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Abstract: Climate change increases the extinction risk of species, and studying the impact of climate
change on endangered species is of great significance to biodiversity conservation. In this study,
the endangered plant Meconopsis punicea Maxim (M. punicea) was selected as the research object.
Four species distribution models (SDMs): the generalized linear model, the generalized boosted
regression tree model, random forest and flexible discriminant analysis were applied to predict
the potential distribution of M. punicea under current and future climates scenarios. Among them,
two emission scenarios of sharing socio-economic pathways (SSPs; i.e., SSP2-4.5 and SSP5-8.5)
and two global circulation models (GCMs) were considered for future climate conditions. Our
results showed that temperature seasonality, mean temperature of coldest quarter, precipitation
seasonality and precipitation of warmest quarter were the most important factors shaping the
potential distribution of M. punicea. The prediction of the four SDMs consistently indicated that
the current potential distribution area of M. punicea is concentrated between 29.02◦ N–39.06◦ N
and 91.40◦ E–105.89◦ E. Under future climate change, the potential distribution of M. punicea will
expand from the southeast to the northwest, and the expansion area under SSP5-8.5 would be
wider than that under SSP2-4.5. In addition, there were significant differences in the potential
distribution of M. punicea predicted by different SDMs, with slight differences caused by GCMs and
emission scenarios. Our study suggests using agreement results from different SDMs as the basis for
developing conservation strategies to improve reliability.

Keywords: climate change; endangered plant; potential distribution; species distribution models

1. Introduction

Climate not only plays an important role in the growth of plants, but also determines
the distribution of species [1,2]. Future climate change will shift the distribution of species
and even cause the extinction of species [3–9]. Some studies have indicated that species
will disperse to higher latitudes and/or altitudes under climate change characterized by
warming [3,10–12]. At lower altitudes and latitudes, species richness and diversity are
therefore predicted to fall, while at higher altitudes and latitudes, endangered species are
predicted to face a greater risk of extinction as a result of increased species competition [13].
Thus, alpine ecosystems in response to climate change will be more sensitive and vulnera-
ble [14–16]. Many alpine species, which have ornamental, economic and medicinal values,
are at risk from climate change [17–19]. In particular, species in the Qinghai-Tibet Plateau
have been adversely affected by climate change [20–22]. Therefore, understanding the
impacts of climate change on the potential distribution of species is of great significance for
species conservation.

Meconopsis punicea Maxim (M. punicea) is a perennial herb belonging to the family
Papaveraceae and the genus Meconopsis [23], mainly distributed in the hillside grassland
and alpine shrub at an altitude of 2800–4300 m in northwest Sichuan, northeast Tibet,
southeast Qinghai and southwest Gansu, with a flower and fruit period from June to
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September [12,23–26]. M. punicea is not only a rare resource of Tibetan medicine, but also
has a certain ornamental value [23,24]. According to the Red List of Chinese plants database
(http://www.chinaplantredlist.org/ (accessed on 12 July 2022)), M. punicea is evaluated
as a Least Concern (LC) species. Due to global warming, natural ecological degradation
and overexploitation of wild resources, the living environment of M. punicea has been
seriously and repeatedly damaged, and it is facing the danger of exhaustion of natural
resources [12,23,27]. Therefore, it is necessary to actively carry out the resource investigation
of M. punicea and study the response of the potential distribution of M. punicea to climate
change, which is helpful for the ex situ conservation and the deep resource development of
the species, and provides a theoretical basis for the introduction and domestication of the
species and resource conservation.

With the development of digital information, species distribution models (SDMs)
have been widely used to study the historical geographical distribution of species and
their distribution trend under future climate change [28,29]; it provides a reliable theoreti-
cal basis for endangered species protection, conservation planning and invasive species
control [30–34]. However, there are numerous SDMs algorithms based on statistics and
machine learning, and the potential distribution results of species predicted by different
algorithms significantly differ [35]. Some studies have shown that being dependent on only
one SDM to predict the potential distribution of species would cause the result deviation
problem [35,36]. In addition, studies have shown that different global circulation models
(GCMs) will bring uncertainty to SDMs prediction [37–39], but the uncertainty caused by
emission scenarios is significantly higher than that caused by GCMs [37]. Therefore, the
reliability of conservation studies for endangered species could be improved by considering
the comprehensive results under the influence of various uncertainties, including SDM
algorithms, emission scenarios and GCMs.

In this study, we explored the potential distribution of M. punicea under climate change
using various SDMs (i.e., generalized linear model, generalized boosted regression tree
model, random forest and flexible discriminant analysis). We analyzed the agreement
of the prediction results of the four SDMs to avoid the uncertainty brought by the SDM
algorithm, and also considered the uncertainty brought by emission scenarios and GCMs.
Among them, the emission scenarios are based on the scenarios under the sharing socio-
economic pathways (SSPs), which provide more diverse air pollutant emission scenarios,
and more scientifically describes future climate change under the mode of socio–economic
development [40]. Based on the agreement result of the four SDMs, we aimed to determine
the potential distribution of M. punicea under current and future climate. In addition, we
explored changes in the potential distribution of M. punicea by comparing potential current
and future distributions, and made conservation recommendations based on the potential
distribution changes.

2. Results
2.1. Evaluation of Model Prediction Accuracy and Significance of Bioclimatic Variables

According to the evaluation metric AUC, the performance of the four SDMs were
“excellent”, with the GLM having the highest prediction accuracy, followed by the FDA
(Figure 1a). According to the evaluation metric Kappa, the prediction accuracy of FDA was
the highest, followed by GLM (Figure 1b). Both evaluation metrics consistently showed
higher prediction accuracy of the GLM and FDA than that of the RF and GBM (Figure 1).
No matter the current or future climate scenarios, the results consistently showed that the
SDM algorithm would generate large uncertainties in predicting the potential distribution
of M. punicea (Figures 2 and 3). The prediction through GLM model showed a large
uncertainty in potential distribution caused by the emission scenarios, while under the
other SDMs (i.e., GBM, RF and FDA), the uncertainties caused by the emission scenarios
were small (Figure 4). Under different GCMs, the potential distributions predicted by the
FDA and GLM models consistently showed large uncertainties, while that predicted by the
GBM and RF models were less uncertain (Figure 5). In general, the uncertainty generated
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by GCMs was smaller than that generated by the SDM algorithms and larger than that
generated by the emission scenarios.
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Figure 1. Comparison of prediction accuracy of four species distribution models under (a) AUC and
(b) Kappa. The black dots represent the AUC (Kappa) of each test, the thin outline represents the
density distribution of the AUC (Kappa) of 20 random tests, and the thick horizontal line represents
the median AUC (Kappa) of 20 random tests.
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Figure 2. The uncertainty generated by the SDM algorithms in predicting the potential distribution
of M. punicea under the current climate scenarios. (a–d) represent the agreement and uncertainty
of the potential distribution of M. punicea predicted through GLM, GBM, RF and FDA, respec-
tively. The green area indicates the agreement, and the black area indicates the uncertainty. Agree-
ment/Uncertainty means the same/different part of the potential distribution predicted through the
four SDMs.
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Figure 3. The uncertainty generated by the SDM algorithms in predicting the potential distribution
of M. punicea under the future climate scenarios. Here, the future global circulation models (GCMs)
include BCC-CSM2-MR (BCC) and HadGEM3-GC31-LL (Had), and the emission scenarios include
SSP2-4.5 and SSP5-8.5. The first to fourth rows represent the agreement and uncertainty of the
predicted potential distribution of M. punicea under GLM (a–d), GBM (e–h), RF (i–l) and FDA (m–p),
respectively. The green area indicates the agreement, and the black area indicates the uncertainty.
Agreement/Uncertainty means the same/different part of the potential distribution predicted through
the four SDMs under the same climate scenarios.

The importance score of each bioclimatic variable in the four SDMs showed: temper-
ature seasonality (BIO4), mean temperature of coldest quarter (BIO11) and precipitation
of warmest quarter (BIO18) have a major contribution to the prediction of the potential
distribution of M. punicea in the GLM (Table 1). In the GBM and RF, BIO18, precipitation
seasonality (BIO15) and BIO11 play a significant role in determining the potential distribu-
tion of M. punicea (Table 1). In the FDA, the main bioclimatic variables contributing to the
potential distribution of M. punicea were BIO4, mean diurnal range (BIO2) and isothermality
(BIO3) (Table 1). In summary, the dominant bioclimatic variables shaping the potential
distribution of M. punicea are BIO4, BIO11, BIO15 and BIO18.

Response curves for the dominant bioclimatic variables and potential distribution
probabilities fitted through GLM and FDA show similar trends. Among them, the response
curves of the distribution probability of M. punicea to BIO4, BIO11, BIO15 and BIO18
showed an oscillating trend in a certain range and then stabilized (Figure 6). The response
curve trend fitted by GBM and RF were roughly the same, and the response curve of the
distribution probability of M. punicea to BIO4, BIO11, BIO15 and BIO18 showed a unimodal
pattern (Figure 6). The response curves of the four SDMs showed that the temperature
seasonality range is 500–750, the mean temperature in the coldest season is below −5 ◦C,
the precipitation seasonality range is above 80 and the precipitation in the warmest season
is above 500 mm, which were the most suitable climate environments for the distribution
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of M. punicea (Figure 6). However, the response curve trend of temperature seasonality was
different among the four SDMs (Figure 6).
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Figure 4. The uncertainty generated by the global circulation models (GCMs) in predicting the future
potential distribution of M. punicea. Here, the GCMs include BCC-CSM2-MR (BCC) and HadGEM3-
GC31-LL (Had), and the emission scenarios include SSP2-4.5 and SSP5-8.5. The first to fourth rows
represent the agreement and uncertainty of the predicted potential distribution of M. punicea under
GLM (a–d), GBM (e–h), RF (i–l) and FDA (m–p), respectively. The green area indicates the agreement,
and the black area indicates the uncertainty. Agreement/Uncertainty means the same/different part
of the potential distribution between BCC and Had under the same SDMs and emission scenarios.

2.2. Potential Distribution of M. punicea in Current Climate

The current potential distribution predicted by the four SDMs showed a high consis-
tency, and all the models showed that the potential distribution of M. punicea was roughly
distributed in Sichuan, Qinghai, Gansu and Qinghai-Tibet (Figure 7). To be specific, the
main potential distribution areas were located in Aba Tibetan and Qiang Autonomous Pre-
fecture and Ganzi Tibetan Autonomous Prefecture on the western Sichuan Plateau, Gannan
Tibetan Autonomous Prefecture in the south of Gansu Province and Huangnan Tibetan Au-
tonomous Prefecture and Guoluo Tibetan Autonomous Prefecture in the southeast of Qing-
hai Province, which are concentrated between 29.02◦ N–39.06◦ N and 91.40◦ E–105.89◦ E
(Figure 7). The main potential distribution ranges predicted (29.02◦ N–39.06◦ N and
91.40◦ E–105.89◦ E) are basically consistent with those of the records (29.53◦ N–38.32◦ N
and 94.30◦ E–104.24◦ E). However, the potential distribution area predicted by each model
was slightly different, and the potential distribution area predicted by GLM and FDA was
smaller than that predicted by RF and GBM.
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Figure 5. The uncertainty generated by the emission scenarios in predicting the future potential
distribution of M. punicea. Here, the future global circulation models (GCMs) include BCC-CSM2-MR
(BCC) and HadGEM3-GC31-LL (Had), and the emission scenarios include SSP2-4.5 and SSP5-8.5. The
first to fourth rows represent the agreement and uncertainty of the predicted potential distribution
of M. punicea under GLM (a–d), GBM (e–h), RF (i–l) and FDA (m–p), respectively. The green area
indicates the agreement, and the black area indicates the uncertainty. Agreement/Uncertainty
means the same part of the potential distribution between SSP2-4.5 and SSP5-8.5 under same SDMs
and GCMs.

Table 1. The importance scores of each bioclimatic variable in four species distribution models
(SDMs). The top three most important variables in each SDM are bolded.

GLM GBM RF FDA

BIO2 0.1502 0.0452 0.0198 0.8284
BIO3 0.1276 0.0254 0.0194 0.6464
BIO4 0.9842 0.0092 0.0468 0.9972
BIO5 0.5024 0.0282 0.0398 0.0620
BIO11 0.6760 0.1458 0.0742 0.0096
BIO15 0.48186 0.2244 0.1282 0.1318
BIO17 0.4210 0.0084 0.0244 0.1826
BIO18 0.7922 0.6958 0.3162 0.3958
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Figure 6. Response curves of potential distribution probability for dominant variables based on
four species distribution models for M. punicea. The first to the fifth row represent the response
curves for BIO4 (temperature seasonality), BIO11 (mean temperature of coldest quarter), BIO15
(precipitation seasonality) and BIO18 (precipitation of warmest quarter), respectively. The first to
fourth columns correspond to GLM (generalized linear model), GBM (generalized boosted regression
tree model), RF (random forest) and FDA (flexible discriminant analysis), respectively.
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Figure 7. Current potential distribution of M. punicea based on four species distribution models.
The left column is the prediction of the continuous distribution of M. punicea under the current
environment. The column on the right shows the 0–1 distribution predictions of M. punicea under
the current environment. The first to fourth rows represent the predicted potential distribution of
M. punicea under GLM (a,b), GBM (c,d), RF (e,f) and FDA (g,h), respectively.

2.3. Changes in Distribution of M. punicea under Future Climate Change

Under future climate change, the four SDMs all show that the potential distribution
area of M. punicea expands to the northwest, while a few areas in the eastern part of the
current potential distribution area will not be suitable for M. punicea in the future (Figure 8).
GLM and FDA predicted that by 2050 (2040–2060 average), the potential distribution
area of M. punicea in the Qinghai-Tibet Plateau would widely extend to northwest China
(Figure 8a–d,m–p). However, GBM and RF predicted that the potential distribution area of
M. punicea will expand less to the northwest by 2050 (Figure 8e–l). In addition, under the
SSP5-8.5 scenario (Figure 8b,d,f,h,j,l,n,p), the potential distribution of M. punicea by 2050 ex-
panded more to the northwest than that under the SSP2-4.5 scenario (Figure 8a,c,e,g,i,k,m,o).
In addition, no matter what the GCM, the main change trend in the potential distribution
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of M. punicea was basically the same. The minor difference was that the loss of potential
distribution under the Had was slightly more than that under the BCC (Figure 8).
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Figure 8. The changes in potential distribution under the future climate scenarios compared to
the current climate scenarios based on four species distribution models. Here, the future global
circulation models (GCMs) include BCC-CSM2-MR (BCC) and HadGEM3-GC31-LL (Had), and
the emission scenarios include SSP2-4.5 and SSP5-8.5. The first to fourth rows show the results of
potential distribution changes for GLM (a–d), GBM (e–h), RF (i–l) and FDA (m–p), respectively.
The green area indicates the current and future species presence, denoted as “stable”. The red area
indicates the current species presence, but with no future presence, denoted as “loss”. The orange
area indicates no current presence, but with presence in the future, denoted as “gain”.

3. Discussion
3.1. Comparison of Prediction Results of Four SDMs

In this study, four SDMs were used to predict the potential distribution of M. punicea.
We compared the prediction performance of the four SDMs by evaluation metrics and the
agreement/uncertainty of the model prediction results. The predictive performance of GLM
and FDA was better, as judged by the evaluation metrics (AUC and Kappa). In terms of the
agreement/uncertainty of the prediction results, the model with good performance did not
always perform well. GLM and FDA had the highest agreement and lowest uncertainty
under the current climate, contrary to the performance under the SSP2-4.5 scenario and the
SSP5-8.5 (Figures 2 and 3). In addition, not all models with good agreement/uncertainty
performance had high evaluation metrics (AUC and Kappa). GBM and RF had the highest
agreement and lowest uncertainty under the SSP2-4.5 scenario and the SSP5-8.5, while the
AUC (Kappa) was relatively low. This mismatch may be caused by different algorithms
based on different SDMs. Because the four SDMs selected in this study were carried out
under the same environmental variables, as well as the environmental variables selected
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and the occurrence data were of the same spatial resolution, the only difference lay in the
different algorithms used based on different SDMs. Specifically, GLM and FDA are based
on generalized linear methods, and GBM and RF are based on classification methods. In
addition, emission scenarios generated less uncertainty in predicting potential distributions
than GCMs (Figures 4 and 5). Our findings were inconsistent with previous studies in that
the uncertainty caused by emission scenarios was greater than that caused by GCM [37–39].
The reason for the difference may be the different emission scenarios chosen. Therefore, the
reliability of the model is still insufficient when only using model evaluation metrics, and
the reliability of the model can be evaluated by calculating the agreement/uncertainty of
the predicted results of various models under different emission scenarios and GCMs.

3.2. Significant Variables Affecting the Distribution of M. punicea

The potential distribution of plants is impacted by environmental variables, which
play a crucial role in plant growth [41], especially precipitation and temperature [42,43]. In
this study, the results of the four SDMs consistently showed that the potential distribution
of M. punicea was significantly impacted by two temperature-related bioclimatic variables
(i.e., temperature seasonality (BIO4) and mean temperature of coldest quarter (BIO11))
and two precipitation-related bioclimatic variables (i.e., precipitation seasonality (BIO15)
and precipitation of the warmest quarter (BIO18)). M. punicea is a type of perennial plant
with a seasonal growth and dormancy cycle [23,44,45], and thus strongly correlated with
temperature seasonality and precipitation seasonality. The warmest quarter on the Qinghai-
Tibet Plateau is usually from July to September, which is also the flowering and fruiting
period of M. punicea [23,24,26]. Plants in the flowering and fruiting period need proper
precipitation; too little precipitation affects the blossom and fruit, and too much water
can lead to flower and fruit drops. This is consistent with our results in that the potential
distribution probability of M. punicea increases with an increase in precipitation of the
warmest quarter, and that the optimal water requirement of M. punicea in the warmest
quarter is when precipitation reaches about 600 mm. In addition, our results show that
the increase in the mean temperature of coldest quarter will lead to a decrease in the
potential distribution probability of M. punicea. This is probably due to the coldest quarter
for the dormancy period of M. punicea, during which a temperature rise will affect the
sprouting and growing during the following year [45,46]. The optimum temperature in the
dormancy period of M. punicea is below −10 ◦C, which is consistent with the cold resistance
of M. punicea [26].

3.3. Impacts of Climate Change on the Potential Distribution of M. Punicea

The prediction results of the four SDMs all showed that the potential distribution of
M. punicea ranged between 29.02◦ N–39.06◦ N and 91.40◦ E–105.89◦ E under current climate
scenarios. Under future climate change, the potential distribution areas of M. punicea will
be expanded, showing a trend of extending from southeast to northwest. A few areas in
the eastern part of the current potential distribution area will not be suitable for M. punicea
in the future. Our findings are consistent with Zhao et al. [47] in that climate change will
expand the potential distribution of M. punicea. However, Shi et al. [19] and He et al. [12]
suggested that climate change will reduce the potential distribution of M. punicea. The
reason for the difference may be the different future global climate model chosen or different
environmental variables chosen. Instead of representative concentration pathways (RCPs),
we selected a Shared Socio-economic Pathways (SSPs) scenario, which is more suitable
for China [48,49]. Furthermore, we only selected climate variables, and did not select
soil type variables, which may also have an impact on the distribution of M. punicea.
Compared with RCPs, the SSPs scenario provides more diverse air pollutant emission
scenarios, and more scientifically describes future climate change under the mode of
socio–economic development.

Our study supports that plants will migrate to higher latitudes under future climate
change [3,7], but the potential distribution area of species will not necessarily shrink under
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future climate change [7,8]. By comparing different climate scenarios in the future, it is
found that the potential distribution area of M. punicea will expand to the northwest more
widely under the SSP5-8.5 scenario. At the end of the 21st Century, the temperature will
increase by 4.7–5.1 ◦C under the SSP5-8.5 scenario, while the temperature will increase
by 3.8–4.2 ◦C under the SSP2-4.5 scenario [50]. The temperature increases more under
the SSP5-8.5 scenario, which forces the migration of the cold resistant plant M. punicea
to higher latitudes. At the same time, it faces greater competition during migration to
higher latitudes.

Although our predictions indicate that the potential distribution of M. punicea may
expand under climate change, the actual movement of species in a changing climate may
be characterized by many challenges, such as competition, predation, physical barriers
and lack of dispersal media [51,52]. M. punicea are entomophilous plants, which mainly
rely on flies to transmit pollen [53]. Therefore, a loss of the dispersal potential of flying
insects [54,55] may lead to disruption of the transmission of M. punicea during migration to
higher elevations areas under climate change. In addition, based on the dispersal distance
of plants not exceeding 100 m per year [56–59], we estimate that the species will disperse
by 7 km at most in the next 70 years. The potential distribution in the future, expanding
by about 120 km (Figure 8), and the dispersal distance of the species is much smaller than
the potential distribution in the future. Therefore, most of the potential distribution in the
future is unreachable, and only a small part (at most 6%) can be occupied.

3.4. Protection Strategies for M. punicea

M. punicea, as an endangered plant, is not only of medicinal value, but also of orna-
mental value [23,24,60]. The potential distribution of M. punicea provides a prerequisite
for the development of conservation strategies. According to the predictions of various
SDMs, the potential distribution area of M. punicea will expand to the northwest, while a
few areas in the eastern part of the current potential distribution area will not be suitable
for M. punicea in the future. For places where potential distribution is stable in the future,
in situ conservation can be adopted, such as the establishment of nature reserves [19]. In
addition, field investigation and assessment should be carried out for places where the
potential distribution is gained in the future, and ex situ conservation should be consid-
ered [61]. In addition, the habitat of M. punicea is being destroyed at an accelerated rate
due to overexploitation and climate change [62]. Therefore, it is particularly important to
reduce human activities that lead to the loss of biodiversity, strengthen the construction of
protected areas and take measures to protect and conserve species in natural habitats.

This study only considered the influence of climate conditions on the suitable areas
of M. punicea, and did not involve the influence of human activities, terrain and soil, etc.
Therefore, the future protection status of this plant needs to be studied in many aspects.
In addition, only two future climate scenarios were considered in this study, more climate
models and emission scenarios were selected for simulation in subsequent studies, and
compared with this study, so as to evaluate the response of M. punicea, an endangered
medicinal plant, to climate change in a more objective and comprehensive way.

4. Materials and Methods
4.1. Overview

This study took M. punicea as the research object and three primary steps were con-
ducted to implement this study. Firstly, a pairwise Pearson’s correlation test was used to
select bioclimatic variables. Secondly, the generalized linear model (GLM), the generalized
boosted model (GBM), random forests (RF) and flexible discriminant analysis (FDA) were
used to predict the current and future potential distribution of M. punicea. At the same time,
we considered two global circulation models (GCMs) and two emission scenarios of sharing
socio-economic pathways (SSPs) for future climate conditions. Thirdly, the differences in
the prediction of four SDMs and the potential distribution of M. punicea in response to
climate change were analyzed, and different conservation strategies were discussed.
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4.2. Species Occurrence Data

A total of 230 records of M. punicea (i.e., longitude and latitude of the samples) were
obtained from the Chinese Virtual Herbarium (http://www.cvh.ac.cn/ (accessed on 12 July
2022)), the Global Biodiversity Information Facility (http://www.gbif.org/ (accessed on
12 July 2022)) and the related literature [12,25]. In order to match the current climate data
range (1970–2000 average), only records after 1970 were screened. In order to reduce spatial
autocorrelation, only one record was retained within 5 km; that is, a circle was drawn
with the sample point as the center of the circle and the radius of 5 km, and all points
except the center of the circle were deleted. Finally, 113 records of M. punicea were obtained,
which were mainly distributed in the eastern part of the Qinghai-Tibet Plateau, including
southwest Gansu, southeast Qinghai, northwest Sichuan and northeast Tibet (Figure 9).
According to the distribution range of the records of M. punicea, the study area was defined
as 73◦ E–110◦ E and 25◦ N–45◦ N.
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Figure 9. Distribution of occurrence record points of M. punicea. The red dots in the figure
represent the occurrence record points of M. punicea. The polygon data of the Qinghai-Tibet
Plateau were obtained through the Global Change Research Data Publishing and Repository
(http://www.geodoi.ac.cn/ (accessed on 20 July 2022)).

4.3. Environmental Variables

Bioclimatic variables of current climate (representative of 1970–2000) and future cli-
mate (2050: average of 2041–2060) were taken from the WorldClim database version 2.1
(http://www.worldclim.org/ (accessed on 1 June 2022)) with a resolution of 2.5 arc-min [63].
For the GCMs of future climate, we considered BCC-CSM2-MR (BCC) and HadGEM3-
GC31-LL (Had), which have been commonly used in studies predicting the potential future
distribution of species in the Qinghai-Tibet Plateau [12,19,48,49,64]. We also adopted two
emission scenarios, including SSP2-4.5 and SSP5-8.5, which represent diverse air pollu-
tant emission scenarios and more scientific descriptions of future climate change under
the mode of socio–economic development [48,65–67]. SSP2-4.5 represents the scenario of
moderate social vulnerability and moderate radiation emission (4.5 W/m2), while SSP5-8.5
simulates the development path of traditional fossil fuels and belongs to the scenario of
extremely high radiation emission (8.5 W/m2) [50]. In order to reduce the correlation
between bioclimatic variables; the 113 records of M. punicea were first used to extract
19 current climate variables corresponding to geospatial data. Then, we used a pairwise
Pearson’s correlation test (r) of bioclimatic variables, and eight bioclimatic variables were
selected with |r| < 0.7 (Table 2) [68].

http://www.cvh.ac.cn/
http://www.gbif.org/
http://www.geodoi.ac.cn/
http://www.worldclim.org/
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Table 2. Bioclimatic variables used for species distribution models to predict the potential future
distribution of M. punicea. These variables were screened by Pearson’s correlation test.

Bioclimatic Variables Meaning of Variables

BIO2 Mean Diurnal Range (mean of monthly
(max temp-min temp))/◦C

BIO3 Isothermality ((BIO2/BIO7) × 100)
BIO4 Temperature Seasonality (standard deviation ×100)
BIO5 Max Temperature of Warmest Month/◦C

BIO11 Mean Temperature of Coldest Quarter/◦C
BIO15 Precipitation Seasonality (coefficient of variation)
BIO17 Precipitation of Driest Quarter/mm
BIO18 Precipitation of Warmest Quarter/mm

4.4. Species Distribution Model
4.4.1. Data Preparation

The presence data used to construct SDMs were set as 113 records of M. punicea, and
the pseudo-absence data were randomly taken from the study area according to three times
the amount of presence data (i.e., 113 presence data, 339 pseudo-absence data). Among
them, 80% of presence data (pseudo-absence data) were used as the training set, and the
remaining 20% were used as the test set. Three climate scenarios (i.e., current, SSP2-4.5
and SSP5-8.5) were cropped according to the scope of the study area, and then stored in
stacks, respectively.

4.4.2. Parameter Setting of the Model

The four SDMs were operated in the R environment (version 4.1.1) using the basic
packages “mda” (version 0.5–3), “randomForest” (version 4.6-14) and “gbm” (version 2.1.8),
as well as the auxiliary package ‘MASS’ (version 7.3–57), “biomod2” (version 3.5.1). In the
GLM model, three forms of variables (i.e., linear term, quadratic term, interaction term)
were considered, and the optimal model was determined by stepwise regression according
to the AIC value. The stepwise regression was set to bidirectional, while other parameters
were kept at default values. In the GBM model, in order to determine the optimal regression
tree, it is necessary to consider the number of iterations and learning rate (a smaller rate is
better, but the number of iterations should be increased), the complexity of the decision
tree (i.e., the depth of the tree), the ratio of resampling and the number of cross validations
(used to extract the most appropriate number of regression trees). The number of iterations,
the depth of the tree, the learning rate, the resampling ratio and the number of cross
validations were respectively set to 10,000, three, 0.01, 0.5 and 10. In the RF model, the
number of iterations, which is considered to obtain the optimal model, is set to 1000, and
the other parameters were selected as default settings. In the FDA model, the model was
adjusted by Multivariate Regression Splines, and the remaining parameters were selected
for default settings.

4.5. Data Analysis
4.5.1. Model Evaluation Metrics

In this study, the area under receiver operating characteristic curve (AUC) and
Kappa were used to evaluate the prediction accuracy of the four SDMs. AUC is the
value of the area under the receiver operating characteristic (ROC) curve, where the
ROC curve plots sensitivity (Se) versus 1−specificity (Sp) across all possible thresholds
between 0 and 1. Se represents the proportion of presences correctly predicted, and
Sp represents the proportion of absences correctly predicted [69,70]. As AUC is not
affected by the diagnostic threshold, it is recognized as the best evaluation index at
present [70–72]. The evaluation criteria of AUC are: excellent (0.90–1.00); good (0.80–0.90);
general (0.70–0.80); worse (0.60–0.70); fail (0.50–0.60) [30,31,70,71]. Kappa is calculated
using the following formula: Kappa = (P0 − Pe)/(1 − Pe), P0 = Pr × Se + (1 − Pr) × Sp and
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Pe = −2 × (Se + Sp − 1) × Pr × (1 − Pr) + P0, where Pr is the proportion of presences in
the dataset [70]. Kappa is between -1 and 1, usually greater than 0. The larger the value, the
higher the accuracy of the model [70,73,74]. Each SDM was randomly simulated 20 times
and the AUC (Kappa) was obtained for each simulation. Then, the median of the 20 AUC
(Kappa) was used to compare the prediction performance of the model.

In order to further compare the prediction performance of the model, the agree-
ment/uncertainty of the potential distribution predicted by each model was calculated
as follows. First, the same part of the potential distribution predicted through each SDM
was considered as an agreement. Second, the different part of the potential distribution
predicted through each SDM was regarded as an uncertainty.

4.5.2. Comparison of Current and Future Potential Distribution Areas

In species conservation practice, information presented in the form of species pres-
ence/absence may be more practical than information presented in terms of probability or
suitability. Therefore, a threshold is needed to convert probability or suitability data into
presence/absence data [75,76]. Furthermore, the choice of threshold through Kappa maxi-
mization is popular in predicting species presence [77,78]. In order to compare the current
and future (SSP2-4.5 and SSP5-8.5) changes in potential distribution, the predicted value of
the potential distribution was converted as follows. For each model, the operation was re-
peated 20 times, and the value that made the Kappa value maximum was respectively taken
and the average was calculated as the threshold of the model. Then, according to the thresh-
old value, the potential distribution probability of the model was converted into 0–1 data,
in which those less than the threshold value were denoted 0 (i.e., absence) and those larger
than the threshold value were denoted 1 (i.e., presence). Finally, the calculation was made
according to the formula: future potential distribution × 2 + 1 + current distribution. In
the calculation results, the number 4 indicates current and future species presence, denoted
as “stable”. The number 2 indicates only current species presence, denoted as “loss”. The
number 3 indicates the species is not currently present, but will be present in the future,
denoted as “gain”.
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