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Abstract: Sorghum bicolor (L.) is one of the oldest crops cultivated by human beings which has been
used in food and wine making. To understand the genetic diversity of sorghum breeding resources
and further guide molecular-marker-assisted breeding, six yield-related traits were analyzed for
214 sorghum germplasm from all over the world, and 2,811,016 single-nucleotide polymorphisms
(SNPs) markers were produced by resequencing these germplasms. After controlling Q and K,
QTLs were found to be related to the traits using three algorisms. Interestingly, an important QTL
was found which may affect multiple traits in this study. It was the most likely candidate gene
for the gene SORBI_3008G116500, which was a homolog of Arabidopsis thaliana gene-VIP5 found
by analyzing the annotation of the gene in the LD block. The haplotype analysis showed that the
SORBI_3008G116500hap3 was the elite haplotype, and it only existed in Chinese germplasms. The
traits were proven to be more associated with the SNPs of the SORBI_3008G116500 promoter through
gene association studies. Overall, the QTLs and the genes identified in this study would benefit
molecular-assisted yield breeding in sorghum.

Keywords: sorghum; six yield-related traits; GWAS; VIP5; breeding

1. Introduction

Sorghum bicolor is one of the oldest crops cultivated by human beings, and it is also
one of the only crops affected by artificial selection evolution [1]. Meanwhile, the wild
sorghum that is commonly distributed in Africa is a promising resource for sorghum
improvement [2]. Sorghum is widely distributed all over the world and has various uses,
such as in food, wine making, and so on [3]. Moreover, sweet sorghum could be used for
bioenergy with genetically diverse characteristics and variation exits [4]. Sweet sorghum
was considered in the model system for bioenergy crops due to its favorable low-input
cost traits [5]. Due to the different climate, soil setting, and cultivation system in the
cultivation area, various types in sorghum have formed different agronomic, physiological,
and biochemical characteristics through natural and artificial selection in the long-term
cultivation process [6]. The variations of traits laid a foundation for the exploration of
related genes in sorghum.

With the increase in the world population, the demand for grain production is also
higher [7]. Understanding the genetic variations in traits related to yield was a necessary
basis for breeding [8]. In the process of breeding, yield has always been the concern
of breeders, so analyzing the traits relating to yield could provide effective guidance to
breeders [9].
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To date, the traits related to yield have been well studied in plants. In rice, plant height
and the number of internodes are the key factors determining not only plant biomass,
but also yield. For instance, the GRF (GROWTH-REGULATED FACTOR)4 gene increased
plant height and yield [10]; the panicle type also directly affects yield. The DEP (DENSE
AND ERECT PANICLE)1 gene of rice, which encodes a phosphatidylethanolamine-binding
protein-like domain protein, could directly improve yield by affecting the panicle type [11].
Meanwhile, the heading stage can also affect the yield in rice. The DTH (Days to heading)8
gene was isolated through the heading stage. At the same time, the DTH8 superior
haplotype could improve the yield of rice [12]. Moreover, the 100-grain weight is one of
the most direct factors in yield. Many genes in plants such as TGW (THOUSAND-GRAIN
WEIGHT)6 could increase the yield [13]. Previous studied showed that the traits related to
yield could be identified, and that the traits would be better for explaining the mechanism of
yield. In sorghum, some genes which influenced the yield were cloned. The BY(BIOMASS
YIELD)1 gene encodes a 3-deoxyd-arabino-heptulosonate-7-phosphate synthase (DAHPS),
which was cloned by map-based cloning and could regulate biomass and grain yield
through the shikimate pathway [14]. Allelic variations in the NAC transcription factor
were found to affect grain yield, sugar yield, and biomass composition in near-isogenic
lines (NILs) [15]. The previous study showed that other traits, such as the leaf length, leaf
breadth, number of leaves per plant, panicle weight, and hundred-seed weight may have
also been given importance along with yield according to correlation analysis results [16].
Therefore, yield was a complex trait, and understanding it required inheritance variations
in multiple components to be analyzed together.

Genome-wide association study (GWAS) aims to explore excellent allelic variation
using natural variation populations and provide superior natural variations in materials
for breeders [17–20]. Compared to bi-parental quantitative trait loci (QTL) analysis, GWAS
could detect multiple alleles, save time, and offer some other advantages [8], such as the
deconstruction of offspring populations. One natural variation population could be used to
investigate multiple traits, and it effectively solved the problem that multiple components
of yield have different genetic variations [21–23].

Meanwhile, GWASs have been widely used in sorghum. In order to improve en-
vironmental adaptation, 1943 georeferenced sorghum landraces were used for the SNP
detection of experimental drought stress and aluminum toxicity [24]. Recently, researchers
observed major heat tolerance traits and preformed GWASs for traits responsive to heat
stress using 374 accessions [25]. Association mapping was used for germinability and
seedling vigor under low-temperature conditions in sorghum. Besides the traits related to
abiotic stress, the traits with seed were studied using association mapping. Li et al. used the
genotyping by sequencing (GBS) method to genotype 238 mini-core collection sorghum and
7 breeding varieties, and they collected the data of forage quality-related traits. As a result,
42 SNPs were found which were associated with traits and 14 genes were predicted [26].
The grain polyphenol concentrations were studied using the global germplasm, and it was
found that the flavonoid pathway loci may be useful to guide the future enhancement of
cereal polyphenols [27]. To identify the natural variations in sorghum grain quality traits,
196 diverse sorghum inbred lines were used for GWASs, and 1,414,494 genetic loci were
found [28]. Three traits (grain yield per primary panicle, grain number per primary panicle,
and 1000-grain weight) related to yield were collected from 390 diverse accessions and
were used for GWASs. As a result, the gene, namely the ethylene receptor, was predicted
as the candidate gene [29]. The other trait, the nodal root angle, was analyzed using GWAS
in sorghum and 58.2% of the phenotypic variance was explained [30]. In sweet sorghum,
important traits, including brix and height, were conducted for association mapping [31].
The previous study above showed that GWAS could be useful to analyze the population
and detect the significant SNPs in sorghum.

Although there are some studies on the traits of yield, the genetic variation in other
specific yield traits, such as plant height and the relationship between genetic variations
with various traits, remains largely unknown. We herein collected a population consisting



Plants 2023, 12, 1557 3 of 13

of 214 landraces from diverse countries to observe six traits related to yield. Via the
resequencing method, 2,811,016 markers were called. Using the emmax, fast-lmm, and
lmm algorisms with controlling Q and K, we identified numbers of SNP markers associated
with the traits. Finally, the SORBI_3008G116500 gene was found, which may control four
traits through the annotation of genes in the LD block, and the elite haplotype was analyzed.

2. Result
2.1. Population Collection and Genotyping

The landraces from different regions could provide more genetic variation; therefore,
214 landraces from China (86), India (71), America (36), Japan (14), Russia (6), and Mexico (1)
were collected (Figure 1a, Table S1). The landraces laid the foundation of genetic variation
for the GWAS. After that, the population was genotyped using the resequencing method. As
a result, we obtained about 2198 G raw base data, and the Q30 percentage was 92.5%. The
raw reads were 14.6 Gb. The average sequencing depth was 13.4, and the average coverage
ratio of 10 times of population was 71.2%. After analysis, we obtained 6,738,606 SNPs and
1,336,590 indels. The transition–transversion rate was about 1.9 in all varieties, and the
average heterozygosity was 21.4%. Overall, the high-quality molecular markers derived
from the germplasm were obtained based on resequencing and analyzing data, which then
laid the foundation for subsequent analysis.
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Figure 1. The analysis of population. (a) The distribution of all 214 landraces. (b) The density of
SNPs in all chromosomes. (c) The neighbor−joining tree of all landraces. The colored subsections
within each vertical bar indicate membership coefficient (Q) of the accession to different clusters.
(d) The populations were pre−determined with K = 9 based on ADMIXTURE analysis. The bottom
was the country of origin for each landrace. Different color indicates different membership coefficient
(Q) in (a,c,d).

2.2. SNP Markers Selection and Population Structure Analysis

Firstly, 2,811,016 SNP markers were left after filtering with the missing rate (<0.8) and
the minor allele frequency (>0.05). Through separating the markers into each chromosome,
we found that the average number of SNP markers was about 281,102. The Chr.NC_012871
had the most SNPs (327,237), while chr.NC_012876 had the least SNPs (224,286) (Figure 1b,
Table S2). Based on the SNP markers, including the population structure, phylogenetic tree,
PCA, and kinship analysis, admixture software was used, and the cross-validation (CV)
error was calculated (Figure 1d, Figure S1). The results show that the CV error was the
smallest when K = 9. The population could therefore be divided into nine subpopulations
(Figure 1d). Combined with the origin of the landraces, the landrace from China showed the
highest proportion in Q1, Q3, and Q5, while the landraces from India were mainly found
in Q2 and Q8 (Figure 1d). Moreover, the neighbor-joining clustering of landraces based on
genetic distance was analyzed, and the result was almost consistent with that of population
structure (Figure 1c). Then, most varieties had distant phylogenetic relationships according
to the kinship analysis (Figure S2). Lastly, PCA analysis showed almost no varieties with
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the same background (Figure S3, Table S3). The above results show that the population we
selected was suitable for GWASs and could be used to identify the number of variants in
some loci.

2.3. Phenotype Analysis

In order to elucidate the genetic base of traits related to the yield of sorghums, traits
including the heading date, plant height, spike type (Figure S4), spike length, number
of internodes, and 100-grain weight were observed (Figure 2a–f). As a result, extensive
phenotypic variations were observed in all traits. The variation coefficients in the six
traits were 0.21, 0.40, 0.53, 0.28, 0.30, and 0.22. The phenotype values of plant height were
0.69 to 3.96. The spike type ranged from 1 to 5, while the spike length varied from 13.67 to
69.17. Lastly, the number of sections ranged from 2 to 22 (Table S4, Table 1). After calculating
the correlation of each trait, the number of internodes had the most relevance with the
heading date, while the smallest relevance was found with the spike length (Figure 2g). The
results show that the total observed six traits were abundant, but the intrinsic mechanism
relating to yield formation may be different.
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Figure 2. The analysis of phenotype. (a–f) The frequency distribution histogram of six traits. (g) The
relevance of each trait.

Table 1. The minimum (Min), maximum (Max), mean values (Mean), and coefficient of variation
(CV) of heading date (days), plant height (m), spike type, spike length (cm), number of internodes,
and 100-grain weight (g) in the population.

Trait Min Max Mean CV

Heading date (days) 35.50 104.90 57.69 0.21
Plant height (m) 0.69 3.96 1.90 0.40

Spike type 1.00 5.00 2.34 0.53
Spike length (cm) 13.67 69.17 26.75 0.28

Number of internodes 2.00 22.00 9.79 0.30
100-grain weight (×10 g) 1.11 4.03 2.56 0.22

2.4. LD Decay Analysis and GWAS

To estimate the linkage disequilibrium (LD) of the population, the r2 was calculated
using the Plink software. The variation in LD decay ranged from 9.9 to 70.2 kb, and the
average was 17.4 K. The greatest LD decay in all chromosomes was found in NC_012875,
while the least was found in NC_012870 (Figure S5).

Based the collection of phenotype data and the population analysis, three GWAS
algorisms were used to detect the QTLs. As results, 29 SNPs which exceeded the
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threshold (−log10(p) = 7.75) were observed in all six traits using the emmax (Figure 3,
Table S5). The greatest number of SNPs (21) was detected in spike length trait, while the
smallest numbers of SNPs (0) were found in plant height, the number of internodes, and
100-grain weight trait. Of the 21 SNPs significantly associated with spike length, 3 were
found on chromosome NC_012871.2, 1 was found on chromosome NC_012872.2, 7 were
found on chromosome NC_012874.2, 6 were found on chromosome NC_012876.2, 1 was
found on chromosome NC_012878.2, and 3 were found on chromosome NC_012879.2.
The other three and five significant SNPs on chromosome NC_012875.2 were found in the
heading date trait and on chromosome NC_012874.2 in the spike-type trait, respectively
(Table S5). With the calculation of the fastlmm model, in total, 1175 SNPs were found
(Figure S6, Table S6). The same positions were detected in the heading date and the
spike-type trait. Among all the significant SNPs, the NC_012874.2 chromosome had
the highest spike length (1079) (Table S6). The SNP (NC_012874.2 1992075) was found
in the plant height trait, while no SNP was found using emmax. Moreover, the lmm
model of GEMMA was used to identify the 1320 associated SNPs (Figure S7, Table S7).
Luckily, there were two significant SNPs in chromosomes NC_012876.2 and NC_012878.2
(Table S7), while no SNPs were found in the other two algorisms (Tables S5 and S6).
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on the emmax algorism. The light red dash line indicates the QTL that was identified in four traits.



Plants 2023, 12, 1557 6 of 13

The change in heading date may lead to increases in the yield [32]. By using GWAS
to detect the loci controlling the heading stage, three SNPs exceeded the threshold
(−log10(p) = 7.75), representing the same QTL (Figure 3). The other loci did not exceed
the threshold, and it may contain genes controlling heading date.

In the plant height trait, there was one common significant SNP (NC_012874.2 1992075)
within one QTL using the fast-lmm and lmm algorisms. From the Manhattan plot, this
peak was more continuous than other peaks (Figure 3). Therefore, a gene which controls
the plant height would need to be cloned in future studies.

The shape and length of spike were also directly related to the yield of plants. In
the GWAS results, 5 and 1307 SNPs were found to be significantly associated with spike
traits using the lmm model. In panicle length traits, multiple SNPs on the NC_012874.2
chromosome were found to exceed the threshold (Figure 3). This indicates that there may
be multiple genes related to ear length on this chromosome.

After detecting the significant SNPs in the two traits, no SNPs associated with the
number of internodes and 100-grain weight were identified unfortunately. From the Q-Q
plot, it is possible that the model did not match the two phenotypes (Figure S3). Although
there were no significant SNPs, there were some peaks which showed the trend of further
research, such as the QTL located in the end of NC_012878 (Figure 3).

2.5. Prediction and Analysis of Yield-Related Gene

Although there were numbers of QTLs in the GWAS, it was important to find the QTLs
which were identified in several traits. Additionally, we could clone genes that affected
multiple phenotypes and explored excellent alleles. Luckily, there were signals at the
adjacent position on the NC_012877 chromosome in the traits of heading date, plant height,
spike type, and spike length (Figure 4a up). There was probably a gene with multiple
functions at the locus, such as the DTH8 gene, in rice [12].

To identify whether some genes were the causal genes in the QTL, we calculated
the LD block. The significant SNP was in the LD block from 52,637,266 to 52,792,992
and from 52,793,087 to 53,095,551 (Figure 4a bottom). In the LD blocks, there were
23 predicted genes (Figure 4a middle, Table S8). In all genes, the SORBI_3008G116500 was
annotated as VIP5. Luckily, the homologue gene of SORBI_3008G116500 in Arabidopsis
thaliana was reported to affect the heading date [33,34]. So, the SORBI_3008G116500 gene
was mostly the candidate gene.

To observe the elite haplotype, three haplotypes were found according to the SNP in
the promoter and gene (Table S9). The haplotype analysis showed that hap3 was superior
compared to the other two based on the four traits’ data (Figure 4b). In all varieties,
Hap3 provided the least percentages compared with the other two haplotypes, suggesting
that the elite haplotype was not fully used (Figure 4c). Combined with the origin of the
three haplotypes, the Hap1 almost spread all over the regions where we collected the
germplasm. The Hap2 was most present in China, while the elite haplotype-Hap3 only
existed in China (Figure 4c). This indicates that higher polymorphism in the candidate
gene was found in China. Through the gene association study, the SNP in the promoter
may play a more significant role in the gene function (Figure 4d). Above that, we believed
that SORBI_3008G116500 was most likely the candidate gene in the QTL and the superior
haplotype could be widely used for sorghum breeding, especially in other countries.
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Figure 4. The analysis of the QTL. (a) Local Manhattan plot (top), the gene in the LD block (middle),
and LD heatmap (bottom) surrounding the peak on chromosome NC_012877.2. The red dashed line
indicates the candidate region for the peak. (b) The haplotype analysis of the SORBI_3008G116500
gene. Different letters represent significant differences (P < 0.05) using Duncan‘s multiple range
test. (c) The geographical distribution of different haplotypes. (d) The gene association study of
SORBI−3008G116500.

3. Discussion
3.1. GWAS Results and Observed Traits

In our study, the most significant SNPs were detected in the spike length trait using
three algorisms. Meanwhile, the panicle length has been investigated by linkage map-
ping [35]. Compared with the previous QTLs, more novel QTLs were found in chromosome
NC_012874.2 and so on (Tables S5–S7). At the same time, GWAS was also carried out on the
grains per panicle and grain size in sorghum [36]. In our study, many QTLs were detected
using GWAS, which improved the knowledge on the genetic variations in yield, but more
QTLs would be found if we observed more traits related to yield such as grain size [37] or
traits related to leaf [16]. Thus, more characteristics could be added for the GWAS, and we
will obtain more about the genetic variation in the configuration factors of sorghum yield,
which is more conducive to the analysis of the genetic variation in each character and the
aggregation analysis of the favorable allele variation.

3.2. A More Appropriate Model or Lower Threshold for Detection

Association analysis is an important method used to analyze the genetic mechanism
of complex traits [21]. Population structure analysis could reduce the impact of population
classification on the division of subgroups in association analysis [38]. We found no
significant loci in the number of internodes and 100-grain weight traits. The positive
sites may be screened out due to the problem of model selection [17]. Additionally, the
100-grain weight trait may be a complex trait. In the further study, a higher p-value was
selected for site screening. Meanwhile, 100-grain weight trait could be divided into some
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other related traits, such as the grain length and width, and the significant loci may be
detected. Combined with gene verification, we could also clone the genes that control
the traits. Finally, some other algorisms, such as restrictive two-stage multipoint (RTM)
GWASs, could be used for significant SNP identification in the 100-grain weight trait [39].
Meanwhile, more careful verification was required because of the lower threshold of
RTM-GWAS. In our study, the novel QTL with higher reliability was the purpose and the
RTM-GWAS could be used for further study if more QTL want to be detected.

3.3. SORBI_3008G116500 Breeding

In sorghum, researchers have identified many QTLs with multiple traits [26,28,36,40,41],
and so did we. After that, the genes were cloned by GWAS, and superior alleles and markers
linked to the allele were found [42]. These genes would be beneficial for molecular breeding,
such as marker-assisted selection. The AtVIP5 functioned in the heading date trait [43]. Loss of
the mutants, such as the other VIP genes (for example, VIP2/ELF7, VIP4, VIP5, and VIP6/ELF8)
also flower earlier because of silencing of FLOWERING LOCUS C (FLC) [33,44,45]. In rice,
the IPI1 gene which was annotated as VIP2 modulates IPA1 protein levels, and the plant
architecture, including plant height and branch number, were changed when overexpressing
the IPI1 [43]. In our study, we supposed that the homologue of AtVIP5 could function not only
in the heading date, but also in the spike trait. In the later stage, combined with transgenic lines
or mutant lines, further validation would need to be conducted to understand the function of
SORBI_3008G116500, and excellent allele markers would need to be developed for molecular
marker selection in sorghum breeding, especially improving the traits including heading date,
plant height, spike type, and spike length. Additionally, the Chinese sorghums have formed a
rich genetic base and unique characteristics have evolved as reported previously [46]. The
elite haplotype of SORBI_3008G116500 was mostly distributed in China, validating that the
sorghum germplasm in China had more potential for breeding compared with the germplasm
in other countries.

4. Material and Method
4.1. Plant Materials and Environment Conditions

A total of 214 accessions comprised the varieties were used in our study. Materials
No.1-No.186 were provided by Sorghum Germplasm Resource Conservation Bank of
Sorghum Research Institute of Shanxi Agricultural University. Materials No.187–No.214
were collected from “The Third National Survey and Collection of Crop Germplasm
Resources” Special Project for the Germplasm Resources Protection of the Ministry of
Agriculture and Rural Affairs of the People’s Republic of China and were provided by
the Jiangsu Academy of Agricultural Sciences. These were planted on the Liuhe base of
the Jiangsu Academy of Agricultural Sciences in 2018. The test site is located at 118.63 ◦E
and 32.48 ◦N. This area has a subtropical monsoon climate, with an average temperature
of 15.4 ◦C. The average precipitation is 1073.8 mm, the average frost-free period is
225 days, and the average annual sunshine total is 1956.2 h. The standard agricultural
practice was followed for plant growth and development, including irrigation, fertilizer
application, and pest control. All experiments used a completely randomized block
design with three replicates. The authors declare that all that permissions or licenses
were obtained to collect the sorghum plant, and that all aspects of the study comply with
relevant institutional, national, and international guidelines and legislation for plant
ethics in the “Methods” section.

4.2. Genotyping

All accessions of DNA were extracted using the DNAsecure plant kit (Qiagen, Cat.
No. DP320). The truseq library construction kit (FC-121-4001) was used to build the library.
DNA fragments were prepared by end repair, and PloyA tail and sequencing connector
were added, followed by purification and PCR amplification. The libraries were analyzed
by the Bioanalyzer (Agilent, Santa Clara, CA, USA), and the PCR products were quantified
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by a Qubit 3.0 fluorometer (Invitrogen, Carlsbad, CA, USA). The constructed libraries
were sequenced at Illumina Hiseq Xten platform to produce 150 bp paired-end reads. The
sequencing reads were extracted from the raw data; reads with an adaptor, low-quality
reads, and reads with an unidentified nucleotide sequence were removed using fastp-0.20.1
(http://opengene.org/fastp/fastp, accessed on 3 December 2021) [47]. After that, the
BWA and GATK software were used for alignment and variant calling for high-quality
reads [48,49]. The reference was downloaded from NCBI website (ftp.ncbi.nlm.nih.gov/
genomes/all/GCF/000/003/195/GCF_000003195.3_Sorghum_bicolor_NCBIv3, accessed
on 3 December 2021). Moreover, we used Plink to filter the variants [50]. On the premise of
minimum allele frequency (MAF) ≥ 0.05 and missing data ≤ 0.2, 2,811,016 high-quality
SNPs were obtained.

4.3. Phenotypic Trait Evaluation and Data Analysis

The heading date was collected at the heading stage. At the maturity stage, the other
phenotypic data of five yield-related traits were collected. For collecting plant height trait,
five plants were randomly selected to be measured. Numbers of Internode were determined
after stripping leaves from the stem. The data of spike type was collected according to
the “Guidelines for the conduct of tests for distinctness, uniformity and stability-Sorghum
(Sorghum bicolor (L.) Moench)” in China. However, during specific measurements, the
sorghum spike phenotype has a phenotype that resides between two types. We have
defined the specific type in the Supplementary File. According to the guidelines for
conducting tests for distinctness, uniformity, and stability-Sorghum (Sorghum bicolor (L.)
Moench) [GB/T 19557.15-2018], spike length was measured from the leaf scars under
the spike to the top of the main spike. Lastly, mature grains of each inbred line were
harvested and dried at 50 ◦C until the weight became constant. After drying, we collected
the 100-grain weight data. The means of all phenotypic data and correlation coefficients
were calculated using SAS.

4.4. Population Structure, Relative Kinship, Principal Component Analysis (PCA), and Linkage
Disequilibrium (LD)

Population structure (Q) was determined using Admixture software and filtered SNP
markers [51]. The number of subpopulations was determined by the CV error. Relative
pairwise kinship (K) was calculated using TASSEL5.0 [52]. The PCA was analyzed with
SNP markers using the TASSEL 5.0, and the results were visualized using R (https://www.
r-project.org, accessed on 25 May 2022). The LD was also calculated with Plink using the
SNP data of whole genomes and each chromosome.

4.5. Genome-Wide Association Study (GWAS) and QTL analysis

The GWAS for the six yield-related traits was performed for the three algorisms, includ-
ing lmm, fastlmm and emmax, using GEMMA, FaST-LMM, and EMMAX programs [53–55].
The significant value was decided by 0.05/markers. The results were visualized using R
package-CMplot. The LD block was defined with LDBlockShow software [56]. The gene
annotation was based on Gramene (https://www.gramene.org/, accessed on 29 July 2022).
The gene association study was conducted using TASSEL5.0 [57].

5. Conclusions

Overall, six traits related to yield were analyzed by three different algorisms based
on natural variations in 214 landraces, and many significant loci were obtained. We also
analyzed the differences of the three algorisms and the detection ability for different
traits. Finally, a candidate gene was obtained that could affect multiple traits and find the
elite haplotype. Our results enrich the discovery of sorghum-associated SNPs, and the
discovered QTLs and gene will be helpful to sorghum breeding.

http://opengene.org/fastp/fastp
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/195/GCF_000003195.3_Sorghum_bicolor_NCBIv3
ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/003/195/GCF_000003195.3_Sorghum_bicolor_NCBIv3
https://www.r-project.org
https://www.r-project.org
https://www.gramene.org/
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12071557/s1, Figure S1: The CV error computed by Ad-
mixture; Figure S2: The kinship of 214 landraces based on TASSEL5 analysis; Figure S3: Principal
component analysis of sorghum association panel used based on the 2,811,016 SNPs. Different color
of each landrace meant different subpopulation based on Admixture; Figure S4: The spike type in the
study; Figure S5: The LD decay of the population (left) and each chromosome (right) based on R2;
Figure S6: The Manhattan and Q-Q plot of six traits including heading date (HD), plant height (PL),
spike type (ST), spike length (SL), number of internodes (NI), and 100-grain weight (100GW) based on
the Fast-lmm algorism; Figure S7: The Manhattan and Q-Q plot of six traits including heading date
(HD), plant height (PL), spike type (ST), spike length (SL), number of internodes (NI), and 100-grain
weight (100GW) based on the Lmm algorism; Table S1: The list of all 214 landraces; Table S2: The
SNP number of chromosome.; Table S3: The result of PCA; Table S4: The all phenotype data of all
214 landraces; Table S5: The analysis of SNPs which exceeded threshold using the emmax model;
Table S6: The analysis of SNPs which exceeded threshold using the fastlmm model; Table S7: The
analysis of SNPs which exceeded threshold using the lmm model; Table S8: All genes in the LD block;
Table S9: The all variations of three haplotypes.
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