phenology or on a
single climatic factor on its yield. However, it is still not clear whether Pyrus are suitable for
planting promotion outside their main production areas, and how the current pear-suitable
planting areas will change in the future.

A suitable species distribution model (SDM) is often required to assess the potential
impact of climate change on spatial distribution [13]. The SDMs refers to the method of
obtaining the relationship between the distribution sample information of the species and
the corresponding environmental information, and applying this relationship to a specific
area to realize the prediction of the geographic distribution of the target species [14]. It
has become an important tool for studying the interaction between the spatial pattern of
the geographical distribution of the species and the environment under global climate
change [15,16]. The most common SDMs were developed by using the genetic algorithm
for rule-set prediction (GARP) [17], CLIMEX [18], random forest (RF) [19] and maximum
entropy (Maxent) [20], etc. However, Maxent has higher prediction accuracy [21,22] and is
widely used in the prediction of potential climate-suitable areas of species, the prediction
of the invasion trend of alien species, biodiversity conservation and endangered species
conservation [23–25].

Although Maxent is a conventional SDM, overlaying the model output with yield
statistics and calculating their consistency provides a new way to study the potential impact
of climate change on the suitability distribution of fruit tree. In this study, we selected
five widely cultivated species Pyrus bretschneideri, Pyrus pyrifolia, Pyrus ussuriensis, Pyrus
sinkiangensis and Pyrus pashia to be models. The objectives of this study are to (1) determine
the dominant environmental variables that affect the differences in the potential planting
regions of different species; (2) identify the suitable distribution areas of representative
pear species under current climatic conditions using Maxent and evaluate its consistency
with the actual production area; (3) project the centroid shift trend of different species and
the area change in potential planting regions under different emission paths and (4) assess
potential planting risks from consistency changes in future climatic conditions.

2. Results
2.1. Model Verification

Figure 1 shows that the average AUC of the Maxent model is greater than 0.9 after
being run for ten times, and among which P. bretschneideri is 0.964, P. ussuriensis is 0.971,
P. sinkiangensis is 0.963, P. pashia is 0.972 and P. pyrifolia is 0.938. The results suggest that the
model’s prediction accuracy could be rated as showing excellent performance. This model
can therefore be used to identify the suitability habitats for Pyrus in China.

2.2. Percentage Contribution of Environmental Variables and Response Curve

The percentage contribution values of the three identified factors averaged over
10 replicate runs are shown in Table 1. The results reveal that the min. temperature for
the coldest month (MTCM) is a dominant variable that affects the growing suitability for
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all five Pyrus species. The other dominant factors are different for different species. For
example, temperature seasonality (TS), min. temperature for coldest month (MTCM)
and altitude (ALT) (Figure 2A1–A3) account for 77.3% of variation for P. ussuriensis.
For P. sinkiangensis, min. temperature for coldest month (MTCM), precipitation of dri-
est quarter (PDQ) and precipitation seasonality (PS) (Figure 2B1–B3) are the dominant
factors, while for P. bretschneideri, the three factors were min. temperature for coldest
month (MTCM), temperature seasonality (TS) and precipitation of wettest quarter (PWTQ)
(Figure 2C1–C3), accounting for 74.7% of variation. The three most dominant variables for
P. pashia included temperature seasonality (TS), altitude (AIL) and annual precipitation (AP)
(Figure 2D1–D3), accounting for 86.9% of variation. The three most dominant variables for
P. pyrifolia included annual precipitation (AP), min. temperature for coldest month (MTCM)
and temperature seasonality (TS) (Figure 2E1–E3), accounting for 88.1% of variation.

Figure 1. Maxent model accuracy verification diagram of five Pyrus species.

Table 1. Percentage contributions of environmental variables used in study.

Code Contribution%

P. bretschneideri P. sinkiangensis P. pashia P. pyrifolia P. ussuriensis

AMT 1.2 1 0.7 0.5 9.4
MDR 1.1 3.9 2.6 1.8 0.1

TS 25.5 9.5 56.6 13.5 37.5
MTCM 33.7 26 3.3 20.7 6.1

AP 0.3 0.2 13.1 53.9 0.1
PS 9.5 12.8 0.2 1 5.8

PWTQ 15.5 3.8 0.1 0.2 25.1
PDQ 0.3 15.1 4.2 3.6 0.5
ALT 11.1 12.3 17.2 2.5 14.7

S_SAND 0.5 1 0.2 0.7 0.6
S_OC 0.4 7.7 0.1 0.7 0

S_PH_H2O 1.1 6.6 1.5 1 0.1

The response curves of the three environmental variables with the highest contribution
rate among different species were extracted for analysis (Figure 2), which shows how the logical
prediction of the Maxent model changes with the changes in each environmental variable.

The results showed the following: the optimal TS value of P. ussuriensis is 1100–1300.
TS is the ratio of the standard deviation of the monthly average temperature to the average
value of the monthly average temperature (×100). It is a measure of the temperature change
in a year. The greater the seasonal variation coefficient, the greater the temperature change.
For P. ussuriensis, the precipitation of the wettest quarter in the highly suitable area is below
500 mm and the highly suitable areas are under 300 m above sea level. The suitable area for
the growth of P. sinkiangensis is the area where the MTCM is −15 ◦C to 8 ◦C; in addition,
the precipitation of P. sinkiangensis in the driest season is less than 20 mm, and its PS in
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different planting areas is quite different. When the MTCM value is −11 ◦C to −4 ◦C, P.
bretschneideri show higher growth suitability, with the best value ranging between 950 and
1120, and the PWTQ ranging between 300 and 500 mm. According to the response curve
of TS, P. pashia grows in areas with a very low seasonal temperature change. The annual
precipitation in its best suitable area is between 700 mm and 1300 mm, and the highest
value is 800 mm. Different from the altitude of other species, P. pashia is mainly distributed
in plateau areas between 1500 m and 3000 m above sea level with small seasonal changes
in temperature. When AP is in the range of 500 mm–1400 mm, the habitat suitability and
AP are highly positively correlated. Additionally, the MTCM for P. pyrifolia ranged from
−4 to 4 ◦C.

Figure 2. Response curves of the existence probability (habitat suitability) of five species of pear to
major environmental variables with simulated distribution under current climatic conditions. (A1–A3)
P. ussuriensis, (B1–B3) P. sinkiangensis, (C1–C3) P. bretschneideri, (D1–D3) P. pashia, (E1–E3) P. pyrifolia. The
Maxent logistic output (also known as habitat suitability) was represented by the vertical axis, while the
environmental variables were represented by the horizontal axis. With a logical output value greater
than 0.5, the probability of species presence under the given condition was considered to be suitable for
the species. Note: the red curves show the average over 10 replicate runs; blue bands show the standard
deviation (SD) calculated over 10 replicates.
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2.3. Suitable Planting Regions of Pyrus under Current Conditions

The suitable planting range for five species of Pyrus under the present climate (1990–2020)
is presented (Figure 3) based on observed occurrences and current environmental variables
forecasted by Maxent. As shown in Figure 3, the highly and extremely suitable areas of
P. ussuriensis are mainly distributed in northern Hebei and southwestern Liaoning; the mod-
erately suitable and low-suitability areas are mainly distributed in Jilin, Heilongjiang, Inner
Mongolia and other places; the highly suitable areas of P. bretschneideri are mainly distributed
in central and southern Hebei, central and southern Shanxi, Shandong, Anhui and northern
Jiangsu; the moderately suitable and low-suitability areas are widely distributed in the eastern
provinces; the highly suitable areas of P. sinkiangensis are mainly distributed in the Kashgar,
Korla, Aksu and Turpan basins and some areas of Gansu, Ningxia and Shaanxi; the moderately
suitable and low-suitability areas are mainly distributed in Gansu and Shaanxi; the highly
suitable areas of P. pashia are mainly distributed in the middle of Yunnan Province and the valley
of southern Tibet; the moderately suitable and low-suitability areas are widely distributed in
Yunnan, Guizhou and some areas of Sichuan; the highly suitable areas of P. pyrifolia are mainly
distributed in the northeast and middle of Sichuan and parts of Jiangxi and Zhejiang and the
moderately suitable areas are widely distributed in the Yangtze River Basin.

Figure 3. Suitable planting regions for different species of Pyrus under current climate conditions
(1990–2020).

2.4. Consistency between the Potential Planting Regions and the Actual Main Production Counties
under Current Climate Conditions

As shown in Figure 4, the classification map of suitable areas and the vector map of
the main pear-producing areas were superimposed and analyzed; then, the consistency
between the main pear-producing counties and the potentially suitable areas was calcu-
lated. The results showed that there were 472 and 358 counties with pear production
located in the highly suitable areas and the extremely suitable areas, respectively. The high
consistency between the main producing areas and the potentially suitable areas accounts
for 80.82% under current climatic conditions, which further confirms the reliability of the
model results.

2.5. Future Changes in Potential Planting Areas for Pyrus of Different Species

We took the average of the prediction results of the three GCM models to create
a climate-suitable area distribution map, which was used to reduce the uncertainty of
choosing a single GCM simulation result [26,27]. Figure 5 shows the changes in the suitable
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climate zone for P. bretschneideri under different emission paths (SSP1-2.6, SSP2-4.5, SSP3-7.0
and SSP5-8.5) in the future. (The distribution maps of the other four species are shown in
Figures S2–S5.)

Figure 4. Consistency map of suitable regions and main production counties under current climatic
conditions. Note: the bar chart (a) shows the number of main pear-producing counties located in
different areas of habitat suitability, and the pie chart (b) shows the proportion of consistency.

In order to generate the presence/absence map of Pyrus, the continuous probabil-
ity values generated by Maxent were converted into a threshold-based binary prediction
map [28]. We chose 0.5 as the threshold. The part of the prediction result above the
threshold indicates higher habitat suitability (hereinafter referred to as suitable planting
regions); the part below the threshold indicates low habitat suitability (hereinafter referred
to as unsuitable planting regions). Under the current climate conditions, the area of the
suitable planting regions in descending order is P. pyrifolia (48 × 105 km2), P. bretschneideri
(35 × 105 km2), P. sinkiangensis (23 × 105 km2), P. pashia (20 × 105 km2) and P. ussuriensis
(16 × 105 km2). P. ussuriensis’s suitable planting area will show different degrees of reduc-
tion under different emission paths in the future. The suitable planting areas for the other
four species show different degrees of increase from 2020 to 2040 and they show a trend of
slowing and declining growth from 2040 to 2100. Among them, P. sinkiangensis have the
largest increase (Figure 6).

We used geographic distribution measurement tools to fit the distribution range of the
species to a single centroid (center) point and create a vector file to predict the migration
trend of a species by tracking the changes in the centroid in different periods [29]. We
drew the centroid shift map of potentially suitable areas for Pyrus of five species under
different emission paths (SSP1.2-6, SSP2.4-5, SSP3.7-0 and SSP5.8-5) in the future (Figure 7),



Plants 2023, 12, 1559 7 of 16

which was used to assess the potential impact of different species migration trends on the
consistency in the suitable climate regions and the actual planting areas.

Figure 5. Distribution map of climatically suitable areas of P. bretschneideri under future climatic
conditions in China.

Figure 6. Change map of potential planting areas (habitat suitability > 0.5) for different species of
(A) P.bretschneld, (B) P. pyrifolia, (C) P.ussuriensis, (D) P.pashia, (E) P.sinkiangensis. (i.e., SSP1-2.6,
SSP2-4.5, SSP3-7.0 and SSP5-8.5 have been modeled from 2020 to 2100, respectively).

The distribution centroid for the five species is as follows: P. bretschneideri (115.44,
36.42), P. ussuriensis (122.11, 40.98), P. sinkiangensis (97.97, 37.13), P. pashia (100.40, 25.68)
and P. pyrifolia (110.36, 30.02). In the future, there will be no obvious migration trend in the
suitable regions of P. pashia, showing high stability (Figure 7C), and the suitable regions of
other species of Pyrus will show obvious different degrees of northward migration trends
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(Figure 7A,B,D,E). Therefore, with different degrees of migration from climate-suitable
areas, the consistency between the main pear-producing regions and suitable areas of
P. ussuriensis has a higher risk reduction. Additionally, by comparing the area change and
the centroid shift trends of the suitable regions under different emission paths, we find
that the area change and centroid shift trends of each species are more obvious under the
high emission path. Therefore, the consistency in the suitable regions and the actual main
pear-producing areas under the high-emission path faces a higher risk.

Figure 7. The centroid shift map of the climate-suitable areas for different species of (A) P.sinkiangensis,
(B) P.bretschneideri, (C) P.pashia, (D) P.ussuriensis and (E) P. pyrifolia.

3. Discussion
3.1. Differences in the Impact of Environmental Variables on Different Species of Pyrus

Through the analysis of environmental variables with high contribution rates on the
suitability distribution of different pears, we found that the main temperature factors
affecting the spatial suitability of Pyrus were MTCM and TS, and the main precipitation
factors were AP, PWTQ and PDQ. These identified factors are consistent with previous
studies of [12,30], whereby the authors reported that seasonal variation in temperature
and annual precipitation were the main environmental variables affecting the spatial
distribution of some species of Pyrus. Different species show great differences in the
lowest temperature of the coldest month [31], and other studies have shown that the
pear most resistant to low temperatures is P. ussuriensis, which can withstand the extreme
low temperature of −45 ◦C. P. sinkiangensis have strong resistance to cold and drought,
followed by P. bretschneideri, P. pashia and P. pyrifolia which have low cold resistance. A low
temperature was one of the main factors affecting the distribution of all pear species [32].
Due to the difference in environments and the adaptation of pears, other factors that affect
the distribution of suitable planting areas are different for different species. The average
altitude is the key environmental factor for P. pashia, P. sinkiangensis and P. ussuriensis, which
are widely distributed in mountains below 3500 m [33]. Of the 12 variables used for the
model establishment, soil variables all had lower contribution rates than others, and related
studies have also shown that as the spatial range of the environmental factor grid used
in the analysis increases, the importance of soil declines [13]. Identifying the dominant
environmental variables that affect distribution of representative species provides insight
into understanding the effects of changes in environments on the suitability of species in a
certain area.
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3.2. Changes in the Distribution Range of Pyrus and Climatic Risks of Planting

Our modeled results showed that unlike the other four suitable species which ob-
viously migrate to high latitudes (Figure 7), P. pashia will not show significant species
migration under any emission paths in the future, showing a high degree of stability. Rele-
vant studies have shown that species have a tendency to migrate to high latitudes under
the changing climate [34], and a high altitude can largely limit the migration of species [35].
Considering that P. pashia is mainly distributed in the Yunnan–Guizhou Plateau and the
average altitude of growth is significantly higher than that of other species [33], altitude
is likely to be the main reason that its migration trend is significantly different from the
other species. Therefore, our results further confirm that high altitude can restrict species
migration to a certain extent. In view of the expansion of the distribution area and the
stable centroid of the climatic suitability of sand pears, the pears in this area will have high
planting potential in the future.

The climatically suitable areas of P. ussuriensis have been reduced under different
emission paths, and the centroids of distribution all show a large shift to the high latitudes.
Research has shown that fruit trees in temperate and subtropical regions have higher
requirements for the length of low temperature to end the dormancy period of branches and
buds, and future increases in climate temperature may lead to insufficient low temperature
time for fruit trees in some areas, thereby affecting the survival suitability of fruit trees [36].
Northeast China where P. ussuriensis is grown is one of the most significant regions in
China in responding to climate warming, and continued climate warming may not be able
to meet the low temperature accumulation of P. ussuriensis growth in the future, resulting
in the shrinking of the climatically suitable areas and a northward shift. Zhou [37] showed
that although national pear production has increased due to an improvement in agronomic
management, the planting area of pears first increased and then decreased in Northeast
China over the past 40 years, and the proportion of pear production has declined more,
which climate change has contributed to. Future climate change may further reduce the
suitable planting area of pears in this region. In order to stabilize pear yields, new species
need to be introduced, such as P. sinkiangensis, which also have good climate suitability
in this region. In contrast, the suitable planting areas for P. bretschneideri, P. pyrifolia and
P. siniangensis will be further expanded and their distribution centroids will migrate to
higher latitudes under different emission pathways in the future. Zhou [37] reported that
the national proportion of pear yield in Northwest China and the Yangtze River Basin has
been increasing in the past 20 years. Especially in Xinjiang, with the expansion of planting
areas, the national proportion of pear yield has expanded from 2 to 9% [38]. Therefore, in
view of the differences in the response of the five pears to climate change, we emphasize the
development of different planting and management policies to deal with potential climatic
risks of planting.

3.3. The Guiding Role of Species Distribution Models in Planting Management of Pyrus

Based on the modeled results, the suitable planting range of different pears was deter-
mined and divided into five grades. The results (Figure 3) show that the potential suitable
planting regions of Pyrus include some areas with relatively little planting promotion ef-
forts, such as parts of Tibet, Qinghai and Inner Mongolia province. These areas can improve
the yield by introducing corresponding planting varieties. In addition, our findings suggest
that there is a certain overlap between the climatically suitable zones for different species,
and new planted varieties can first be promoted in these areas. For example, not only
P. sinkiangensis but also P. bretschneideri have high climatic suitability in the northwest re-
gion. In addition to the Yangtze River Basin, P. pyrifolia can also be considered for planting
in southern Tibet such as in Linzhi and Cangdu. Therefore, the delimitation of suitable
regions has important practical significance for the utilization of the advantages of location
resources during the planting process and the increase in pear farmers’ ability to adapt to
climate change.
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Furthermore, fruit trees are falling into the dilemma of biodiversity reduction under
the long-term impact of global warming. Some varieties that cannot better adapt to changes
are facing a serious threat to genetic resources [39]. Studies have shown that mountainous
areas retain higher species richness and biodiversity in the process of long-term climate
change [40]. Therefore, while introducing other planting varieties and expanding the
planting area, methods such as establishing a germplasm resource bank or ex situ protection
are adopted to minimize the adverse effects of human variables and climate change on
local pear varieties in high-altitude areas such as Yunnan.

3.4. Uncertainty and Limitation

The first limitation is the uncertainty of the model itself, including the selection of
sample distribution points and input variables during modeling. Because land use changes
are greatly disturbed by human variables, the analysis of suitability distribution areas and
distribution centroid shift trends is based on environmental variables and land use was not
considered. Based on the interference of human variables, it is necessary to combine the
current status and change trends of land use in different regions to make more reasonable
use of our research results.

Many studies have reported the importance of considering the effects of pest and
diseases on plant production under climate change [41,42], and the probability of occurrence
of pests and diseases in China caused by climate change in the future would be greater and
would affect the yield and ecological suitability of fruit trees [43,44]. However, the current
model cannot simulate the impact of increased pests and diseases caused by climate change
on the habit suitability of fruit trees. This is also a key direction for studying the impact of
climate change on fruit trees in the future.

Nevertheless, our results provide insight into what the spatial distribution of a suitable
pear area would look like in China under a changing climate.

4. Materials and Methods
4.1. Data Description
4.1.1. Species Distribution Data and Preprocessing

China includes a cold temperate zone, a middle temperate zone, a warm temperate
zone, a plateau climate zone, a subtropical zone and a tropical zone [45]. The Pyrus species
are mainly distributed in the temperate zone and subtropical zone [46,47]. The main pear-
producing areas can be divided into the warm-temperate western P. sinkiangensis planting
areas (Xinjiang, Gansu, Ningxia, Qinghai and Shaanxi province); the warm-temperate
eastern P. bretschneideri planting areas (Shanxi, Hebei, Shandong, Henan, Anhui and Jiangsu
province); the P. ussuriensis planting area in the mid-temperate zone (North Hebei, Beijing,
Tianjin, Jilin and Liaoning province); the P. pyrifolia planting areas in the subtropical Yangtze
River Basin (Sichuan, Chongqing, Hubei, Hunan, Jiangxi and Zhejiang province) and the
P. pashia planting areas in the subtropical Yunnan–Guizhou Plateau (Yunnan, Guizhou and
Guangxi province).

We conducted a preliminary investigation of species distribution data through online
databases, including the Global Biodiversity Information Platform (www.gbif.org, accessed
on 3 November 2022), the Chinese National Specimen Resource Platform (www.nsii.org.cn,
28 March 2023), and the China Digital Plant Herbarium (www.cvh.ac.cn, accessed on
3 November 2022) and relative book [48], and 1100 pear distribution points were firstly
obtained. Google Earth 7.0 was utilized to find the approximate latitude and longi-
tude, according to the described geographical locations. Then, the R “ENMTooLS” pack-
age was used to delete repeated distribution points, to retain one distribution point
in one grid [49–51] in order to reduce sampling deviation and repetition, and to im-
prove the prediction performance of the model, which could generate a spatial grid cor-
responding to the resolution of the environmental layer (2.5′ about 22 km2). Finally,
510 occurrences were retained for model simulation (Figure 8), including 117 points

www.gbif.org
www.nsii.org.cn
www.cvh.ac.cn
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for P. bretschneideri, 55 points for P. ussuriensis, 128 points for P. sinkiangensis, 98 points
for P. pashia and 112 points for P. pyrifolia.

Figure 8. Sample distribution points of five species of Pyrus in China. Note: I–VI represents
six climatic zones. Five different colored dots represent five species of Pyrus.

4.1.2. Geographical and Environmental Data

The grid-scale monthly maximum temperature, monthly minimum temperature and
monthly precipitation (spatial resolution is 0.0083333◦) under current climate conditions
(1990–2020) were from Loess Plateau SubCenter, National Earth System Science Data Center,
National Science & Technology Infrastructure of China (http://loess.geodata.cn, accessed
on 3 November 2022). This dataset was generated using the delta spatial downscaling
method based on the two datasets released by the Climatic Research Unit (CRU) (http:
//www.cru.uea.ac.uk/, accessed on 12 November 2022) and WorldClim (http://www.
worldclim.org, accessed on 12 November 2022) and had been verified by 496 independent
meteorological observation points; significant results were achieved [52]. Then, this dataset
was processed using the R “dismo” package [53] and “terra” package [54], resulting in
19 climate factors for modeling.

Future bioclimatic variables (2020–2100) were from three General Circulation Mod-
els (GCMs) (BCC-CSM2-MR, CanESM5 and CNRM-ESM2-1) in the CMIP6, which have
a higher spatial resolution and a more complete description of physical, chemical and
biological processes [55] compared to CMIP5. For each GCM, we selected four shared
socio-economic pathways (SSPs) (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) representing
different emission scenarios under future climate conditions [56]. SSPs were combined with
the representative concentration pathways (RCPs) [57], providing different pathways of
future socioeconomic development and containing possible trends in agriculture and land
use. The SSP1-2.6 scenario represented the low-end range of future scenarios measured
by its radiative forcing pathway and is predicted to be below 2 ◦C by 2100. The SSP2-4.5
scenario was considered as a medium stabilization scenario, while the SSP3-7.0 scenario
corresponded to the medium- to high-end of the range of future forcing pathways. SSP5-8.5
was the only scenario that stabilized the radiative forcing at 8.5 W/m2 in 2100, which
was considered to be a high radiative forcing scenario [58]. Finally, the mean value of
bioclimatic variables every 20 years from 2020–2100 (2020–2040, 2040–2060, 2060–2080 and
2080–2100) were calculated.

http://loess.geodata.cn
http://www.cru.uea.ac.uk/
http://www.cru.uea.ac.uk/
http://www.worldclim.org
http://www.worldclim.org
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To consider the effects of soil and altitude on planting suitability and elevation,
three soil variables (Subsoil Sand Fraction (S_SAND), Subsoil Organic Carbon (S_OC),
Subsoil PH (H2O) (S_PH_H2O)) were added besides bioclimatic variables. The soil
data were obtained through the Harmonized World Soil Database version 1.2 (HWSD,
http://www.Fao.org, accessed on 21 November 2022) which was constructed by the Food
and Agriculture Organization of the United Nations (FAO) and International Institute for
Applied Systems Analysis (IIASA) [59]. Elevation data were obtained from the United
States Geological Survey (USGS, http://www.usgs.gov, accessed on 21 November 2022).

4.2. Model Construction
4.2.1. Model Introduction and Parameter Setting

The model of Maxent (version 3.4.4) [20] was used to build relationships between
identified environmental variables (Table 2) and the species distribution data of the selected
species to identify suitable areas for each species under current and future
climates [24,60]. Compared with other species distribution models, the Maxent model
only requires environmental variables and a small amount of point data to obtain better
model simulation results for species distribution [21]. To calculate the potential geographic
distribution probability of species, we converted the collected geographic coordinate points
of the species distribution into the “.csv” format, and unified the layer resolutions of all of
the environmental variables used in modeling and the scope of the study area. The number
of random background points was set as 10,000. We used 75% of the distribution data for
model training and 25% to assess the model’s predictive accuracy [61]. In order to reduce
the sampling error caused by randomly splitting the species distribution data into test and
training subsets, simulations were repeated 10 times for cross-validation to generate an
average result. Jackknife analyses were performed to evaluate the relative importance of
each environmental factor for the Pyrus distribution modeled. The environmental variables
that produced a higher contribution rate and training gain were considered to be more
important bioclimatic variables; then, we chose to map the response curves of the dominant
environmental variables, and other parameters used default settings.

The logical output result selected by Maxent generated a continuous map with an
estimated probability of existence between 0 and 1. The modeled results were divided
into five levels by the reclassification tool in ArcGIS 10.2, of which 0–0.05 was considered
to be unsuitable, 0.05–0.3 was considered to be lowly unsuitable, 0.3–0.5 was considered
to be moderately suitable, 0.5–0.7 was considered to be highly suitable and 0.7–1.0 was
considered to be extremely suitable [25,28,62].

4.2.2. Model Evaluation

As identified in other studies, the strong collinearity between any two environmental
variables usually results in too high a correlation between them, which affects the simulation
results [63,64]. Beginning with 19 bioclimatic variables, the crude annual temperature and
precipitation data were firstly deleted. A Pearson correlation analysis of the remaining
17 environmental variables identified the undesirable effects of collinearity on the modeling
process and interpretation by SDMToolbox [65] (Figure S1). For each set of significantly
cross-correlated variables (Pearson correlation coefficient |r| > 0.8), only one variable was
kept for further analysis [66,67]. Ultimately, 12 variables in bold were kept as evaluator
variables (Table 2).

The model performance was assessed based on values of the area under the receiver
operator curve (AUC) of the receiver operating characteristic (ROC) curve, because it
depends on true positive and true negative rates and is not related to the threshold [68];
it is often used in ENMs (environmental niche models) and SDMs (species distribution
models) [69,70]. Model performance was classified as failing (0.5–0.6), poor (0.6–0.7),
fair (0.7–0.8), good (0.8–0.9) or excellent (0.9–1) [71]. AUC values closer to 1 indicated
better-performing models.

http://www.Fao.org
http://www.usgs.gov
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Table 2. Environmental variables used in the potential distribution modeling of Pyrus.

Code Environment Variables Units

AMT Annual mean temperature °C
MDR Mean diurnal range ◦C
ISO Isothermality ×100
TS Temperature seasonality ×100

MTWM Max. temperature for warmest month ◦C
MTCM Min. temperature for coldest month ◦C

TAR Temperature annual range °C
MTWTQ Mean temperature of wettest quarter ◦C
MTDQ Mean temperature of driest quarter ◦C

MTWRQ Mean temperature of warmest quarter ◦C
MTCQ Mean temperature of coldest quarter ◦C

AP Annual precipitation mm
PWM Precipitation of wettest month mm
PDM Precipitation of driest month mm

PS Precipitation seasonality ×100
PWTQ Precipitation of wettest quarter mm
PDQ Precipitation of driest quarter mm

PWRQ Precipitation of warmest quarter mm
PCQ Precipitation of coldest quarter mm
Alt Altitude m

S_SAND Subsoil sand fraction % wt
S_OC Subsoil organic carbon % weight

S_PH_H2O Subsoil PH (H2O) −log(H+)

4.3. Consistency Evaluation of Potential Planting Regions and Actual Main Production Regions

We obtained the current data of the main pear-producing counties (annual
output < 1000 tons) and their yield data from 2009 to 2018 using the statistical yearbook
of forest products [72]. Excluding the duplication and lack of data in different years, we
counted a total of 1027 counties and generated a vector map of the main pear-producing
areas in ArcGIS10.2. The different types of suitable distribution maps were superimposed
to generate a total distribution map and divided into five levels. Since the suitable planting
areas of different species overlap, the output pixel value of the overlapping area was set to
the maximum value of the overlapped pixels (different pixel values represent different areas
of habitat suitability, ranging from 0 to 1). We superimposed the obtained grading map of
the suitable distribution map with the statistical vector map of the main pear-producing
counties. If the habitat suitability of the county was greater than 0.5, it was considered that
the consistency between the potential planting regions and the actual main production
regions of the county was high; otherwise, it was considered that the consistency was low.

5. Conclusions

Our research shows that the main pear-producing counties and the potential planting
regions simulated by the model have high consistency under the current climate condi-
tions. Based on different emission paths in the future, the area of suitable climate zones
of P. ussuriensis will decline, while the suitable areas for the other four species will increase
from 2020 to 2040, and then decrease until late in the century. As a result of the change in a
suitable area of planting Pyrus, adaptive management such as cultivating new species and
adjusting the planting area are needed to utilize the beneficial effects of climate change or
to reduce the adverse effects on Pyrus. In addition, the Pyrus located in low-altitude and
middle-temperate regions will show a more obvious trend of migrating to high-latitude
regions in the future, and this changing trend will be more obvious under high-emission
scenarios. Therefore, although the carbon dioxide fertilization effect can have positive
effects on fruit tree, the potential threat to yield caused by the accelerated reduction in
consistency between the suitable planting area and the actual production area of fruit tree
under future high emission pathways should be considered. The method can also analyze
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the impact of climate change on the suitable distribution area and potential yield of other
fruit trees combined with other species distribution models.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants12071559/s1: Figure S1: Correlation analysis table of
17 environmental variables. Figure S2: Distribution map of climatically suitable areas of
P. pashia under future climatic conditions. Figure S3: Distribution map of climatically suitable areas of
P. ussuriensis under future climatic conditions. Figure S4: Distribution map of climatically suitable
areas of P. pyrifolia under future climatic conditions. Figure S5: Distribution map of climatically
suitable areas of P. sinkiangensis under future climatic conditions.
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