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Abstract: Plants are very often confronted by different heavy metal (HM) stressors that adversely
impair their growth and productivity. Among HMs, chromium (Cr) is one of the most prevalent toxic
trace metals found in agricultural soils because of anthropogenic activities, lack of efficient treatment,
and unregulated disposal. It has a huge detrimental impact on the physiological, biochemical, and
molecular traits of crops, in addition to being carcinogenic to humans. In soil, Cr exists in different
forms, including Cr (III) “trivalent” and Cr (VI) “hexavalent”, but the most pervasive and severely
hazardous form to the biota is Cr (VI). Despite extensive research on the effects of Cr stress, the
exact molecular mechanisms of Cr sensing, uptake, translocation, phytotoxicity, transcript processing,
translation, post-translational protein modifications, as well as plant defensive responses are still
largely unknown. Even though plants lack a Cr transporter system, it is efficiently accumulated and
transported by other essential ion transporters, hence posing a serious challenge to the development
of Cr-tolerant cultivars. In this review, we discuss Cr toxicity in plants, signaling perception, and
transduction. Further, we highlight various mitigation processes for Cr toxicity in plants, such as
microbial, chemical, and nano-based priming. We also discuss the biotechnological advancements in
mitigating Cr toxicity in plants using plant and microbiome engineering approaches. Additionally,
we also highlight the role of molecular breeding in mitigating Cr toxicity in sustainable agriculture.
Finally, some conclusions are drawn along with potential directions for future research in order to
better comprehend Cr signaling pathways and its mitigation in sustainable agriculture.

Keywords: chromium toxicity; hormones; multiomics; priming; signaling; genome editing; breeding;
synthetic biology; nano priming

1. Introduction

Heavy metal (HM) pollution has become a major concern in sustainable agriculture
due to its adverse effects on crop growth, soil health, food safety, and marketability. Numer-
ous HMs, including arsenic (As), cadmium (Cd), chromium (Cr), cobalt (Co), lead (Pb), and
mercury (Hg), cause extreme toxicity in plants when they enter agricultural soil ecosystems
through anthropogenic or natural activities [1]. Rapid anthropogenic activities such as
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mining, industrialization, and agricultural chemical practices have caused a notable rise
in the bioaccumulation and biomagnification of HMs, which has a negative impact on the
food chain and the environment [2]. Among HMs, Cr is potentially hazardous and serves
no vital role in plant metabolism. It is the second most frequent metal pollutant in soil,
groundwater, and sediment, and it poses a serious environmental risk [3]. The International
Agency for Research on Cancer [4] and the National Toxicology Program both rank Cr as
the number one carcinogen raising serious concerns for human health. Cr is found in soil
in a variety of chemical forms, mainly chromite [Cr (III)] and chromate [Cr (VI)], both ex-
hibiting significantly distinct biogeochemical properties [5]. Disentangling the mechanism
underlying Cr plant toxicity has been extremely difficult due to its complicated electrical
chemistry. Although Cr (III) is a necessary trace element from the perspective of animal and
human health, but not for plants [6]. Since Cr is non-essential and a toxic element to plants,
no Cr-specific transporters or channels have been identified in plants so far. Instead, in the
majority of plant species, Cr is transported by some essential element transporters. After
Cr exposure to plants, numerous physiological, morphological, and metabolic traits are
adversely affected that ultimately lead to plant death. For instance, Cr toxicity affects plant
development, nutrient absorption, and photosynthesis while also increasing the production
of reactive oxygen species (ROS) and altering antioxidant activities [7]. Cr toxicity has
a major impact on our sustainable agriculture and food security as it affects most of the
agriculturally important crops, such as pulses, cereals, vegetables, etc. [7–10]. Furthermore,
Cr buildup in crops from contaminated soils poses serious health concerns to humans and
animals. Therefore, a thorough understanding of Cr’s biogeochemical activity in soil, its
toxicity to plants, and the development of a long-lasting remediation toolkit are necessary
for its mitigation, which will be beneficial from the perspectives of both sustainable agricul-
ture and human health. This review focuses on Cr toxicity in plants, the signaling responses
to Cr stress, and the role of microbial, chemical, and nano priming for mitigating Cr toxicity
in plants. Additionally, we also discuss breeding and biotechnological advancements in
mitigating Cr toxicity in plants with a focus on genome editing. Additionally, knowing the
molecular basis of Cr–plant interactions and its biogeochemical chemistry can offer fresh
perspectives on how it can be mitigated through genetic, chemical, and microbiological
means, which would boost crop yield and agricultural sustainability.

2. Sources of Chromium

Cr contamination has become a major problem in the environment due to its high
concentration in various agricultural and industrial activities [11]. The estimated tolerable
limit of Cr in soil from the perspective of the protection of human and environmental health
is around 64 mg/kg. The element Cr was originally identified in 1797 as a component of
the pigment-grade mineral crocoite (PbCrO4). Due to its usage in numerous industrial
and agricultural processes, a significant amount of Cr is mined or generated annually,
which also contributes to its contamination in soil and water. For example, significant
levels of Cr are released in different environmental sections through industrial activities
such as cement and steel plants, leather factories, electroplating, paints and dyes, metal
plating, timber processing, paper production, and leaching processes [12]. Additionally,
the fallout of ash from burning coal or municipal trash for energy generation as well
as fertilizer industries have also significantly increased the Cr (VI) content in soil and
water [13]. Natural sources of Cr include rocks, volcanic dust, gases, soil, animals, and
plants. Typically, Cr is strongly coupled with primary rock-derived phases and well-
crystallized iron oxides [14]. Chromite (FeCr2O4) is a naturally occurring form of Cr in
ultramafic rocks or serpentine as a part of different minerals, such as tarapacaite, crocoite,
vauquelinite, and bentorite [15]. Furthermore, due to natural leaching from rocks and
topsoil, significant levels of Cr also enter water bodies. Further, we have shown different
sources of Cr contamination in soils and crops in Figure 1.
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Figure 1. Sources of Cr contamination in agricultural soils and other environments. In this figure, we
have highlighted both natural and anthropogenic sources of Cr in agricultural soils.

3. Chromium Uptake and Translocation

Plants are capable of absorbing different forms of Cr, but the mechanism by which
they do so is yet unknown. There has not been any information on a specific mechanism
for plant Cr uptake because Cr does not play any vital role in plant metabolism. However,
plants mostly take up Cr through specialized transporters for the ion absorption required
for different metabolic processes. In plants, the rate of Cr uptake, accumulation, and translo-
cation vary greatly due to its metal speciation, which determines its overall toxic effects.
Cervantes et al. [16] described the active mechanism for Cr (VI) transport, which involved
transporters of essential anions such as sulfate. It has been observed that Cr competes with
sulfur (S), phosphorous (P), and iron (Fe) for carrier binding during transportation [17].
Owing to the structural similarities between Cr (VI), phosphate, and sulfate, plants actively
absorb Cr (VI) typically via phosphate or sulfate transporters [18,19]. The SULTR gene
family (Sulfate Transporter), also called H+/SO4

2− transporters, have been discovered
in all photosynthetic species that have been examined thus far. These are known to be
potential targets for regulating Cr (VI) flow in plants. In addition to competing for sulfate
transporters, Cr (VI) can also do so for the enzymes involved in the sulfate assimilation
pathway, which lowers the production of cysteine (Cys) and methionine and results in the
incorrect translation of crucial proteins, leading to S starvation.

In barley, separate uptake mechanisms for Cr (VI) and Cr (III) have been discovered.
For instance, using metabolic inhibitors decreased the absorption of Cr (VI) but had no
effect on the uptake of Cr (III), indicating that Cr (VI) uptake is energy-dependent while
that of Cr (III) is energy-independent [20]. Previous studies have reported that sulfur
accumulators such as Brassica species absorb high levels of Cr [21], indicating that S uptake
and translocation mechanisms are used to move Cr from root to shoot [16]. Similarly, Fe
accumulators such as Spinacia oleracea and Brassica rapa can also absorb higher levels of Cr
and translocate it in their aerial tissues [22]. The majority of investigations have shown
an excessive buildup of Cr in roots, and its immobilization in the vacuoles of plant root
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cells is primarily responsible for its bioaccumulation. In roots, Cr prevents cell division
and inhibits root length, which limits their ability to absorb water and nutrients, thereby
restricting shoot growth. It has been determined that Cr is primarily transferred through
the plant xylem after absorption [7]. In plants, Cr (VI) is transported through the endoderm
and reduced to Cr (III), which is subsequently preserved in the cells of the root cortex. The
majority of research has shown that Cr accumulates excessively in roots, and it is thought
that this bioaccumulation is mostly caused by its immobilization in root cell vacuoles [23].
An earlier investigation into the bioaccumulation of Cr in Brassica juncea under CrCl3
stress revealed that when exposure increased, the amount of Cr in the cell wall, nuclei,
mitochondria, and plastids likewise increased significantly [24]. The sequestration of Cr
mainly occurs in plant roots as it is the primary organ where it absorbed from the soil.
Additionally, Cr is considered to be the least transportable element among the heavy metals
in the plant roots [25].

According to Shanker et al. [20], roots can have a Cr concentration 100 times higher
than shoots. It is likely that the formation of insoluble Cr compounds inside plants is due to
the increased sequestration of Cr in plant roots. Nevertheless, many metal transporter gene
families, such as HMA (heavy metal ATPase), ATP binding cassette (ABC) superfamily,
CDF (cation diffusion facilitator), NRAMP (natural resistance-associated macrophage
protein), and ZIP (ZRT, IRT-like protein) have been identified that play crucial roles in
the transportation of different metals from root to shoot [26]. However, we are still far
from having a thorough understanding of these transporter families with regard to Cr in
plants, despite their significant roles in metal absorption, transportation, sequestration,
and tolerance. In addition to sulphate transporters, new players of Cr transportation in
model and other crop systems need to be further studied and identified. This will help us
to understand where and how Cr regulates different signaling pathways and will facilitate
the development of crops that are tolerant to Cr in the future.

4. Impact of Chromium Toxicity on Different Plant Traits

In plants, Cr toxicity causes a detrimental effect on various physiological, biochem-
ical, and molecular traits, thus stunting growth and reducing overall yield production.
According to Dotaniya et al. [27], higher Cr accumulation in plants significantly affects
seed germination and slows down root and shoot growth rates, which has an impact on
the overall biomass and yield. Many studies have reported that high Cr accumulation in
plants affects the chlorophyll (Chl) content (Chl a, b, and total), leading to the inhibition of
photosynthesis. Previous studies have shown that an excessive amount of Cr deposited in
plant tissues inhibits the cell cycle, water and mineral balance, enzyme activity, nitrogen
assimilation, the antioxidant system, and other key metabolic processes [28]. Moreover,
Cr accumulation triggers the generation of ROS, which causes oxidative damage [29]. For
instance, ROS buildup results in the peroxidation of membrane lipids, which disrupts
membrane function and structure as well as causing the oxidation of proteins and nucleic
acids, resulting in cellular component damage and eventually cell death [30]. Additionally,
increased ROS prevents plants from responding biochemically, which alters their morphol-
ogy and architecture [31]. The cytotoxic and genotoxic effects of Cr have been reviewed
in various plants, viz., Vigna radiata, Nicotiana tabacum, B. juncea, Cicer arietinum, Brassica
napus, Brassica oleracea, Sorghum bicolour, and Zea mays [32]. Further, we have summarized
the effects of Cr on different crop traits in Figure 2.
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5. Molecular Mechanisms and Signal Transduction in Regulating Chromium Stress
in Plants

Because plants cannot escape environmental pressures such as metal pollution, these
challenges have driven the evolution of numerous mechanisms to efficiently detect, re-
act, and ultimately adapt to these pressures. Likewise, plants also use multidimensional
defense responses against Cr toxicity via complexation by organic ligands, vacuolar com-
partmentalization, and activation of the antioxidative system. These defense responses
are modulated or regulated by an intricate signaling cascade that takes place in different
cellular components. Although a plethora of studies have highlighted how Cr induces
the oxidative stress that leads to an array of detrimental effects on its cellular system, the
exact molecular mechanisms of Cr translocation, accumulation, phytotoxicity, and plant
defensive responses are still largely unknown. For plants to adapt to biotic and abiotic
stressors, signal perception, transduction, and post-translational regulation are crucial.
The initial perception of stressors involves different sensors, such as cell wall receptors
and ion channels, as well as signaling molecules, including calcium, ROS, hormones,
protein kinases, and transcriptional factors, that play key roles in downstream signaling
cascades. The roles of the above signaling players have been well addressed during biotic
and many abiotic stressors. However, their roles in heavy metal stress, including Cr, are
largely known.

The molecular dynamics of Cr signaling from the exterior (cell wall) and interior
(plasma membrane and cytosol) are not fully understood and many knowledge gaps are
still remaining. However, with the advent of multiomics, a few studies have recently
reported transcriptional, translational, and metabolic reprogramming in various plant
systems after Cr exposure, thus providing novel insight into Cr perception and signal
transduction. For example, in rice plants, Cr (VI) triggered ROS and Ca2+ production
followed by activation of NADPH oxidase and calcium-dependent protein kinase, all of
which are critical for downstream signaling cascades [33]. There is mounting evidence that
calcium and ROS signaling systems interact reciprocally, with important ramifications for
optimizing cellular signaling networks. They also identified many transcriptional factors
involved in Cr signaling cascades, such as WRKY and AP2/ERF TF genes, which added to
the notion of their role in defense against metal stress. Similarly, many phosphate kinase
genes (PP2C-A, PP2C-D, and PP2C-F) were identified in response to Cr (VI) stress, which
further provided evidence that these might be involved in regulating various signaling
cascades during Cr stress. Earlier gene expression profiling of rice plants under Cr stress
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revealed the inactivation of gibberellic acid-related pathways and stimulation of ethylene
(ET), abscisic acid (ABA)-, and jasmonate-mediated signaling cascades. This provided
novel insight into the role of different hormones during Cr stress [33]. Another study
reported that transcriptome profiling of rice plants after Cr (VI) exposure showed a distinct
gene expression profile. For example, genes involved in membrane transport and signal
transduction, xenobiotics, amino acid metabolism, and biosynthesis of secondary metabo-
lites were upregulated, whereas genes related to cell growth and energy metabolism were
downregulated. Huang et al. [34] found that Cr (VI) induced an array of genes related to
ROS, calcium, MAPKs, and CDPK-like kinases, all of which are key players in perception
and signal transduction pathways. Similarly, various miRNA were identified in tobacco
plants that were distinctly regulated during Cr (VI) stress [35].

On the other hand, a proteomic perspective has also been used to identify differential
proteins during Cr stress. For example, 64 proteins were successfully identified in rice
seedlings that were related to several cellular processes, viz., cell wall synthesis, electron
transport, primary metabolism, energy production, and detoxification [36]. In the last
10 years, a number of studies have been published on the effects of HMs on the metabolome
of both model plants and cultivated cultivars. Similarly, a metabolomics study of rice
plants after Cr exposure showed a significant accumulation of proline and ornithine, which
could be involved in the defense response of rice plants against oxidative stress during Cr
exposure [37]. These studies further highlight the importance of omics tools in identifying
various key players in Cr signal perception and transduction. However, the integration of
multiomics along with gene knock out studies is further required to determine the roles of
different genes or other key signaling players in Cr signaling that will provide novel insight
for the development of Cr-tolerant crop cultivars. In this review, based on the available
data, we have presented a model describing Cr signaling in plants, as shown in Figure 3.
We also highlight some of the important players in the initial and downstream signaling
cascades that might be involved in Cr signal perception and transduction. However, more
comprehensive studies are required to fully understand the molecular dynamics of Cr
signaling in plants, such as the roles of cell wall sensors, plasma membrane channels, and
intracellular signaling cascades in different compartments after Cr exposure.
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Cr perception. Following Cr sensing, an ROS burst and calcium waves will occur, which can be sensed
by different sensors, such as kinases or calcineurin B-like protein (CBL)-CBL interacting protein kinase
(CIPK) and calmodulins (CaMs)/calmodulin-like proteins (CMLs), which can lead to significant
transcriptional and translational reprogramming in several intracellular compartments, as depicted
in the figure. The Cr (Vi) transporter in this instance is a sulphate or phosphate transporter, which
could ease its entry into the root cells. We also highlight the roles of various molecules, including
hormones, nitric oxide (NO), hydrogen sulfide (H2S), and antioxidants, in Cr-mediated signaling.

6. Mitigation of Chromium Toxicity in Sustainable Agriculture

In recent years, the levels of Cr contaminants in various ecosystems have dramatically
increased due to growing urbanization and industry, which has become a serious concern
across the globe. Given the detrimental effects of Cr contamination on plants and human
health, it is critically important to look into quick, efficient and cost effective approaches
to remove Cr from the soil and other environmental locations. Additionally, Cr poses a
potential risk because it is not degradable and will remain in the soil for years. In this
review, we systematically discuss various mitigation approaches against Cr toxicity in
sustainable agriculture. Firstly, we discuss the role of microbes in mitigating or reducing
Cr toxicity in plants since microbes act as metal cleaners owing to their incredible metal-
tolerant properties. Secondly, we focus on the role of chemical priming in mitigating Cr
toxicity. There have been numerous reports on the role of various chemicals (hormones,
NO, H2S, polyamines, compatible solutes, ions, etc.) on mitigating HM toxicity in plants.
Thirdly, we discuss the role of nanoparticle-based priming, which has become one of
the major frontiers against HM toxicity in sustainable agriculture. Finally, we focus on
the role of biotechnological tools in mitigating Cr toxicity. The use of biotechnological
methods is becoming more and more common in HM remediation since they are frequently
seen as a viable technique for the final treatment of contaminated sediments. With the
advancement of genome editing, this strategy appears to be the most effective technique
for the development of Cr-tolerant crop cultivars in sustainable agriculture. Additionally,
integrated Cr remedial technologies can be very useful for in-situ operations in both
developed and emerging nations where urbanization, agriculture, and industry are passing
on a legacy of environmental degradation.

6.1. Microbe-Mediated Mitigation for Chromium Toxicity

Many microorganisms have a remarkable capacity to adapt and colonize toxic HM-
polluted habitats that are unsuitable for higher organisms. Absorption, adsorption, methyla-
tion, oxidation, and reduction are just some of the ways that these microbes have developed
to defend themselves against HM contamination. The conversion of Cr (VI) to less harmful
Cr (III) is a crucial step in the cleanup of Cr (VI)-affected areas. Traditional methods for
Cr (VI)-contaminated groundwater and soil involve pumping and excavating the contami-
nated material, then adding chemical reductants, which results in the sedimentation and
precipitation of the reduced Cr [38]. These methods have a number of disadvantages in
addition to being costly and energy-intensive. In this context, bioremediation of Cr has
recently gained popularity as a safe, ecofriendly, and cost-effective alternative to standard
physico-chemical approaches. However, the availability of effective microbial consortia that
can more effectively reduce or eliminate Cr (VI) is necessary for the bioremediation of Cr
(VI)-contaminated soil and water. Interestingly, microorganisms can thrive in environments
with high levels of HM contamination. Most bacteria that resist Cr (VI) are extracted from
tanning wastewater and are subsequently employed to treat environmental pollution [39].
Despite the fact that microbial remediation technology has been studied extensively, there
are still numerous issues to be resolved [40]. Many studies are limited to the laboratory
and focus on remediating contaminated water sources, with microbiological remediation
strategies in soil getting minimal attention. To address HM pollution in groundwater, these
microbial strains are grown from industrial effluents or microbes are screened from the soil.
The appropriate concentration needed for microbiological reduction is much lower than
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that needed for physical and chemical components; therefore improving bioremediation
effectiveness is a major challenge. Microbial inoculation in a Cr (VI)-polluted environment
can successfully remove this HM by biological adsorption, chelating agent production,
autotrophic leaching, reducing agent, and other mechanisms [41], as shown in Figure 4.
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Figure 4. Microbe-mediated mitigation of Cr (VI) polluted environment. Microbes evolve different
process such as biosorption, bioaccumulation, biotransformation, and bioleaching to remove Cr
from contaminated soils. Microbes have incredible resistance mechanisms, such as extracellular
and intracellular sequestration, extracellular barriers, active transport of metal ions, and enzymatic
detoxification, which makes them the best remedial tool kit for heavy metal remediation.

In general, microorganisms can use enzymatic or chemical pathways for Cr reduction,
either separately or in combination. Soluble chromate reductases are found in bacteria
such as Pseudomonas, Bacillus, Leucobacter spp., and Streptomyces (using NADPH or NADH
as cofactors to reduce Cr). Microbacterium strains that can withstand or resist HMs such
as Cr, As, Ni, and Cd have been identified as bioremediation possibilities, as shown
in Table 1 [42]. The use of native, non-hazardous strains is one of the primary benefits
associated with the utilization of bacterial Cr (VI) reduction since it does not demand a high-
energy input nor does it call for the utilization of harmful chemical reagents. Extracellular
precipitation is a distinctive feature of bacterial interaction with Cr. Precipitation is viewed
as a detoxification process because insoluble metallic complexes are usually less hazardous
than ionic versions [43]. In sulfate-reducing bacteria and Clostridium [44], Cr precipitation
has been commonly seen. With the addition of 8.0% NaCl, enzymatic reduction of Cr (VI)
was seen in Halomonas sp. strain TA-04, which was isolated from contaminated marine
sediments, giving novel clues into metal reduction in halophilic environments [45]. Many
bacteria have been discovered to be capable of converting Cr (VI) to Cr (III) under a variety
of conditions, as shown in Table 1.
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Table 1. Role of microbes in mitigating chromium toxicity by converting Cr (VI) to Cr (III).

Microorganisms pH Mechanisms References

Bacteria
Serratia sp. C8 6–8 Bioreduction [46]

Sphingopyxis macrogoltabida SUK2c 7 Bioreduction, Biosorption [47]
Bacillus methylotrophicus 7 Bioreduction [48]

Pisolithus sp1 5–6 Bioreduction, Biosorption [49]
Sporosarcina saromensis M52 7–8.5 Bioreduction [50]

Asperillus flavus CR500 6.5 Bioreduction, Biosorption [51]
Leiotrametes flavida 6 Biosorption [52]

Sporosarcina saromensis M52 2 Biosorption [53]
Bacillus salmalaya 3 Biosorption [54]

Enterobacter cloacae Biosorption [55]
Chelatococcus daeguensis 7 Biosorption [56]

Micrococcus spp. 7 Biosorption [57]
Planococcus sp. VITP21 6.8 Biosorption [58]

Pseudomonas alcaliphila NEWG-2 7 Biosorption [59]
Halomonas sp. DK4 6 Biosorption [60]

Klebsiella spp. 9 Biosorption [61]
Sinorhizobium sp. SAR1 1 Biosorption [62]

Pseudomonas aeruginosa CCTCC AB93066 7.0 Biosorption [63]
Bacillus cereus ZY-2009 7.0 Bioreduction [64]

Fungi

Paecilomyces lilacinus, Penicillium commune, Fusarium equiseti,
and Cladosporium perangustum 4 Biosorption [65]

Aspergillus versicolor 6 Biosorption [66]
Consortium of Rhizopus oryzae, Aspergillus lentulus, and

Aspergillus terreus 6.5 Biosorption [67]

Aspergillus terreus Biosorption [68]

Microalgae

Pseudanabaena mucicola 2 Biosorption [69]
Chlorella colonials Biosorption [70]
Chlorella vulagris 3 Biosorption [71]

Chlamydomonas spp. 4 Biosorption [72]

Certain microorganisms are resistant to Cr and can convert Cr (VI) to Cr (III), as
was originally seen for Pseudomonas spp. [73,74]. The ability of bacteria to reduce Cr
(VI) to Cr (III) as a mechanism of resistance to Cr (VI) has been described in a number of
bacteria. Escherichia coli [75], Bacillus firmus KUCr1 [76], Pantoea stewartii ASI11 [77], Cellulosi
microbium sp. [78], and Pseudomonas aeruginosa CCTCC AB93066 [63] are among the bacteria
shown to be capable of reducing Cr (VI). There has been evidence of the mechanisms
of chromate resistance, especially at the level of bacterial cells. Because the majority of
bioreduction processes are enzyme-mediated, changes in temperature and pH can have
a significant impact on protein folding, the ionization rate, and enzyme activity. The
concentration and contact time of heavy metals affect their absorption by microbes. This
metabolism-dependent mechanism occurs only in living cells and needs the use of energy
to move Cr (VI) into the cells. The efflux of chromate ions from the cell cytoplasm and
reduction of Cr (VI) to Cr (III) is probably one of the best mechanisms. Microorganisms can
decrease Cr (VI) to Cr (III) in both aerobic and anaerobic environments. The bio-reduction
of Cr (VI) that can be obtained directly as a result of microbial metabolism can be observed
in aerobic environments [79]. Using Arthrobacter spp. for bioremediation of trash containing
Cr (VI) is an excellent option. Arthrobacter spp. tolerated Cr (VI) at 100 mg/mL in a salt-free
medium supplemented with 0.5% glucose and was able to grow in a liquid media at this
concentration, reducing Cr (VI) up to 50 g/mL. Cr (VI) reduction was shown to be mostly
linked to the cell’s soluble protein fraction, as demonstrated by permeabilized (treated
with toluene or Triton X100) cells and crude extracts [80]. Pediococcus pentosaceus and
S. aureus (2000 mg/L) and Streptomyces sp. CG52 (500 mg/L) are two examples of Gram-
positive bacteria that are Cr (VI)-tolerant [81]. Many bacterial whole genomes have been
sequenced in recent years in order to find loci implicated in metal resistance, especially
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Cr reduction and resistance. ChrR and yieF are implicated in the mechanism of chromate
reduction, according to genomic annotations [82]. In LB agar medium, bacterial strain UT8
(MN932132) is resistant to greater doses of chromate. Cr (III) adsorption by Phormidium
laminosum heat-dried biomass has been reported. At lower pH values (3.5 to 5.5), the
binding of Cr (III) by the microalgae was boosted, while that of Cr (VI) was favoured at
pH 2.0 or lower [83]. For bioremoval, the optimum pH is dependent on the oxidation
state of Cr, as shown by these results in which Cr (VI) to Cr (III) reduction was found
to occur with a significant rise in temperature from 25 to 55 ◦C [84]. Fungi are microbes
that are employed as biosorbents to remove heavy metals because of their large biomass
yields. Fungi, because of their versatility, ability to adapt to hard conditions, and ability to
endure high concentrations of hexavalent chromium [85], can tolerate toxic concentrations
of Cr (VI) beyond 10,000 mg/L. Higher metal ion concentrations rarely affect fungi [86].
A chemical interaction with functional groups on cell surface proteins was required for
Cr (VI) to be adsorbed on the cell surface of fungi [87]. Chemical components in proteins,
lipids, and polysaccharides such as galactosamine and chitin/glycans along with different
functional groups, including carboxyl groups (-COOH), polyphosphates (PO4

3−), amines
(-NH2), sulfur groups (-SH), and hydroxide groups (-OH), are responsible for the binding
of hexavalent chromium to the fungal cell [88]. Chromate sensitivity in filamentous fungi
and yeasts as well as yeast chromate reduction are among the well-studied interactions
between Cr and fungi.

6.2. Chemical Priming of Plants to Alleviate Chromium Toxicity

Chemical priming is one of the best approaches to enhance the tolerance of both culti-
vated and non-cultivated plant species against a wide range of stress factors. Nevertheless,
to date, very few reports have backed this commitment in connection to its role in the stress
tolerance of plants against abiotic stress factors [89–91]. Against the poor attention paid to
chemical priming, we present key reports and findings to discuss updated data on chemical
priming and its critical role in circumventing Cr toxicity. The Cr produced because of
metallurgical processes and effluent discharges used in the tanning and preservation of
wood is extremely toxic to plants [20]. Cr exists in different stable forms such as trivalent
Cr (III) and hexavalent Cr (VI) species, with the latter being most stable and toxic to plant
metabolism and growth [92]. The toxicity of Cr leads to the production of ROS, such as
hydroxyl radicals (•OH), hydrogen peroxide (H2O2), and superoxide anions (O2•), which
lead to several serious complications in plants, including lipid peroxidation and inhibition
of enzyme activities, growth retardation, degradation of photosynthetic pigments, and
chromosomal aberrations.

Hence, to minimize the detrimental effects of chromium in plants, scientists have
devised diverse strategies, such as chelation, detoxification, and subcellular compartmen-
talization of Cr, using both biological as well as chemical methods. Recently, several
reports have suggested that Cr toxicity can be alleviated by exogenous application of ABA,
glutathione, Cys and sulfur, and melatonin [93–95]. For instance, it was reported that
metallothioneins (MTs) have emerged as important ligands to chelate and detoxify heavy
metal ions such as Cr in plants [96]. Way back, Chen et al. [97] reported that under salinity
and drought stress, genes such as metallothionein protein (BnMP1) and metallothionein-
like (LSC54) for MT were upregulated in B. napus, proving a lead role of MTs in stress
tolerance. Reports suggest that exogenous application of H2S led to enhanced expression of
MT genes in plants, thus providing a platform for chemical priming of plants to overcome
Cr toxicity [98,99]. For instance, Mustafa et al. [100] reported that exogenous application of
H2S helped to overcome the toxic effects of Cr (VI) in B. napus by enhancing the activity of
antioxidant enzymes, decreasing lipid peroxidation, and increasing the thiol and chloro-
phyll content. Similarly, it was reported that exogenous application of 5-amenolevulinic
acid (ALA) enhanced the growth and metabolism of plants and decreased the concentration
of Cr in B. napus under Cr toxicity.
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NO was found to trigger spermine in order to reduce the accumulation of Cr in rice
plants in addition to its role in increasing carbon assimilation and reducing ROS-mediated
damage [101]. Moreover, it was reported that taurine aided in the protection against lipid
peroxidation in membranes and ROS scavenging to promote plant growth [102]. This amino
acid was reported to enhance the growth of wheat plants by reducing the oxidative damage
under Cr toxicity stress [103]. These results also showed that taurine triggered an increase
in the concentrations of nutrients and secondary metabolites (phenolics and flavonoids)
to alleviate Cr toxicity. Ahmad et al. [104] reported that taurine administration improved
the accumulation of proline to enhance tolerance to boron (B) and Cr and also aided in the
regulation of metabolic activities. Another chemical, H2S, was found to play a profound
role in enhancing tolerance to Cr, aluminum, boron, and copper toxicity in addition to
its role in drought stress tolerance [105–107]. Similarly, Cr toxicity was circumvented in
barley by exogenous supplementation of H2S through its effect on enhancing growth via
the upregulation of photosynthetic machinery [108]. The supplementation of H2S was
found to trigger the generation of Cr6+-binding peptides such as metallothioneins and
phytochelatins to compartmentalize Cr6+ to insensitive regions in Arabidopsis [109].

Recently, it was reported that the exogenous application of glutathione decreased
the translocation, absorption, and chelation of Cr in soybean, hence improving plant
biomass by adjusting the soluble proline and phenol content [110]. These compounds
are reported to aid in the removal of ROS under stress conditions [111]. In addition, the
accumulation and detoxification of Cr helped to enhance the plant’s physiological activities
upon administration of exogenous glutathione under Cr toxicity [112]. The mechanism
behind the alleviation of Cr toxicity lies in the formation of Cr–GSH complexes due to
the presence of the thiol group (-SH), hence reducing free Cr in plants [113]. Moreover,
glutathione was reported to neutralize the ROS generated by Cr toxicity via the formation of
the ascorbate–glutathione cycle (ASA–GSH cycle) [114]. In conclusion, scientists validated
the role of glutathione in considerably maintaining the chlorophyll content of plant leaves
by decreasing Cr toxicity in plants [115,116].

Previous studies have reported that exogenous foliar administration of mannitol (M)
to wheat plants enhanced the tolerance to Cr toxicity by decreasing Cr uptake and translo-
cation, increasing the activity of antioxidant enzymes, and enhancing the concentration
of photosynthetic pigments in plants [117]. Menadione sodium bisulfite (MSB) is another
chemical used in priming plants to circumvent Cr toxicity due to its redox properties
augmenting the plant’s physiological properties. MSB has been reported to reduce the
levels of Cr in the aerial parts of plants, enhance the antioxidant systems, and decrease
oxidative damage in plants [118]. Moreover, H2S reportedly alleviated Cr toxicity in barley
to mediate Cr tolerance [107]. All of these reports strongly suggest that chemical priming
may aid in alleviating Cr toxicity in crop plants and is a leading approach to enhance the
yield and productivity of crops in the future.

Phytohormones such as auxins (IAA), brassinosteroids (BRs), ABA, cytokinins (CK),
gibberellins (GA), jasmonic acid (JA), and salicylic acid (SA) are another series of biomolecules
that have been employed to enhance the tolerance of crop plants against a wide range
of biotic as well as abiotic stressors, including Cr, to maintain proper metabolism and
physiology [119,120]. For instance, Mumtaz et al. [119] reported that 24-epibrassinolide
induced commendable enhancement in the growth, physiology, and upregulation of defense
systems in pepper plants under Cr (VI) stress. Cr stress was also mitigated by the application
of the polyamine brassinosteroid to maintain phytochemical and physiological attributes in
Raphanus sativus L. [121]. Additionally, it was reported that a reduction in oxidative stress was
observed in Pisum sativum L. upon administration of indole acetic acid (IAA) on seedlings
under chromium stress conditions [122]. The alleviation of Cr (VI) stress was accomplished
by the application of ET and H2S in black bean and mung bean crop plants [123]. In this
study, it was observed that H2S impaired ET signaling to reduce the negative effects of Cr
stress. JA is another plant hormone found to prime the alleviation of chromium stress by
decreasing chromium uptake, thus enhancing the regulation of glyoxalase and the oxida-
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tive defense system in choysum (Brassica parachinensis L.) [124]. Similarly, JA application in
P. sativum L. seedlings was found to be associated with the regulation of other hormones and
increased the uptake of mineral ions such as calcium (Ca2+), which was linked to detoxification
under Cr toxicity conditions [125]. SA is a critical phytohormone useful for the induction of
defense mechanisms against a wide range of abiotic stress factors [126,127]. This hormone
ameliorates Cr toxicity by regulating ion homeostasis, the ultrastructure of cells, and also the
modulation of the antioxidant defense system [128]. This brief account of phytohormones
displays considerable evidence of their role in alleviating Cr toxicity in plants. Hence, it must
be concluded that phytohormones can be substantially employed as a possible strategy to
circumvent the toxic effects of Cr in plants.

6.3. Nano-Priming as Pilot Strategy to Alleviate Chromium Toxicity in Plants

Currently nanotechnology is at the forefront of attaining sustainable development of
the agricultural sector through its diverse tools, such as nanosensors, nanopesticides, and
nanofertilizers [129–131]. Evidently, nanoparticles have been employed to positively reg-
ulate the development and growth of plants and withstand the challenges of stress fac-
tors [132,133]. A large number of reports have validated the role of nanoparticles in prim-
ing seeds for speedy germination, thus leading to improved growth and tolerance to stres-
sors and obtaining higher yield and growth [134,135]. For instance, the germination of
Festuca ovina under drought stress was stimulated by the nanopriming approach using sil-
ver nanoparticles at concentrations ranging from 25% to 75% [136]. Similarly, zinc oxide
nanoparticle (ZnONP)-based priming was utilized to enhance the resilience of rapeseed
(B. napus L.), thereby enhancing germination under salinity stress conditions [137]. Moreover,
silver nanoparticles (AgNPs, 1 mg/L) were utilized as priming agents to enhance seed germi-
nation in wheat and help to reverse the effects of salt stress in wheat plants [138]. Increased
germination rates and decreased germination times were reported in hopbush (Dodonaea
viscosa L.) seeds when supplemented with multi-walled carbon nanotubes (MWCNTs) [139].
Seed priming is another approach to enhance the stress tolerance in plants by allowing partial
hydration with chemicals to amplify the different metabolic processes [136]. Nanopriming of
seeds by zinc oxide significantly enhanced seed germination [136]. On the other hand, use
of AgNPs with fenugreek (Trigonella foenum-graecum) seeds helped to promote seed germi-
nation [140]. It was reported that indole acetic acid (IAA) and silicon nanoparticles (SiNPs)
in combination and alone primed rice seedlings to enhance tolerance to Cr toxicity [141]. In
combination with Staphylococcus aureus, ZnONPs were shown to mediate the alleviation of Cr
toxicity in wheat plants, thus enhancing the defense system, growth, and physiology [142].
Similarly, the application of ZnONPs enhanced the activities of CAT, APX, SOD, and POD in
mustard plants under Cr toxicity conditions [139,142]. Further, we have summarized the roles
of chemical priming in mitigating Cr stress in plants in Table 2.

Table 2. Roles of chemical and nano-priming in mitigating Cr toxicity in different plants.

Name of Compound Effect on Chromium
Toxicity

Alleviated Physiological Effects under
Chromium Toxicity

Crop Plant under
Investigation References

Chemicals Used for Alleviating Cr Toxicity
Menadione sodium

bisulfite
(MSB)

Considerably reduces
accumulation and

transport
• Reduces oxidative stress and membrane

electrolyte leakage
Wheat [116]

Melatonin (MT)
(N-acetyl-5-

methoxytryptamine)

Detoxification of Cr
toxicity

• Activates antioxidant system
• Helps plants in maintaining leaf water status

through improvement of root structures

Maize [143]

Taurine Lesser accumulation of Cr
in aerial parts of plants

• Increases proline content
• Lowers aerial B and Cr levels
• Strengthens antioxidant defense systems
• Lowers the ROS levels
• Increases the synthesis hydrogen sulfide,

nitric oxide, glutathione, and phenolic
compounds

Wheat [77]
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Table 2. Cont.

Name of Compound Effect on Chromium
Toxicity

Alleviated Physiological Effects under
Chromium Toxicity

Crop Plant under
Investigation References

Hydrogen sulfide Restriction of uptake • Activation of the antioxidant system

Rice
Wheat
Barley

[107,122]

Indole acetic acid Restriction of uptake

• Improves various growth and developmental
traits, such as root and shoot length,
fresh weight

• Activates antioxidant system, increases
photosynthetic pigments

Rice [139]

Brassinosteroid

Decreases Cr-induced
phytotoxicity by lowering
Cr uptake, accumulation,

and translocation

• Stimulates antioxidative defense systems
• Photosynthetic attributes
• Improves seed germination, plant growth,

and biomass

Soybean [101]

Sodium nitroprusside
(SNP) Restriction of uptake • Increases biomass and water potential

• Enhances antioxidant system activity
Maize [144]

Glutathione
Increases Cr accumulation

Improves Cr tolerance
Decreases Cr toxicity

• Increases antioxidant activity and
photosynthesis pigments

• Increases osmolytes
• Increases the expression of genes related to

alleviation of Cr toxicity
• physiological adaptability

Soybean [109]

Glycine betaine Reduces accumulation
of Cr

• Significantly enhances plant growth and yield
• Enhances biochemical and physiological traits

(antioxidant enzyme activities)

Chickpea [145]

Hydrogen peroxide
(H2O2)

• Inhibits cell death
• Decreases the accumulation of Cr in roots
• Stimulates sulfur assimilation
• Enhances antioxidants and

proline metabolism

WheatRice [99,146]

Citric acid chelate Reduces accumulation
of Cr

• Improves germination, growth, and yield
• Increases activities of antioxidant enzymes

such as SOD, POD, CAT, and APX
• Enhances accumulation of non-enzymatic

antioxidant molecules

Wheat [147]

Iron (Fe)–lysine (lys) Reduces accumulation
of Cr

• Helps in improving plant growth
and composition

• Decreases the concentrations of ROS and Cr

Rapeseed [148]

Nitric oxide (NO)
Reduces uptake and

accumulation
of Cr in roots

• Inhibits death of cells
• Lowers accumulation of Cr in roots
• Higher assimilation of sulfur
• Enhances antioxidants
• Enhances proline metabolism

Wheat [146]

Nanoparticles for Alleviating Cr Toxicity

SiNPs Reduces the uptake and
accumulation of Cr

• Modulates a number of biochemical,
physiological traits related to growth and
stress resilience

• Increases root and shoot length and
fresh weight

• Increases the content of antioxidant and
osmoprotectants

RicePea [124,139]

Cerium dioxide
nanoparticles (CeO2)

Reduces the uptake and
accumulation of Cr6+

and Cr3+

• Increases plant biomass and growth
• Alleviates oxidative stress
• Improves antioxidant enzymatic functions

Sunflower plants [149]

Fe nanoparticles
(Fe NPs)

Reduces the uptake and
accumulation of Cr

• Reduces Cr-induced oxidative damage
• Enhances non-enzymatic and

antioxidant activity
• Increases growth and yield traits
• Increases photosynthetic activity

Rice [150]

Zinc oxide
nanoparticles

(ZnO NPs)
Detoxification of Cr

• Induces activity of antioxidative enzymes
• Leads to overexpression of

antioxidative genes
• Improves efficiency of photosynthesis

Wheat
Rice [141,151]
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Table 2. Cont.

Name of Compound Effect on Chromium
Toxicity

Alleviated Physiological Effects under
Chromium Toxicity

Crop Plant under
Investigation References

Green copper
nanoparticles Immobilizes Cr in the soil

• Augments plant growth, biomass,
and cellular

• Enhances antioxidants contents
• Decreases the reactive oxygen species

Wheat [152]

Citrate-coated
magnetite

nanoparticles (NPs)

Diminishes the toxicity
effects of Cr

• Enhances seed germination
• Enhances growth of roots and shoots
• Lowers accumulation of heavy metal

Wheat [153]

Nano-zerovalent iron
Nanoparticles

Decreases Cr uptake
and buildup

• Improves shoot and root dry weight
• Increases photosynthetic pigments such as

chlorophyll and carotenoids
• Increases proline content
• Improves efficiency of cell redox homeostasis

Sunflower [154]

Metallic nanoparticles Reduces the uptake and
toxicity of Cr

• Increases photosynthetic activity
• Regulation of cellular metabolites
• Increases chelation capacity to bind with Cr
• Enhances the activity of antioxidants
• Helps in reducing Cr-induced oxidative stress

and cellular damage
• Detoxification of Cr

Rapeseed
Rice [155]

6.4. Biotechnological Approaches for Mitigating Chromium Stress in Plants

Finding effective, long-lasting, and affordable solutions to remove Cr contamination
from contaminated places is critical due to the negative impact of Cr on both humans
and plants. In this regard, integrating multiomics approaches to decipher the molecular
mechanisms of host–Cr interactions and their signaling and thus identify potential target
genes can be further utilized for the development of Cr-resistant cultivars via genetic
engineering. In the last decade, the advent of high-throughput ‘omics’ technologies has
generated extensive information on the regulatory mechanisms of plant resistance to var-
ious biotic and abiotic stresses [156–158]. Similarly, omics studies and the integration of
bioinformatics resources have helped in understanding the molecular mechanisms regu-
lating heavy metal accumulation in plants and the responses of plants to these stresses.
However, there are few studies on Cr–plant interactions, which leads to huge knowledge
gaps. In a transcriptomic study on pepper plants, it was shown that Cr inhibited several
metabolic and biochemical pathways in ZS 758, including lipid biosynthesis, stilbenoid,
diarlyheptanoid, and gingerol biosynthesis, carbohydrate metabolism, and glutathione
metabolism, while the ribosome and glucosinolate biosynthesis pathways were observed to
be affected in Zheda-622. On the contrary, vitamin metabolism and amino acid biosynthesis
were induced in the studied crop varieties. Cr has also been shown to positively influence
certain transcription factors regulating different enzymes, such as hydralases, phosphatases,
pyrophosphatase, and oxidoreductases. Enzymes with antioxidant activity have also been
shown to be positively regulated by Cr. In a study by Goupil et al. [159], several heat shock
protein genes, including Hsp90-1, were found to be upregulated in tomatoes grown under
Cr stress conditions. In addition, Gill et al. [160] identified a novel Cr-responsive protein
(CL2535.Contig1_All). Differential proteomics tools, such as 2-dimensional electrophoresis
coupled with the MALDI-TOF, have been used to identify DEPs (differentially expressed
proteins) in different plants grown under Cr (VI) stress. The data revealed that transcript
levels of ATP synthase RuBisCO and coproporphyrinogen III oxidase (CPO) were signifi-
cantly increased by Cr (VI) [161] in a study exploring the impact of Cr (III, VI) in pollen
germination in kiwi. Comparative proteomics revealed that proteins involved in main-
taining homeostasis, lipid synthesis, and the antioxidant defense system were markedly
upregulated under conditions of Cr exposure and those involved in the mitochondrial
oxidative phosphorylation process were significantly reduced, resulting in reduced ATP
levels. Protein degradation pathways were also affected under Cr stress conditions, leading
to the accumulation of truncated protein inside the cell. Under Cr (VI) stress, 26S-mediated
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proteolysis (via reduction in Rpn11 proteasome subunit) was affected, which impaired
protein degradation [161]. Sharmin et al. [162] reported 36 differentially expressed proteins
in M. sinensis under Cr stress conditions. Hence, it is pertinent to pay attention from
the beginning of Cr exposure to cell interaction/receptor activation, associated signaling
pathways, differential expression of related pathway genes/TFs, their metabolism, and
thus the fate of these particles. Genetic engineering holds great promise for removing Cr
from contaminated soils by engineered plants or tailored microbes. For instance, genetically
engineering plants such as Nicotiana tabacum, Populus angustifolia, and Silene cucubalis to
overexpress glutamylcysteine syntlietase resulted in increased heavy metal accumulation
compared to wild type plants [163]. There have many success stories about genetically
modified plants reducing different heavy metal contaminants in different environments.
However, there are few studies on Cr contamination.

Synthetic biology has emerged as one of the most promising fields in modern agricul-
ture to redesign current plant systems with more beneficial traits in terms of growth, yield,
and stress adaptability. Many efforts have been made to discover plant species with more
effective Cr detoxifying processes in certain locations. However, they may vary in their
abilities to absorb, accumulate, and exclude Cr pollutants. These mechanisms are crucial
since they will establish a plant’s specialized function in phytoremediation. In this context,
synthetic biology can be used to engineer plants that have precise and extremely effective
Cr mitigation capabilities for sustainable agriculture. Nevertheless, the most successful
stories of synthetic biology have been reported with model microbes such as E. coli and
yeast, which have helped to better understand an array of biological and environmental
complex traits and further translate that knowledge in both plant and animal systems. In
this review we focus on how synthetic biology can be employed in microbe- and plant-
based Cr mitigation tools in sustainable agriculture. Improvement of Cr stress resilience
in crops using the CRISPR/Cas system is the most advanced and efficient tool in modern
agriculture. Applications of CRISPR/Cas-related technologies are presently being utilized
to modify the genomes of multiple crop plants in order to withstand different biotic and
abiotic stresses, while its expansion in heavy metal stress tolerance is still in the exploratory
phase [164–168]. Nevertheless, use of the CRISPR/Cas system in Cr stress resilience in
agricultural crops is a promising venture to accelerate their phytoremediation potential and
other beneficial traits. Furthermore, the availability and accessibility of the whole genomic
sequences of phytoremediators or models such as Arabidopsis halleri, B. juncea, Hirschfeldia
incana, Noccaea caerulescens, and Pteris vittata could provide an excellent podium for the
discovery and characterization of potential target key genes related to Cr uptake, signaling,
translocation, and tolerance, providing further targets for CRISPR-based gene editing.
According to Pérez-Palacios et al. [169], CRISPR/Cas systems can also promote a number of
additional processes, including phytoaccumulation, phytostabilization, phytodegradation,
and rhizofiltration, respectively. One of the most important targets for CRISPR-mediated Cr
mitigation is its transporters since they aid in its uptake and translocation. Targeting these
genes using CRISPR/Cas can dramatically improve the Cr detoxifying capacity of plants.
Hence, there is need to expand the use of the CRISPR/Cas approach to engineer crops with
improved Cr tolerance that can boost agricultural productivity and the economy.

Although microbes are essential to plant survival in Cr-contaminated soils, their
effectiveness is constrained by shifting environmental factors, poor colonization, and lim-
ited permanence in the rhizosphere. In this regard, the application of tailored beneficial
synthetic microbial communities (SynComs) using microbiome engineering will provide
novel avenues for Cr mitigation in sustainable agriculture. In order to develop efficient
tailored microbial consortia for Cr mitigation, there is a need to identify the elite microbial
communities that can easily grow in Cr-contaminated soils. In addition, the identification
and characterization of root exudates that influence the Cr microbial consortia are also
important for developing tailored Cr SynComs. NGS technologies, multiomics, and com-
putational methods have all significantly contributed to our understanding of how the
microbiome community changes in response to biotic and abiotic stressors; however, little
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is known during heavy metal stress, especially Cr stress [170–172]. Therefore, it is crucial
to investigate the microbiome of Cr-contaminated soils and find novel microbial species in
order to create Cr SynComs that can provide novel mitigative alternatives for Cr removal
in agricultural soils.

6.5. Breeding of Chromium-Safe Cultivars

Even though several remediation techniques and strategies have been used to mitigate
the adverse effects of heavy metal toxicity in plants [173,174], none of these techniques has
proven effective in terms of cost, time, and sustainability and in achieving the desirable
results. Moreover, in recent years, the extent and adversity of the toxicity of chromium
have gained wide attention worldwide. Hence, breeding programs aimed at developing
crop varieties with high chromium resistance or tolerance are much needed to reduce
the toxic effects of chromium in plants as well as in humans. Fortunately, a new concept
has been proposed that includes the screening and developing of plant varieties with low
chromium content in the edible parts. This concept originates from the fact that heavy metal
accumulation differs not only among plant species but also among varieties of the same
species [175]. The metal accumulation abilities varied among different species of crops
such as garlic chives, carrots, cucumbers, tomatoes, and radishes [176,177]. Additionally,
it varied among cultivars of the same species; for instance, high metal accumulation
was found in sweet corn cultivars but not in normal corn cultivars [178]. Likewise, in
B. napus, ZS 758 and Zheda 622 were low and high chromium-accumulating cultivars,
respectively [179]. In Oryza sativa, Xiushui 113, Xiushui 09, and Mingzhu 1 were low Cr-
accumulating cultivars whereas HG 5, Dan K5, and Huyou 1 were high Cr-accumulating
cultivars [180]. In Triticum aestivum, Kohsar-95, Meiraj-08, Millet-011, C-217, and NARC-
011 were low Cr-accumulating cultivars whereas Auqab-00 and Pakistan-13 were high
Cr-accumulating cultivars [181]. Similarly, cultivars of staple crops such as wheat, maize,
and rice have also depicted variations in the uptake of metals and since these staple
crops form an inseparable part of the human diet across the globe, more attention has
been paid to the development of crops with low metal uptake [182]. Plant varieties also
differ in their maximum thresholds of Cr tolerance [183]. Nath et al. [184] reported the
differential effects of Cr on the germination of rice seeds and the growth of seedlings. Not
only chromium, but differential tolerance to cadmium has also been reported in many
crops. This further substantiates the concept of screening and developing high metal-
tolerant plants. The term pollution safe cultivars (PSCs) has been proposed for such plants
and a strategy has been proposed for selecting such PSCs. PSCs are crops with metal
accumulation in the edible parts to an extent that is safe to eat [178]. As per the WHO,
the permitted concentration of hexavalent chromium in the edible part is 1.3 mg/kg. In
the past, cadmium-safe cultivars have been screened in sunflower and durum wheat [175].
On the basis of metal concentrations and bioaccumulation factors, plants are classified as
low, moderate, and high metal accumulators [185]. However, the ability to accumulate
metals varies according to the environmental conditions and it is also necessary to consider
cultivar–environment interactions when classifying plants as metal-tolerant or -sensitive.
Jun et al. [186] also reported different chromium tolerance levels in several pulse crops.
On the basis of germination and seedling growth, they concluded that Lablab purpureus
and Glycine max were the most sensitive species whereas Lathyrus odoratus and Dumasia
villosa were the most tolerant species. The selection of crop cultivars with high metal
tolerance using different breeding approaches could provide an effective solution. Both
conventional and modern breeding approaches may be employed to screen and develop
chromium-tolerant cultivars. For instance, mutation breeding technique may be employed
in different staple crops with the aim of isolating mutant lines with improved chromium
tolerance, mutant lines with less uptake of chromium, or mutant lines that accumulate
chromium within the cell walls, restricting its transfer into cells and then into trophic levels.
However, conventional breeding approaches are arduous, time-consuming, and laborious,
and therefore, modern breeding approaches such as marker-assisted selection may be used
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for the selection of metal tolerant cultivars [187]. For instance, Qui et al. [188] reported three
QTLs, viz., qRCA7, qSCA9 and qSRA7, that were associated with Cr accumulation in the
roots and shoots of rice. These markers may help in the selection of low Cr-accumulating
cultivars of rice. Almas et al. [181] identified SNPs associated with chromium tolerance
in spring wheat. They reported 71 marker trait associations (MTAs) distributed over
47 loci in Cr treatment and 43 MTAs distributed over 29 loci in control treatment. In China
and the United States of America, breeding programs have achieved success in screening
and developing low metal varieties of sunflower and durum wheat [182]. Breeding of low
metal crops is an emerging and promising strategy for alleviating heavy metal toxicity.
However, further research is needed to formulate the criteria for identifying stable, low
metal-accumulating crops. In modern breeding approaches, more insight is needed to
identify and regulate the expression of genes associated with metal uptake, accumulation,
and exclusion.

7. Conclusion and Future Perspectives

Cr pollution is becoming a serious problem to the ecosystem and a major health risk
to the biota. Additionally, the detrimental effects of Cr on our agriculture are a serious
concern for food security and safety. Hence, there is a need to find a long-lasting remedial
tool kit for its removal from the environment. This requires a deep understanding of
Cr accumulation, translocation, and plant defense responses in both model and crop
systems. In this review, we discussed Cr toxicity in plants, its signaling cascades, and
various mitigation approaches. However, there are many questions about Cr perception
and signal transduction that warrant future attention. For example, how cell wall receptor
kinases and ion channels respond to Cr stress. How Cr triggers Ca2+ and ROS signaling
cascades and how it modulates different intracellular signaling cascades in roots. The
function of the many ion transporters that promote Cr transport as well as the several
carriers that assist in its movement from the roots to various compartments require future
consideration. Moreover, how Cr stress triggers hormonal activation or how it regulates
cross talk can have different outcomes in terms of plant growth and defense. Further,
we also highlighted the importance of various priming approaches for mitigating Cr
toxicity. However, recent research suggests that plants can be primed by various methods,
such as microbial, chemical, and nanotechnology-based methods, to better tolerate Cr
stress. However, these tools have some limitations that need to be improved in order to
attain their maximum efficiency. For instance, the unregulated deposition of chemical or
nanoparticles during priming to increase plant protection, which affects soil fertility and
crop output, significantly alters plant ecosystems and the microbiota. Although using
beneficial microorganisms to prime plants rather than chemicals can address some of
the issues with chemical priming, their high-efficiency formulations are dependent on a
number of factors. In this context, future studies should focus on exploring the microbiome
in Cr-contaminated soils and identify elite Cr-tolerant taxa that can be engineered in order
to develop tailored Cr SynComs. Additionally, genetic engineering and advanced breeding
tools, such as genome editing, can also provide the best approaches to develop long-lasting
Cr-tolerant crop cultivars for sustainable agriculture.
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