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Abstract: Pearl millet is a significant crop that is tolerant to abiotic stresses and is a staple food of
arid regions. However, its underlying mechanisms of stress tolerance are not fully understood. Plant
survival is regulated by the ability to perceive a stress signal and induce appropriate physiological
changes. Here, we screened for genes regulating physiological changes such as chlorophyll content
(CC) and relative water content (RWC) in response to abiotic stress by using “weighted gene coex-
pression network analysis” (WGCNA) and clustering changes in physiological traits, i.e., CC and
RWC associated with gene expression. Genes’ correlations with traits were defined in the form of
modules, and different color names were used to denote a particular module. Modules are groups of
genes with similar patterns of expression, which also tend to be functionally related and co-regulated.
In WGCNA, the dark green module (7082 genes) showed a significant positive correlation with CC,
and the black (1393 genes) module was negatively correlated with CC and RWC. Analysis of the
module positively correlated with CC highlighted ribosome synthesis and plant hormone signaling
as the most significant pathways. Potassium transporter 8 and monothiol glutaredoxin were reported as
the topmost hub genes in the dark green module. In Clust analysis, 2987 genes were found to display
a correlation with increasing CC and RWC. Furthermore, the pathway analysis of these clusters
identified the ribosome and thermogenesis as positive regulators of RWC and CC, respectively. Our
study provides novel insights into the molecular mechanisms regulating CC and RWC in pearl millet.

Keywords: gene expression; WGCNA; gene clustering; module; pathways; pearl millet; relative
water content

1. Introduction

The global human population is predicted to reach 9 billion by 2050, and at the same
time, the global temperature is expected to increase by 1 degree to 4 ◦C [1]. Given these
predictions, there is a need to study abiotic-stress-tolerant staple food crops such as pearl
millet to ensure food security. Pearl millet is an agronomically robust crop with an excellent
nutritional profile and exceptional abiotic stress tolerance capacity [2]. Pearl millet can
flower at 42 ◦C, grow in 250 mM of NaCl, and produces grain at mean precipitations of
as low as 250 mm [3]. Despite these characteristics, pearl millet is often considered an
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orphan crop as it lags behind other staple crops in research and development [4–6]. Since
its genome sequencing in 2017 [7], substantial research on pearl millet has been carried out.

Several research efforts have focused on understanding pearl millet’s physiological
and molecular responses to abiotic stresses [8]. A previous physiological study by Shinde
et al. revealed that the pearl millet tolerant line ICMB 01222 had a higher growth rate
and accumulated higher sugar in leaves under salinity stress than the susceptible line [9].
A study using drought-responsive pearl millet lines exhibited that drought-susceptible
pearl millet line ICMB 863 showed a greater reduction in CC or greenness than drought-
tolerant line ICMB 843. This study also reported photosynthesis, plant hormone signal
transduction, and mitogen-activated kinase signaling as a drought-responsive pathway [10].
The function of several abiotic-stress-responsive genes and small RNAs has been studied in
several plants [11] and pearl millet [12–16]. However, knowledge of molecular mechanisms
regulating physiological responses is equally critical and important for ensuring the quality
and yield of plants. Technological advancements in sequencing have created unprecedented
opportunities to study these molecular mechanisms.

WGCNA is a widely used free-scale coexpression network analysis technique that con-
structs the modules containing genes, which shows a correlation with complex traits [17].
WGCNA has been widely used to study complex plant traits and their correlation with gene
expression data [18]. In rice, WGCNA analysis identified CaM (calmodulin), DUF630/632
(domain of unknown function 630/632), CHL27 (Chlamydomonas 27), and LEA4-5 (Late
Embryogenesis Abundant 4-5) as hub genes (central regulators) of salt-stress-related
traits [19]. These hub genes will be useful for developing salt-tolerant rice genotypes.

In the current study, stress-induced physiological changes in CC and leaf water content
were associated with gene expression data. We performed the WGCNA analysis [17] to
generate two coexpression networks incorporating these physiological variables to deter-
mine modules of genes whose expression was regulated in concert with the physiological
changes. Two interesting coexpression modules were identified, which show a positive and
negative correlation with CC and RWC. For comparison, we performed the coexpression
analysis using Clust [20]. Metabolic pathway analyses of these modules and clusters were
also performed. In the future, our findings might help researchers to develop strategies for
the biotechnological improvement of stress tolerance in pearl millet.

2. Results
2.1. Transcript Quantification

After quality assessment and filtering, such as removing adaptor sequences and
discarding low-quality reads, 89.2% of clean reads were generated on average. These clean
reads were processed for transcriptome analysis. The clean reads mapped to the pearl
millet genome. The average percentage of mappable reads per sample was 37.27%. Since
transcripts per million (TPM) is the most used normalization method, which normalizes all
the reads within a sample, the sum of all the reads would be exactly 1,000,000. The TPM
for all 38,396 pearl millet genes was estimated, and the average TPM per sample was 26.2.
Of 38,396 genes, 19,002 had ≥1 TPM value (Supplementary File S2).

2.2. Weighted Gene Coexpression Network Analysis (WGCNA)

The WGCNA analysis constructed 18 modules (clusters of coexpressed genes) differ-
entiated by color. Modules are groups of genes with a similar expression pattern and are
also functionally related and co-regulated. The WGCNA also allowed us to associate the
correlation between the genes of each module and traits. Figure 1 shows the association
between modules and characteristics, typically representing Pearson’s correlation coeffi-
cients measured between every module (groups of genes with a similar expression pattern
and co-regulation) and physiological characteristic. Because of the vast amount of data,
we decided to focus on two modules, i.e., dark green and black. The dark green module
(7082 genes) shows a positive correlation with CC (R = 0.71, p < 0.002). In contrast, the black
module (genes) has a negative correlation with both traits (with CC, R = −0.51, p < 0.04 and
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with RWC, R = −0.56, p < 0.02). Data for all genes, their respective modules (18 eigengene
modules), and correlation values are given in Supplementary File S3. The hub genes within
the dark green module related to CC were detected. The top five hub genes were the
potassium transporter 8, nonothiol glutaredoxin, chaperonin chloroplastic, oxoglutarate-dependent
dioxygenase, and uncharacterized protein (Figure 2).
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Figure 1. Correlation between modules (group of genes) and traits (CC and RWC). Module names are
displayed on the left, and the correlation coefficients are shown at the top of each row. The p-values
for each module are displayed at the bottom of each row within parentheses. The rows are colored
based on the correlation of the module with the trait: red for positive and green for the negative
correlation. Asterisk [*] next to a module name, shows significant modules.
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Figure 2. Hub genes are determined by module membership (MM) and gene significance (GS). GS
represents the correlation between a gene and a trait. The MM represents the correlation between an
individual gene and the module eigengene. MM and GS values were plotted on the x- and y-axis.
In the dark green module, hub genes were identified according to a GS > 0.8 and an MM > 0.9. The
table represents the top five hub genes.

2.3. Gene Clustering Analysis

Cluster analysis results were divided into two categories: CC-related genes and RWC-
related genes. For CC, 12 clusters were formed (C0 to C11). The largest cluster was C0
(4699 genes), while the smallest cluster was C11 (59 genes) (Supplementary Figure S1).
Among these clusters, C8 (603 genes) and C2 (835 genes) were selected for pathway analysis
as they exhibited either positively or negatively coexpressed linear expression patterns
with increasing chlorophyll content. For CC, the list of genes in each cluster is given in
Supplementary File S4.

Similarly, for RWC, in total, 11 clusters were formed (C0 to C11). The largest cluster
was C0 (3090 genes), while the smallest cluster was C3 (66 genes) (Supplementary Figure S2).
From these 11 clusters, C11 (828 genes) and C5 (721 genes) were selected for further analysis
as they exhibited linear expression patterns either positively or negatively coexpressed with
increasing RWC. For RWC, the list of genes present in each cluster is given in Supplementary
File S5.

2.4. Metabolic Pathway Analysis

Pathway analysis of genes in the “darkgreen” module (positively correlated with
chlorophyll content) showed them to be enriched in metabolic pathways such as the
ribosome, plant hormone signal transduction, starch and sugar metabolism, photosynthesis,
and MAPK signaling. Ribosome synthesis was the most enriched pathway with 48 genes
associated (Figure 3).

In linearly coexpressed clusters, the ribosome, protein processing in the endoplasmic retic-
ulum, plant–pathogen interaction, plant hormone signal transduction, and phenylpropanoid
biosynthesis were designed as positive regulators of RWC. Endocytosis, starch and sucrose
metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, the mRNA surveillance
pathway, and RNA degradation were negative regulators of RWC. (Figure 4). In the case of
CC clusters, thermogenesis, aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, an
amino sugar, nucleotide sugar metabolism, and pyruvate metabolism were positive regulators
of chlorophyll content, whereas plant hormone signal transduction, protein processing in the
endoplasmic reticulum, ribosome biogenesis in eukaryotes, nucleocytoplasmic transport, and
phenylpropanoid biosynthesis were negative regulators of CC (Figure 5).
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Figure 3. Metabolic pathway analysis of significant modules. (A) Pathways of dark green module
(positively correlated). (B) Pathways of the black module (negatively correlated).
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Figure 4. Clusters of coexpressed genes related to RWC (RWC) elucidated by Clust. (A) Gene cluster
showing positive correlation with RWC, n = 828, and its pathways. (B) Gene cluster showing negative
correlation with RWC, n = 721, and its pathways.

Our WGCNA and Clust analysis results aligned well with each other as we observed
that the ribosome and plant hormone signal transduction are positive regulators of RWC in
both analyses.
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Figure 5. Clusters of coexpressed genes related to CC (CC) elucidated by Clust. (A) Gene cluster
showing positive correlation with CC, n = 603, and its pathways. (B) Gene cluster showing negative
correlation with CC, n = 835, and its pathways.

3. Discussion

Pearl millet is a staple crop of arid and semi-arid tropics and is known for its unique
ability to tolerate abiotic stress. Various studies used a genomic approach to identify genes
and pathways related to abiotic stress in pearl millet [21–26]. However, none of the studies
performed coexpression analysis to discover genes that regulate abiotic-stress-related traits.
CC and RWC are abiotic-stress-related traits and change rapidly during abiotic stresses.

Integrating these dynamic changes in physiology with the transcriptome data using
the WGCNA and Clust approach uncovered genes regulating the ribosome, plant hormone
signal transduction, protein processing, thermogenesis, and endocytosis. Among those
pathways, the ribosome is the most important as it is a positive regulator of RWC in both
WGCNA and Clust analysis. The ribosomes are responsible for synthesizing proteins [27].
The functioning of the ribosome during stress is crucial for the timely synthesis of stress-
responsive proteins [28,29]. Different stress- and defense-related pathways are deactivated
upon ribosomal impairment [30]. This crosstalk between the ribosome and the stress-
responsive protein serves as a novel approach to studying stress-tolerant plants. Plant
hormone signaling and protein processing were other pathways reported in WGCNA
modules and clusters. As plant hormones are early responders to stress stimulus [31], we
suggest early sensing of stress by pearl millet at the molecular level.

Endocytosis, protein processing in the endoplasmic reticulum, and plant hormone
signaling were the pathways that showed a negative correlation with both CC and RWC.
A previous study in the Medicago plant reported the relation between drought stress and
endocytosis [32] where endocytosis affects membrane lipids composition during stress. The
endoplasmic reticulum is the organelle where most of the proteins of a cell are synthesized.
Such proteins later play a significant role [33] in stress response and protection.

We identified hub genes in the dark green module, which were highly correlated
with the CC trait. The topmost hub gene we found in this study is potassium transporter 8.
Potassium transporters protect plant leaves from Na+ overaccumulation and salt stress
during salt stress [34]. Future experiments must validate the modules, clusters, metabolic
pathways, and hub genes discovered in the present study.



Plants 2023, 12, 1412 7 of 10

4. Materials and Methods
4.1. RNA Sequencing Data Preprocessing

From our previously published study [10,12], raw sequencing reads were downloaded
from the NCBI-SRA database using the SRA toolkit. The quality check of raw reads
was performed using FastQC (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/ accessed on 1 August 2022). Adaptors and poor-quality reads were filtered using
trimmomatic [35]. Clean reads were then used for mapping and quantifying transcript
abundance.

4.2. Transcript Quantification

The transcriptome-wide quantification in the form of transcripts per million (TPM) was
performed using Salmon v1.6.0 [36]. The pearl millet reference transcriptome file for map-
ping and quantification was obtained from the International Pearl Millet Genome Sequenc-
ing Consortium (https://cegresources.icrisat.org/data_public/PearlMillet_Genome/v1.1/
accessed on 15 August 2022). Prior to mapping and transcription quantitation, the pearl
millet reference transcriptome file was indexed.

4.3. Weighted Gene Coexpression Network Analysis (WGCNA)

The R package, weighted gene correlation network analysis (WGCNA), was used to
construct a gene coexpression network and to find coexpressed genes [14]. Gene expres-
sion data and TPM of 16 plants with two different traits (CC and RWC) were used for
WGCNA analysis. Trait data used in this study were also taken from our previous study.
(Supplementary File S1). At first, the genes with low TPM counts and outliers were filtered.
To choose modules (group of genes) associated with traits of interest, i.e., CC and RWC,
Pearson correlation analysis was determined between each module’s “eigengene” and the
traits. Modules with a module–trait correlation >0.5 or <−0.5 for at least one trait (p ≤ 0.05)
were considered significant. Gene significance (GS) was calculated for each gene as the cor-
relation between gene expression counts and traits. Hub genes were identified by choosing
genes with the highest gene significance and module membership in the significant module.
After this, we had higher module membership, gene significance, and gene number in dark
green module. We selected only dark green for hub gene identification.

4.4. Gene Clustering Analysis

Gene expression data were clustered based on physiological measurements, i.e., CC
and RWC using the Python package Clust v1.8.4. The plants were divided into four groups
for chlorophyll content (relative greenness, SPAD reading), i.e., 10–14, 20–24, 24–28, and
28–32. The groups of genes that showed increasing or decreasing trend as CC changed
were selected for pathway analysis. Similarly, for RWC (relative water content in leaf,
in percentage), plants were divided into three groups, i.e., 40–50, 50–70, and 70–90, and
changes in gene expression were recorded.

4.5. Metabolic Pathway Analysis

We selected the significantly associated modules (R > 0.5 or < −0.5, with a p-value of
0.05) and gene clusters for the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis. The KEGG pathway analyses were performed by submitting the nucleotide
sequences of modules and clusters to KEGG Automatic Annotation Server (KAAS server
located at http://www.genome.jp/kegg/kaas/ accessed on 15 September 2022) [37].

5. Conclusions

This study’s most relevant finding is identifying WGCNA modules (dark green
(7082 genes) and black (1393 genes)) and clusters. Modules are defined as groups of
genes with a similar expression pattern and are similar in function and co-regulation. These
modules and clusters are enriched in the endoplasmic reticulum’s metabolic pathways
such as the ribosome synthesis, endocytosis, plant hormone, signal transduction, and

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://cegresources.icrisat.org/data_public/PearlMillet_Genome/v1.1/
http://www.genome.jp/kegg/kaas/
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protein processing. Based on the current finding, we postulate that during environmental
stress, pearl millet can sense the stress using the hormones and transduces this signal to
initiate the appropriate physiological and molecular responses and cope with stress-related
perturbation. Moreover, the ribosome is involved in the synthesis of stress-responsive
proteins during a stressed condition. Potassium transporter 8 and monothiol glutaredoxin
were the most significant hub genes in the dark green module. The modules, metabolic
pathways, and hub genes identified in this study provide guidelines for improving pearl
millet’s abiotic stress tolerance through future molecular breeding. With the discovery of
these modules, candidate hub genes can now be paired with various molecular techniques,
such as gene editing, to develop climate-smart crops.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12061412/s1. Figure S1. Clust analysis of gene clusters
related to chlorophyll content. A total of 11 clusters were identified. The x-axis shows CC, and the
y-axis shows −log10 of transcript per million values. Figure S2. Clust analysis of gene clusters related
to RWC. A total of 11 clusters were identified. The x-axis shows RWC, and the y-axis shows −log10
of transcript per million values. File S1. Physiological traits (CC and RWC) of 16 pearl millet plants
used for gene coexpression analysis. File S2. Transcripts per million (TPM) values of all 16 pearl
millet plants. File S3. Data of all identified WGCNA modules and their module correlations and
module membership values (for CC and RWC). File S4. List of pearl millet genes present in different
clusters identified through Clust. Clusters for chlorophyll content. File S5: List of pearl millet genes
present in different clusters identified through Clust. Clusters for RWC.
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