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Abstract: Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in
hydroponics or culture media, but its corresponding effects in plant–soil systems remain unknown. In
this study, different GABA dosages (0–8 g kg−1) were added to the rhizosphere of Coreopsis grandiflora
grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by
38.9–159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and
transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd,
which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining
factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors
under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora.
The rhizospheric environment dynamics remodeled the bacterial community composition, resulting
in a decline in overall bacterial diversity and richness. However, several important plant growth-
promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA
treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil
amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd
phytoextraction in plant–soil systems.

Keywords: gamma-aminobutyric acid; heavy metal; phytoextraction; soil amendment; plant growth-
promoting rhizobacteria

1. Introduction

Heavy metals (HMs) are global pollutants that are highly hazardous to ecosystems
and public health [1]. Plants in direct contact with HMs in soils and crops and vegetables
are important sources of HMs entering human bodies via the food chain [2]. In this context,
low-HM-accumulating crop and vegetable cultivars are important breeding objectives.
However, plants with high HM tolerance and accumulation capabilities show potential
for remediating HM-polluted soils (e.g., phytoextraction and phytostabilization) [3]. Thus,
preventing HMs from entering crops/vegetables for food safety and enhancing phytore-
mediation efficiency is essential in addressing increasing HM pollution. Plant growth
conditions (e.g., soil pH and nutrient level) and HM bioavailability [4] in soils directly
determine HM uptake by plants. Therefore, regulating the soil microenvironment, which
can be effectively achieved by the application of soil amendments [5], is a crucial strategy
for minimizing HM uptake by crops or enhancing HM phytoremediation efficiency.

The effects of soil amendments on HM mobility in soils have attracted increasing
attention over the past 20 years [6]. Soil additives, such as biochar, phosphate compounds,
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manure, compost, or liming materials, can reduce HM bioavailability in soils via various
mechanisms [6], whereas soil chelators can enhance phytoremediation efficiency by ac-
tivating HM bioavailability, stimulating the features and vitality of plant roots, and/or
increasing the HM bearing capacity of plants [7,8]. However, many soil amendments
have several challenges, including actual amendment effects, environmental interference
resistance, and environmental friendliness [7], that hinder their large-scale application
for HM pollution remediation in soils. Hence, efficient and environmentally friendly soil
amendments such as natural amino acids and aminopolycarboxylic acids [9,10] are worth
exploring in the future.

Gamma-aminobutyric acid (GABA), a natural non-protein amino acid, is widely found
in organisms. GABA displays great application potential in various areas because of its
environmentally-friendly and mass-producible features [11]. GABA-mediated HM detox-
ification in plants has been frequently reported [12–16]. Several studies have also found
that exogenous GABA can affect plant HMs’ and metalloids’ uptake under hydroponic or
artificial-nutrition conditions. For instance, GABA decreased Cr accumulation in Brassica
juncea in nutrient solutions [15], As accumulation in rice in nutrient media [13], Cd accumu-
lation in maize in perlite and cocopite [16], and Cd uptake in apple seedlings in nutrient
solutions [14]. However, little is known about the effects of GABA on HM tolerance and
uptake by plants in soils. This is an intriguing topic because GABA may regulate the uptake
of HMs by plants by interacting with multiple soil environmental factors (especially the
microbial community). In this study, the potential effects and rhizospheric mechanisms
of exogenous GABA on Cd phytoextraction efficiency of a Cd accumulator, Coreopsis gran-
diflora [17], were explored. The study aims to provide novel perspectives for artificially
regulating HM transport in plant–soil systems from interactions between GABA and soil
factors (e.g., rhizobacteria).

2. Results
2.1. Effects of GABA Addition on the Growth and Cd Uptake of C. grandiflora

Compared to the control (T1) samples, GABA supplementation had insignificant effect
on the growth of C. grandiflora (Figure 1A,B). However, the average Cd concentrations in
the shoots (12.27–31.40 mg kg−1) and roots (8.43–33.43 mg kg−1) of C. grandiflora indicated
an increasing trend with GABA supplementation in a dose-dependent manner (Figure 1C).
Total Cd content increased by 38.9%, 82.7%, 159.5%, and 127.9% in shoots and 25.9%, 70.4%,
115.3%, and 247.4% in roots when the plants were treated with 1 (T2), 2 (T3), 4 (T4), and
8 g kg−1 (T5) GABA, respectively, compared with the control group (T1) (Figure 1D). The
change in Cd BCFs (Figure 1E) was the same as that of Cd concentrations (Figure 1C) in
plants, but Cd TFs were not significantly affected by GABA addition (Figure 1F). These
results suggest that GABA added to soils effectively promoted Cd accumulation in C.
grandiflora but had a poor effect on Cd transport rates from roots to shoots.
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Figure 1. Growth and Cd accumulation characteristics of C. grandiflora in Cd-contaminated soils 
supplemented with 0 (T1), 1 (T2), 2 (T3), 4 (T4), and 8 (T5) g kg−1 gamma-aminobutyric acid 
(GABA). (A) Plant morphological features at harvest. (B) Plant biomasses (ANOVA for shoot: F = 
1.109, P = 0.404, degree of freedom = 4; ANOVA for root: F = 3.140, p = 0.065, degree of freedom = 4). 
(C) Cd concentrations in plants (ANOVA for shoot: F = 9.143, p = 0.002, degree of freedom = 4; 
ANOVA for root: F = 19.554, p = 0.000, degree of freedom = 4). (D) Cd contents accumulated in 
plants in a single pot (ANOVA for shoot: F = 9.707, p = 0.002, degree of freedom = 4; ANOVA for 
root: F = 5.131, p = 0.016, degree of freedom = 4). (E) Cd bioconcentration factors (ANOVA for shoot: 
F = 9.049, p = 0.002, degree of freedom = 4; ANOVA for root: F = 19.675, p = 0.000, degree of freedom 
= 4). (F) Cd translocation factors (ANOVA: F = 4.468, p = 0.025, degree of freedom = 4). Data repre-
sent means ± standard deviations (B–F: n = 3); the same-colored bars labelled with different letters 
(a, b, c, and d) indicate significant differences (p < 0.05, Duncan’s test, one-way ANOVA) between 
groups. DW: dry weight. 
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Figure 1. Growth and Cd accumulation characteristics of C. grandiflora in Cd-contaminated soils
supplemented with 0 (T1), 1 (T2), 2 (T3), 4 (T4), and 8 (T5) g kg−1 gamma-aminobutyric acid (GABA).
(A) Plant morphological features at harvest. (B) Plant biomasses (ANOVA for shoot: F = 1.109,
P = 0.404, degree of freedom = 4; ANOVA for root: F = 3.140, p = 0.065, degree of freedom = 4). (C) Cd
concentrations in plants (ANOVA for shoot: F = 9.143, p = 0.002, degree of freedom = 4; ANOVA
for root: F = 19.554, p = 0.000, degree of freedom = 4). (D) Cd contents accumulated in plants in a
single pot (ANOVA for shoot: F = 9.707, p = 0.002, degree of freedom = 4; ANOVA for root: F = 5.131,
p = 0.016, degree of freedom = 4). (E) Cd bioconcentration factors (ANOVA for shoot: F = 9.049,
p = 0.002, degree of freedom = 4; ANOVA for root: F = 19.675, p = 0.000, degree of freedom = 4).
(F) Cd translocation factors (ANOVA: F = 4.468, p = 0.025, degree of freedom = 4). Data represent
means ± standard deviations (B–F: n = 3); the same-colored bars labelled with different letters (a, b, c,
and d) indicate significant differences (p < 0.05, Duncan’s test, one-way ANOVA) between groups.
DW: dry weight.

2.2. Effects of GABA Addition on Cd Bioavailability in the C. grandiflora Rhizosphere

Total Cd concentrations remained similar in different soils, but the concentrations of
different Cd fractions were remolded with GABA supplementation (Table 1). Exchangeable
Cd concentrations in the T3 and T5 soils were significantly higher (p < 0.05) than those in
the T1 soil, whereas Fe-Mn oxide Cd concentrations showed a significant decrease (p < 0.05)
in the T3 and T5 soils compared to the T1 soil (Table 1). In contrast, carbonate-bound Cd
concentration was also significantly lower (p < 0.05) in the T5 soil than in the T1 soil (Table 1).
The organic-bound and residual Cd concentrations showed no differences between the
different soils (Table 1). These results indicate that GABA supplementation drives the
transformation process from Fe-Mn oxide and carbonate-bound Cd to exchangeable Cd in
the rhizosphere of C. grandiflora, resulting in an increase in Cd bioavailability.
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Table 1. Cd speciation (mg kg−1) in the rhizosphere of C. grandiflora supplemented with 0 (T1), 2 (T3),
and 8 (T5) g kg−1 gamma-aminobutyric acid (GABA).

Cd Chemsical Fractions T1 T3 T5
ANOVA

F Value p Value DF

Total Cd 12.26 ± 0.53 a 12.40 ± 0.67 a 11.97 ± 0.76 a 0.224 0.805 2
Exchangeable Cd 0.80 ± 0.03 b 0.87 ± 0.01 a 0.90 ± 0.01 a 16.610 0.004 2

Carbonate-bound Cd 0.07 ± 0.01 a 0.07 ± 0.02 a 0.04 ± 0.01 b 3.452 0.101 2
Fe-Mn oxide Cd 0.25 ± 0.01 a 0.24 ± 0.01 b 0.18 ± 0.00 c 90.799 0.000 2

Organic-bound Cd 0.04 ± 0.00 a 0.04 ± 0.00 a 0.03 ± 0.00 a 0.853 0.472 2
Residual Cd 11.11 ± 0.54 a 11.18 ± 0.67 a 10.81 ± 0.76 a 0.172 0.846 2

Data represent the means ± standard deviations (n = 3); data in the same row labelled with different letters (a,
b, and c) indicate significant differences (p < 0.05, Duncan’s test, one-way ANOVA) among different treatments.
DF: degree of freedom.

2.3. Leaching of Cd in Soils by GABA

Following leaching, total Cd concentrations in both the residual soils and filtrates were
similar among the different treatments (Supplementary Figures S1 and S2), indicating that
GABA did not directly increase water-soluble Cd in the soils.

2.4. Effects of GABA Addition on Physicochemical Indices in the C. grandiflora Rhizosphere

The pH values showed a decreasing trend (p < 0.05) with increasing doses of GABA
supplementation (Table 2). Insignificant differences in the concentrations of OM, TP, and
TK were found between different soils, whereas an increasing trend was observed in
TN concentration with GABA supplementation (Table 2). HN and AK concentrations
were significantly (p < 0.05) higher in the T5 soil than in the T1 and T3 soils, whereas AP
concentrations in the T3 and T5 soils were significantly (p < 0.05) decreased with GABA sup-
plementation compared to the T1 soil (Table 2). These altered soil physicochemical indices
showed multiple correlations (Figure 2), indicating complex interactions among them.
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Figure 2. Correlation network between soil physicochemical indices and alpha diversity indices. The
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network lines indicate significantly positive and negative correlations (p < 0.05), respectively.
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Table 2. Soil physicochemical indices in the rhizosphere of C. grandiflora supplemented with 0 (T1),
2 (T3), and 8 (T5) g kg−1 GABA.

Soil Indices Unit T1 T3 T5
ANOVA

F Value p Value DF

pH / 6.01 ± 0.06 a 5.75 ± 0.02 b 5.11 ± 0.04 c 238.888 0.000 2
OM g kg−1 220.03 ± 8.49 a 205.97 ± 11.61 a 217.57 ± 14.13 a 0.832 0.480 2
TN g kg−1 6.09 ± 0.21 b 6.43 ± 0.28 ab 6.77 ± 0.04 a 5.617 0.042 2
TP g kg−1 1.41 ± 0.02 a 1.44 ± 0.02 a 1.41 ± 0.04 a 0.672 0.545 2
TK g kg−1 9.38 ± 0.12 a 8.82 ± 0.48 a 9.02 ± 0.36 a 1.276 0.345 2
HN mg kg−1 342.94 ± 20.13 b 366.22 ± 7.33 b 417.39 ± 6.34 a 17.435 0.003 2
AP mg kg−1 29.56 ± 0.77 a 25.85 ± 0.62 b 25.06 ± 0.46 b 29.329 0.001 2
AK mg kg−1 55.80 ± 2.67 b 57.50 ± 3.83 b 77.63 ± 10.47 a 6.733 0.029 2

Data represent the means ± standard deviations (n = 3); data in the same row labelled with different letters (a,
b, and c) indicate significant differences (p < 0.05, Duncan’s test, one-way ANOVA) among different treatments.
AK: available K; AP: available P; DF: degree of freedom; HN: hydrolysable N; OM: organic matter; TK: total K;
TN: total N; TP: total P.

2.5. Bacterial Community Composition in the C. grandiflora Rhizosphere
2.5.1. Composition of Bacterial Communities

The sequencing results showed that 120,868–134,136 raw reads were generated for
different samples (Supplementary Table S2). The average numbers of bacterial operational
taxonomic units (OTUs) identified in the T1, T3, and T5 soils were 4791, 4747, and 4042,
respectively, in which the T5 soil was significantly lower than those in the T1 and T3 soils
(Supplementary Table S2). The unweighted pair group method with arithmetic mean
(UPGMA) clustering tree showed that samples from the same group clustered together, and
different groups were clearly separated (Figure 3A). Principal component analysis (PCA)
also showed similar results (Figure 3B). These results suggest that the bacterial community
composition in the rhizosphere of C. grandiflora varied between different treatments.

The alpha diversity of bacterial communities showed significant differences among
the different soils (Supplementary Table S3). The Shannon and Simpson indices were
significantly (p < 0.05) reduced with GABA supplementation in a dose-dependent manner,
while the Chao1 and Ace indices in the T5 soil were significantly (p < 0.05) lower than
those in the T1 and T3 soils (Supplementary Table S3). These results suggest that GABA
supplementation decreased the total bacterial richness and diversity in the C. grandiflora
rhizosphere (Supplementary Table S3). The correlation network analysis indicated that
many soil physicochemical indices were significantly (p < 0.05) correlated with the four
alpha indices (Figure 2), suggesting that these soil physicochemical indices may affect
bacterial community composition.

There were 2033 common OTUs identified in the T1, T3 and T5 soils, accounting for
42.4–50.3% of the total OTUs (Figure 3C). The unique bacterial OTU numbers showed the
following trend: T1 (1254) > T3 (1134) > T5 (907) (Figure 3C). At the phylum level, the three
soils shared 26 bacterial phyla, and only one unique bacterial phylum was identified in
the T3 soil (Figure 3D). Similarly, the three soils shared the majority of the bacterial genera
(223), and 21–36 specific bacterial genera were identified in different soils (Figure 3E). The
top bacterial phyla (21) and genera (98) with relatively high abundance (>0.1%) are shown
in Supplementary Tables S4 and S5, respectively. Among them, Proteobacteria (31.2–42.5%),
Patescibacteria (12.3–17.9%), Bacteroidetes (7.8–13.6%), Actinobacteria (6.0–9.0%), and
Acidobacteria (5.0–9.6%) were the dominant phyla (Figure 3F).
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Figure 3. The rhizosphere bacterial community composition of C. grandiflora grown in Cd-
contaminated soils supplemented with 0 (T1), 2 (T3), and 8 (T5) g kg−1 GABA. The unweighted pair
group method with arithmetic mean clustering tree (A) and principal component analysis (B) of
samples at the operational taxonomic unit (OTU) level. (C) Venn diagram of OTUs among different
soils. (D) Venn diagram of bacterial phyla among different soils. (E) Venn diagram of bacterial genera
among different soils. (F) Stacked diagram showing the relative abundance of the top ten bacterial
phyla in different soils.

2.5.2. Variations in Rhizobacteria under GABA Addition

Changes in abundance, which were performed using linear discriminant analysis
(LDA) effect size analysis (LDA scores > 3), were identified for many bacterial taxa in the T3
and T5 soils compared to those in the T1 soil (Figure 4A,B; Supplementary Tables S6 and S7).
Generally, more bacterial taxa at each taxonomic level were induced or declined in the
T5 soil than in the T3 soil (Figure 4C,D). A total of seven common bacterial phyla changed
relatively consistently in both the T3 and T5 soils, and another seven bacterial phyla showed
a specific change in the T5 soil (Figure 4E). Similarly, 12 common bacterial genera changed
consistently in both the T3 and T5 soils, and another 27 bacterial genera were specifically
altered in the T5 soil (Figure 4F). These results indicated that GABA had a significant effect
on the variations in rhizobacteria in a dose-dependent manner.

At the genus level, many rhizobacteria that increased were plant growth-promoting
rhizobacteria (PGPR), and some of them were involved in Cd (im)mobilization and/or
P and K solubilization (Figure 5A). In particular, relative abundance dynamics of the
two dominant genera, Pseudomonas and Sphingomonas, showed significant correlations
with changes in exchangeable Cd concentrations in soils (Figure 5B), indicating that these
bacterial taxa may be the driving factors for the transformation of Cd chemical fractions.
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Figure 4. Linear discriminant analysis (LDA) and effect size analysis (LDA scores > 3) showing
the indicator bacteria in rhizosphere soils of C. grandiflora supplemented with 0 (T1), 2 (T3) and
8 (T5) g kg−1 GABA. (A) Cladogram showing dominant bacteria between T1 and T3 soils. Identifiers
labelled on the cladogram correspond to those in Supplementary Table S6. (B) Cladogram showing
dominant bacteria between T1 and T5 soils. Identifiers labelled on the cladogram correspond to those
in Supplementary Table S7. (C) Numbers of dominant bacteria at different taxonomic levels between
T1 and T3 soils. (D) Numbers of dominant bacteria at different taxonomic levels between T1 and
T5 soils. (E) Venn diagram of the differential bacterial phyla between T3 and T5 soils compared to the
T1 soil. (F) Venn diagram of the differential bacterial genera between T3 and T5 soils compared to the
T1 soil.
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3. Discussion

This study showed that GABA supplementation to the root zone improved Cd accu-
mulation in C. grandiflora (Figure 1C,D), which indicated that GABA acts as a soil amend-
ment. The results were different from previous findings that foliar spraying of exogenous
GABA [18] and its addition in hydroponics [14,15], semihydroponics [16], or nutrient me-
dia [13] reduced HM uptake by plants. A similar phenomenon has also been observed for
cysteine, for example, which increased Cd accumulation in Solanum nigrum in soils [19] and
Hg accumulation in Arabidopsis in Hoagland nutrient solution [20] but reduced Cr uptake
in B. napus in MS media [21] and in maize shoots in Hoagland nutrient solution [22]. These
results indicate that cysteine did not produce a consistent effect on different HM-plant
systems even in the similar environmental media [20,22]. Accordingly, the effects of GABA
on HM uptake by plants in different soil–HM–plant systems are also mutable and should
attract further research. The distinct effects of GABA on HM uptake by plants in soils and
nutrient solutions/media may be attributed to the more complex microenvironments in
soils, including HM speciation, soil properties, and microbial community composition.

Cd speciation and bioavailability in the C. grandiflora rhizosphere were analyzed
because they determine HM uptake by plants [23]. Interestingly, in this study, GABA
addition improved Cd bioavailability in the rhizosphere of C. grandiflora by facilitating the
transformation of Fe-Mn oxide and carbonate-bound Cd into exchangeable Cd (Table 1).
The exchangeable fraction of HMs easily migrate in soils and is readily absorbed by plants,
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whereas the Fe-Mn oxide fraction of HMs is not readily available [24]. However, Cd
leaching results (Supplementary Figures S1 and S2) showed that GABA could hardly
activate Cd bioavailability directly in soils like other soil chelators [25].

Soil physicochemical indices and microbial community composition in the C. gran-
diflora rhizosphere were thus analyzed to explore the mechanisms of GABA. Significant
changes in soil pH and TN, HN, AP, and AK concentrations were observed (Table 2),
indicating that GABA addition remodeled rhizospheric microenvironments. Decreased
soil pH, which may be due to changes in the proportion of anions and cations across
the rhizosphere or organic acids secreted by plants, should be a key factor affecting the
transformation of Cd speciation in this study according to previous reports [26,27]. Soil pH
may also be a driving factor [28–30] for the changes in N, P, and K availability (Figure 2).
Additionally, GABA could serve as a soil N source, contributing to an increase in the
concentrations of both TN and HN (Table 2). Previous studies reported that the availability
of N, P, and K affects plant growth and HM uptake [31,32], indicating a complex interaction
between nutrient transformation and Cd absorption in the rhizosphere of C. grandiflora
under GABA addition.

The reassembling of bacterial community composition was also observed in the rhizo-
sphere of C. grandiflora under GABA addition (Figures 3 and 4), which can largely affect
Cd bioavailability in soils and Cd uptake by plants [10]. The overall bacterial diversity
and richness in the C. grandiflora rhizosphere was significantly diminished (p < 0.05) under
GABA addition (Supplementary Table S3). At each classification level, the abundance of
some bacterial taxa was markedly increased or decreased with GABA supplementation
(Figure 4; Supplementary Tables S6 and S7). The results were supported by previous studies
showing that GABA, as a root exudate, altered the microbiome composition throughout
the root systems of rice, wheat, and maize [33,34]. According to the correlation network
analysis results (Figure 2), the dynamics of bacterial community composition should be
attributed to multiple soil factors and not to GABA solely. Like other amino acids, GABA
is a ready nutrition source for many microorganisms, leading to the proliferation of some
bacteria. It may also serve as a signal molecule luring the chemotaxis and colonization
of some rhizobacteria [35]. Moreover, the acidified soil environment and altered bioavail-
ability of some elements (e.g., Cd, N, P and K) may also be partially responsible for the
changes in rhizobacteria [36,37]. In addition, GABA and these altered soil physicochemical
indices likely reprogramed root exudates, which ultimately interplay with rhizospheric
microbiota [38].

Many potential PGPR [39,40] were upregulated with GABA supplementation (Figure 5A),
confirming the environmental friendliness of GABA. These PGPR can improve C. gran-
diflora resistance to Cd stress through various mechanisms, such as promoting nutrient
acquisition, producing growth regulators, or resisting pathogenic bacteria [39]. Moreover,
some PGPR (Figure 5A) can also regulate Cd uptake by plants by affecting Cd mobility
and/or ameliorating soil microenvironments [39,41], as well as regulating the expression of
metal transporters in plants [42]. The increase in several PGPR, such as Pseudomonas, Sphin-
gomonas, and Burkholderia-Caballeronia-Paraburkholderia (Figure 5A), affects Cd mobilization
and K solubilization [39,43], in accordance with the increase in the bioavailability of Cd and
K (Tables 1 and 2). Although many P-solubilizing rhizobacteria were upregulated under
GABA supplementation (Figure 5A), a decrease in AP concentration was observed (Table 2)
in the C. grandiflora rhizosphere, which can be attributed to trade-offs among multiple
processes of P solubilization, insolubilization, and intake by plants.

In particular, the two dominant PGPR (i.e., Pseudomonas and Sphingomonas) of the Pro-
teobacteria phylum (Figure 5A) may play important roles in regulating Cd phytoextraction
because their abundances showed significantly positive correlation with soil exchangeable
Cd concentrations (Figure 5B). Pseudomonas spp. are known to have diverse plant beneficial
traits and to improve plant health and vitality under HM stress [44]. Many Pseudomonas
strains mediate Cd absorption and transport, promoting Cd phytoextraction efficiency.
For example, inoculation of two P. aeruginosa strains (ZGKD2 and ZGKD5) improved Cd
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phytoextraction from S. nigrum by increasing Cd concentration and translocation from roots
to shoots [45]. Sphingomonas spp. are known as the main components of the root-associated
bacterial taxa that undergo HM (especially Cd and Zn) phytoextraction [41,46]. Pseu-
domonas and Sphingomonas spp. enrichment in the rhizosphere of C. grandiflora contributed
crucially to the promotion of Cd phytoextraction. In addition, many Pseudomonas spp. and
some Sphingomonas spp. have been identified as P- and K-solubilizing bacteria [43,47,48],
indicating that these two bacterial taxa also participate in the regulation of the nutrient
cycles in the rhizosphere of C. grandiflora.

4. Materials and Methods
4.1. Experimental Treatment

The soil was obtained via a half-and-half mixture by volume proportion of the locally
cultivated soil in Kunming and previously Cd-contaminated soil in the laboratory [49]. The
soils were sieved, fully mixed, and loaded into uniform flowerpots (h = 17.5 cm, d = 18.5 cm)
in equal aliquots, which were then placed in a glass greenhouse (day: approximately
82% natural light, 12–14 h, 23–25 ◦C; night: 10–12 h, 18–20 ◦C; humidity: 40–60%) to
equilibrate for a week. The basic parameters of the homogeneous soil are provided in
Supplementary Table S1.

C. grandiflora seeds were surface-sterilized (1% NaClO solution, 10 min), sown in
the aforementioned pots, and thinned to three seedlings per pot as soon as the seeds
germinated. After growing for approximately one month, five groups of plants were
separately supplemented with 0 (T1), 1 (T2), 2 (T3), 4 (T4), and 8 (T5) g kg−1 GABA in
rhizospheric soils. GABA was supplemented to the soil samples four times every five days
according to a previously described method [10]. For each supplementation, one-fourth of
solid GABA (Macklin, Shanghai, China) for the targeted dosages per pot was dissolved
in 150 mL of deionized water and poured evenly around the plant roots. The experiment
ended one month after the fourth GABA supplementation. Three biological replicates were
prepared for each treatment.

4.2. Sample Collection and Biomass Measurement

After the experiment, shoots and roots of C. grandiflora plants were collected separately
and the roots were cleaned using Na2EDTA solution (15 mM, 20 min) to remove Cd2+

adsorbed on the root surface [50]. Plant samples were oven dried (80 ◦C, 48 h) for biomass
measurement. Rhizospheric soils that naturally adhered to the root systems after gentle
shaking [10,17] were collected for subsequent measurements.

4.3. Cd Accumulation Characteristics Analysis in Plants

Total Cd concentrations in the dried shoots and roots were determined using the
method described in the Supplementary Methods. The Cd bioconcentration factor (BCF),
translocation factor (TF), and total accumulation content in the C. grandiflora shoots and
roots were calculated using previously reported formulas [51,52].

4.4. Cd Speciation Determination in Soil

Total Cd and the different Cd fractions (i.e., exchangeable Cd, Fe-Mn oxide Cd, organic-
bound Cd, carbonate-bound Cd, and residual Cd) that were extracted using a Tessier
sequential extraction procedure [24,27] in rhizospheric soils were determined using a
graphite furnace atomic absorption spectrometer (GFAAS) (ZEEnit700P, Analytik Jena,
Jena, Germany).

4.5. Leaching Experiment

The leaching of GABA on Cd in the soils, used to investigate whether exogenous
GABA can directly mobilize Cd in soils, was performed according to previously reported
methods [53–55]. Concentration gradients of GABA solutions (i.e., 0, 1, and 4 g L−1) were
prepared as eluents in accordance with the GABA concentration range added to the soils
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(see Section 4.1). Cd-contaminated soil samples (2.0 g) were loaded in 50 mL centrifuge
tubes, and 20 mL eluents were added. The samples were shaken (200 rpm, 25 ◦C, 24 h)
and then centrifuged (1800× g, 10 min) using a high-speed tabletop centrifuge (Eppendorf
5810R, Hamburg, Germany). The supernatants were filtered through microporous mem-
branes (0.45 µm), and the residual soils were oven dried (80 ◦C, 48 h). Cd concentrations
were detected in both filtrates and residual soils using GFAAS. Each treatment was repeated
three times.

4.6. Determination of Soil Physicochemical Indices

Soil physicochemical indices, including pH, organic matter (OM), and total N (TN), K
(TK), P (TP), hydrolysable N (HN), and available K (AK) and P (AP) concentrations, were
determined using the methods in the corresponding Chinese testing standards [10,56,57].
The detailed methods for each determination are provided in the Supplementary Methods.

4.7. Soil Bacterial Community Analysis

DNA extraction, 16S rDNA amplification, sequencing, and bioinformatics analyses
for soil bacterial community analysis were performed using previously described meth-
ods [49]. The V3–V4 region of the 16S rDNA gene was amplified by PCR for Illumina
Novaseq 6000 sequencing using the 341F (5′−CCTACGGGNGGCWGCAG−3′) and 806R
(5′−GGACTACHVGGGTATCTAAT−3′) primer pairs. The raw sequencing reads were
deposited in the Science Data Bank (DOI: 10.57760/sciencedb.03180).

4.8. Statistical Analysis

Significance analysis among groups (n ≥ 3) was performed using one-way ANOVA
with Duncan’s multiple range tests via SPSS 26.0 (IBM, Amunk, NY, USA). Linear regression
analysis was performed using SigmaPlot 10.0 (Systat, San Jose, CA, USA). Correlation
network analysis between soil indices and bacterial alpha indices was performed using the
online Omicsmart platform (http://www.omicsmart.com; accessed on 8 October 2022).

5. Conclusions

This study established that GABA acted as a soil amendment to effectively enhance
Cd phytoextraction by C. grandiflora. Complex interactions between soil factors can be used
to explain this result. The increase in exchangeable Cd transformed from Fe-Mn oxide
and carbonate-bound Cd was a determining factor responsible for enhancing Cd phytoex-
traction. The decreased soil pH rather than GABA itself should be an important driving
factor for this process. The improved HN and AK concentrations may affect Cd resistance
and accumulation in C. grandiflora. The remolded rhizospheric microenvironments had a
significant impact on the bacterial community composition in the C. grandiflora rhizosphere.
Interestingly, the upregulation of several important PGPR under GABA addition, especially
Pseudomonas and Sphingomonas, may play important roles in assisting Cd phytoextraction in
C. grandiflora through various mechanisms. These findings suggest combined GABA-PGPR
strategies for enhancing Cd phytoextraction and improving our understanding of the effects
of GABA as a root exudate on the interaction between HMs and plants. Several intriguing
questions from this study deserve further exploration. For instance, the similarities and
differences of the effects and mechanisms of GABA supplementation in different plant–soil
systems require elucidation. Moreover, sufficient verification experiments are required to
determine whether GABA supplementation directly or indirectly remodels the rhizospheric
microenvironment (e.g., soil pH and microbial community composition).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12071484/s1, Supplementary Methods; Figure S1: Cd concen-
trations in residual soils after leaching with 0, 1, and 4 g L−1 GABA; Figure S2: Cd concentrations
in filtrates after leaching with 0, 1, and 4 g L−1 GABA; Table S1: Physicochemical parameters of the
homogenized soil; Table S2: Basic information of 16S rDNA sequencing results; Table S3: Alpha
diversity index of bacterial community; Table S4: Relative abundance (%) of the top 21 bacterial
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phyla in cadmium-contaminated soils treated with different GABA concentrations; Table S5: Relative
abundance (%) of the top 98 bacterial genera in cadmium-contaminated soils treated with different
GABA concentrations; Table S6: The indicator bacteria with linear discriminant analysis (LDA)
score > 3 between T1 and T3 soils; Table S7: The indicator bacteria with linear discriminant analysis
(LDA) score > 3 between T1 and T5 soils.
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