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Abstract: Abiotic stresses, including salinity stress, affect numerous crops, causing yield reduction,
and, as a result, important economic losses. Extracts from the brown alga Ascophyllum nodosum (ANE),
and compounds secreted by the Pseudomonas protegens strain, CHA0, can mitigate these effects by
inducing tolerance against salt stress. However, the influence of ANE on P. protegens CHA0 secretion,
and the combined effects of these two biostimulants on plant growth, are not known. Fucoidan,
alginate, and mannitol are abundant components of brown algae and of ANE. Reported here are the
effects of a commercial formulation of ANE, fucoidan, alginate, and mannitol, on pea (Pisum sativum),
and on the plant growth-promoting activity of P. protegens CHA0. In most situations, ANE and
fucoidan increased indole-3-acetic acid (IAA) and siderophore production, phosphate solubilization,
and hydrogen cyanide (HCN) production by P. protegens CHA0. Colonization of pea roots by
P. protegens CHA0 was found to be increased mostly by ANE and fucoidan in normal conditions
and under salt stress. Applications of P. protegens CHA0 combined with ANE, or with fucoidan,
alginate, and mannitol, generally augmented root and shoot growth in normal and salinity stress
conditions. Real-time quantitative PCR analyses of P. protegens revealed that, in many instances, ANE
and fucoidan enhanced the expression of several genes involved in chemotaxis (cheW and WspR),
pyoverdine production (pvdS), and HCN production (hcnA), but gene expression patterns overlapped
only occasionally those of growth-promoting parameters. Overall, the increased colonization and
the enhanced activities of P. protegens CHA0 in the presence of ANE and its components mitigated
salinity stress in pea. Among treatments, ANE and fucoidan were found responsible for most of the
increased activities of P. protegens CHA0 and the improved plant growth.

Keywords: salinity tolerance; growth promotion; Ascophyllum nodosum; Pseudomonas protegens CHA0;
fucoidan; root colonization

1. Introduction

Crop plants can be challenged by various abiotic stress factors, such as salinity, drought,
waterlogging, and soil pH. Among these factors, salinity represents a major threat, caus-
ing a reduction in the productivity of many crops. Salinity affects almost half of the
irrigated areas, severely impacting many important crops that are sensitive to low salin-
ity levels, drastically limiting their yield [1–4]. Under salinity stress, the accumulation
of Na+ and Cl− creates an imbalance of nutrients, affecting a wide range of essential
physiological activities [5].

Pea (Pisum sativum) is one of the essential leguminous crops in developing countries,
due to its high content of proteins, starch, and dietary fibers [6]. Most cultivated pea
varieties are sensitive or moderately susceptible to salinity stress. Irrigation with water
containing high salt concentrations results in reduced plant growth and an increased
root-to-shoot ratio [7]. During the growth season, variations in the concentration of
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salt in the soil can significantly harm the plants. Several other factors, such as water-
logging, can increase the damage created by salinity stress [8]. Typical symptoms of
salinity stress include leaf yellowing, necrosis in older leaves, reduction in germination
percentage, early death of the young seedling, decrease in nodulation, and ultrastructural
modifications of chloroplasts and mitochondria, as well as changes in photosynthesis and
antioxidative metabolism [7,8].

Plant biostimulants, including natural compounds, such as protein hydrolysates,
humic and fulvic acids, chitosan, and extracts obtained from seaweed, along with rhi-
zospheric microorganisms that comprise bacteria and fungi have been shown to alle-
viate the detrimental effects of salinity stress [9–11]. Extracts obtained from seaweed,
especially from brown macroalgae (Phaeophyceae), are increasingly studied and used
for their biostimulant activity [10–16]. Seaweed extracts can stimulate both the primary
and secondary metabolic processes of plants, leading to improved nutrient uptake and
assimilation under a variety of stresses [9,14,17]. Several studies indicated that brown
macroalgae Ascophyllum nodosum extracts (ANE) can promote the uptake of micronutrients
and macronutrients and the accumulation of phytochemicals, such as anthocyanins and
phenolics, which are likely to be responsible for the enhancement of plant tolerance against
different stressors [9,14,17–19]. ANE was shown to affect proline metabolism in common
bean plants (Phaseolus vulgaris) and, therefore, to increase the tolerance of plants to drought
stress [20]. Soybean (Glycine max) treated with ANE demonstrated improved tolerance to
drought stress, including higher relative water content, stomatal conductance, and antiox-
idant activity; ANE also changed the expression of several stress-responsive genes [16].
Seaweed extracts can induce different plant defense pathways, including the activation
of the jasmonic acid-dependent signaling pathway [14,15,21,22]. ANE was also found to
mitigate salinity stress in the model organism Arabidopsis [13,14,23], as well as in several
crop plants, such as tomato [24], passion fruit [25], and avocado [26]. Seaweed extracts
were found to improve the survival of Kentucky bluegrass (Poa pratensis cv. Plush) [27]
and of chickpea (Cicer arietinum) [28], due to the accumulation of amino acids, including
proline, and enhanced activities of enzymes involved in limiting the effects of oxidative
damage [28]. Fucoidan and alginate are major complex polysaccharides found in brown
seaweed [19,29–33]. Mannitol, a sugar alcohol, is also highly abundant in these macroalgae,
acting as an osmolyte and antioxidant [31–34]. Though complex brown macroalgae extracts,
such as ANE, were found to elicit various mechanisms in plants which can alleviate biotic
and abiotic stresses, the potential biostimulant effect of brown seaweed components, such
as fucoidan, alginate, and mannitol, have not been sufficiently explored [14,19,29].

Production of phytohormones and of other bioactive molecules, as well as enhanced
colonization of the rhizosphere by beneficial soil bacteria, and of plants by endophytic
bacteria, can increase plant growth under salinity stress [35,36]. For example, Pseudomonas
putida strain S1 and Pseudomonas aeruginosa strain Crg have been shown to mitigate salinity
stress in chickpea [37], and Pseudomonas PS01 in Arabidopsis [38]. Also, Pseudomonas sp.
possessing 1-aminocyclopropane-1-carboxylate [39] deaminase activity improved toler-
ance and increased yield under salinity stress in tomato plants [40] and enhanced salt
tolerance in Camelina sativa [41]. Seed biopriming with Aneurinibacillus aneurinilyticus and
Paenibacillus sp. was found to alleviate salinity stress in French bean [42]. Not only rhi-
zospheric, but also endophytic microorganisms, such as Arthrobacter sp., P. putida and
Bacillus sp., can increase salt tolerance in plants (reviewed by [35]).

In the future, several alternative stress mitigation technologies are likely to play a
significant role in improving crop production [9,14,19,35]. Several studies pointed out
that abiotic stresses, such as salinity stress, can be reduced by using seaweed extracts and
various beneficial bacteria. Less is known, however, about the effects of seaweed extracts
on rhizosphere bacteria and whether these extracts can influence the interaction between
plants and beneficial microbes. The aim of this study was to determine the effects of ANE,
fucoidan, alginate, and mannitol on Pseudomonas protegens CHA0 secretion and colonization
ability and the combined effects of these seaweed compounds and P. protegens CHA0 on
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the growth of pea (P. sativum). The effects were tested in the absence and presence of salt
stress. The inclusion of fucoidan, alginate, and mannitol in the experiments was done to
determine whether, individually, these major components of ANE can have effects similar
to those of ANE. Biochemical and gene expression analyses of P. protegens CHA0 and
plant growth experiments indicated that ANE and fucoidan have the most pronounced
beneficial effects.

2. Results
2.1. Screening of Bacterial Strains for Different Plant Growth-Related Biological Activities

Seventeen bacteria were screened for their activities by plate assays. Among them,
P. protegens CHA0 and Sinorhizobium meliloti RM11559 were excellent performers in all
activities, including phosphate solubilization, siderophore production, hydrogen cyanide
(HCN) production, and indole-3-acetic acid (IAA) production. However, overall, P. protegens
CHA0 was better in all the assays compared to S. meliloti RM11559 and the other bacterial
cultures (Table 1). As a result, P. protegens CHA0 was selected for further studies.

Table 1. Screening of the bacteria for the different biochemical activities. (−) no activity; (+) low
activity; (++) medium activity; (+++) strongest activity.

Bacterial Species Phosphate
Solubilization

Siderophore
Production

IAA
Production

Protease
Production

HCN
Production

Azospirillum lipoferum 1842 − − + − −
Azotobacter vinelandii (ATCC12837) + − + + −
Bacillus subtilis − + + + −
Bacillus thuringiensis subsp. oloke − − + − −
Bradyrhizobium japonicum 3I1b6 − − + − −
Enterobacter agglomerans (ATCC23216) + − + − −
Enterobacter cloacae CAL2 − − + + +
Kluyvera ascorbata SUD165 + − ++ − −
Lactobacillus acidophilus (ATCC 4356) − − + − −
Paenibacillus polymyxa K56 − − + + −
Pseudomonas brassicacearum (ATCC 49054) − − ++ − −
Pseudomonas fluorescens 34-13 +++ +++ ++ − +
Pseudomonas protegens CHAO + − ++ − −
Pseudomonas putida (ATCC 12633) + − ++ − −
Sinorhizobium fredii (ATCC51808) + − ++ + −
Sinorhizobium meliloti RM11559 ++ ++ ++ − −
Streptococcus salivarius C699 − − + − −

2.2. Effect of ANE, Fucoidan, Alginate, and Mannitol on Siderophore Production, Phosphate
Solubilization, HCN Production, and IAA Production by P. protegens CHA0

P. protegens CHA0 was assessed using qualitative and quantitative assays for different
activities under salinity stress.

Siderophore activity was determined first by the halo zone formed around the culture
inoculums. Concentrations of 0.1% ANE and 0.01% fucoidan, alginate, and mannitol
were found to form halo zones of comparable sizes (Figure 1A). However, quantification
of siderophore production in the presence of 0.1% ANE and 0.01% fucoidan, alginate,
and mannitol showed that the highest amounts were produced in the presence of ANE
(57.66 psu), followed by fucoidan, mannitol, and alginate; siderophore amounts were
significantly higher in all compounds as compared to control (Figure 1B).
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Figure 1. Effect of ANE, fucoidan, alginate, and mannitol on siderophore production by P. protegens
CHA0. (A) Images of the plates showing siderophore production under different treatments.
(B) Siderophore production quantified using the CAS method. Con, control; ANE, 0.1% Acadian®;
Fuc, 0.01% fucoidan; Alg, 0.01% alginate; and Man, 0.01% mannitol. Statistical analysis was done
using One-Way ANOVA (p ≤ 0.05), followed by Tukey’s multiple comparison test (p ≤ 0.05). Error
bars represent SD. Letter grouping indicates significant differences according to Tukey’s test.

Similar to siderophore production, in the plate assay, the addition of 0.1% ANE and
0.01% fucoidan, alginate, and mannitol was clearly associated with substantial phosphate
solubilization (Figure 2A). Quantitatively, fucoidan, ANE, and mannitol were found to
be better than the control, while alginate showed no significant change in phosphate
solubilization (Figure 2A,B).
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Figure 2. Effect of ANE, fucoidan, alginate, and mannitol on phosphate solubilization by P. protegens
CHA0. (A) Images of the plates showing phosphate solubilization under different treatments.
(B) Amount of phosphate solubilized by P. protegens CHA0 under different treatments. Con, control;
ANE, 0.1% Acadian®; Fuc, 0.01% fucoidan; Alg, 0.01% alginate; and Man, 0.01% mannitol. Statistical
analysis was done using One-Way ANOVA (p ≤ 0.05) followed by Tukey’s multiple comparison test
(p ≤ 0.05). Error bars represent SD. Letter grouping indicates significant differences according to
Tukey’s test.
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HCN production is related to defense mechanisms employed by P. protegens CHA0.
HCN production was high in the presence of mannitol, alginate, and fucoidan as compared
to ANE and control (Figure 3A,B).
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Figure 3. Effect of ANE, fucoidan, alginate, and mannitol on HCN production by P. protegens CHA0.
(A) Images of the plates showing HCN production under different treatments. (B) Relative amounts of
HCN produced by P. protegens CHA0 under different treatments. Con, control; ANE, 0.1% Acadian®;
Fuc, 0.01% fucoidan; Alg, 0.01% alginate, and Man, 0.01% mannitol. Statistical analysis was done
using One-Way ANOVA (p ≤ 0.05), followed by Tukey’s multiple comparison test (p ≤ 0.05). Error
bars represent SD. Letter grouping indicates significant differences according to Tukey’s test.

The IAA production assay provides information on the growth promotion activity
of P. protegens CHA0. The effect of media amendments was very similar to that observed
in phosphate solubilization and siderophore production; that is, ANE (9.6 µg/mL) and
fucoidan (9.37 µg/mL) were found to enhance the most IAA production. Alginate was
slightly better than the control, while mannitol did not improve IAA production (Figure 4).
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Figure 4. Effect of ANE, fucoidan, alginate, and mannitol on IAA production by P. protegens CHA0.
Con, control; ANE, 0.1% Acadian®; Fuc, 0.01% fucoidan; Alg, 0.01% alginate; and Man, 0.01%
mannitol. Statistical analysis was done using One-Way ANOVA (p ≤ 0.05), followed by Tukey’s
multiple comparison test (p ≤ 0.05). Error bars represent SD. Letter grouping indicates significant
differences according to Tukey’s test.
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2.3. Effect of ANE, Fucoidan, Alginate, and Mannitol on CFU Count of P. protegens CHA0

The CFU count of P. protegens CHA0 was found to be increased by the addition of
A. nodosum components, in the presence and absence of salt stress (Figure 5A,B). The count
was found to be increased more than two-fold by 30 mM NaCl. Surprisingly, in salinity
conditions, mannitol failed to enhance bacterial growth, though it did so significantly in
normal conditions. ANE and fucoidan showed the most consistent effects in both growth
conditions (Figure 5B).

1 

 

 

Figure 5. Effect of the ANE, fucoidan, alginate, and mannitol on pea root colonization by P. protegens
CHA0. (A) Images of the plates on which P. protegens CHA0 cells were enumerated. (B) Colony-
forming units (CFU) counts in the absence and presence of salinity stress. Con, control; ANE, 0.1%
Acadian®; Fuc, 0.01% fucoidan; Alg, 0.01% alginate; and Man, 0.01% mannitol; −S, normal conditions
(no salt treatment); +S, 30 mM NaCl. Statistical analysis was done using One-Way ANOVA (p ≤ 0.05),
followed by Tukey’s multiple comparison test (p ≤ 0.05). Error bars represent SD. Letter grouping
indicates significant differences according to Tukey’s test.

2.4. Effect of ANE, Fucoidan, Alginate, and Mannitol, in the Absence and Presence of Salinity
Stress, on Key Genes of P. protegens CHA0 Involved in Plant Growth Promoting Rhizobacteria
(PGPR) Activity

The gene cheW codes a protein involved in chemotaxis that is present in a wide
range of bacteria [43]. In absence of salt, all treatments induced the gene expression level
compared to the control; however, gene up-regulation was significant only in the alginate
and mannitol treatments (7.15 fold and 4.27 fold, respectively; Figure 6A). In presence of
salt stress, alginate, and ANE treatments showed the highest expression (4.20 fold and
4.74 fold, respectively) compared to the control, while fucoidan and mannitol treatments
had almost no effect on gene expression (Figure 6A).
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Figure 6. Effect of ANE, fucoidan, alginate, and mannitol on gene expression of P. protegens CHA0.
(A) CheW, (B) WspR, (C) hcnA, (D) pvdS. Con, control; ANE, 0.1% Acadian®; Fuc, 0.01% fucoidan;
Alg, 0.01% alginate; Man, 0.01% mannitol; PP, P. protegens CHA0; −S, normal conditions (no salt
treatment); +S, 30 mM NaCl. Statistical analysis was done using One-Way ANOVA (p ≤ 0.05),
followed by Tukey’s multiple comparison test (p ≤ 0.05). Error bars represent SD. Letter grouping
indicates significant differences according to Tukey’s test.

WspR, the product of the WspR gene, is the response regulator of the Wsp chemosen-
sory system in several bacteria [44,45]. The expression of WspR, in absence of salt stress,
was found to be significantly increased in mannitol, alginate, and fucoidan treatments
(3.17 fold, 3.06 fold, and 2.56 fold, respectively), but much less in ANE treatment. In the
presence of salt stress, the expression pattern changed noticeably, with fucoidan treatment
having the strongest up-regulatory effect (3.79-fold increase), while ANE, alginate, and
mannitol treatments showed only minimal effects. (Figure 6B).

The gene hcnaA codes a hydrogen cyanide synthase that is responsible for the volatile
HCN production by various bacteria [46–48]. HCN is an antimicrobial compound that is
also released by P. protegens CHA0. The highest expression of hcnaA, in absence of salt stress,
was observed in the ANE treatment (14.4-fold), followed by the treatments with fucoidan
and alginate. Mannitol treatment was not different from the control. In the presence of salt
stress, compared to the control, the expression of hcnaA was induced by ANE and alginate
treatments (5.72-fold and 5.48-fold, respectively), but much less by fucoidan (2.93-fold).
Mannitol treatment was not different from control in this condition as well. Overall, versus
control, the expression of hcnaA was less pronounced in all the treatments under salinity
conditions, except for the treatment with alginate (Figure 6C).

The gene pvdS is responsible for the production of sigma factor PvdS, which is in-
volved in the positive regulation of secondary metabolite biosynthetic processes, including
pyoverdine synthesis [49,50]. In the absence of salt stress, an overall increase in pvdS tran-
script abundance was observed in treated plants, but these differences were not significant
when compared to the control. In the presence of salt stress, the highest expression was
observed in mannitol treatment (2.10-fold), but this was the only significant difference
compared to the control, among treatments (Figure 6D).
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2.5. Effect of P. protegens CHA0 on Different Plant Growth-Related Parameters under Salt Stress

The effects of ANE, fucoidan, alginate, and mannitol on plant growth, in the absence
and presence of P. protegens CHA0, and salinity stress, were assessed by growing the pea
plants in a hydroponic system (Figure 7). After 7 days in the hydroponic system, the fresh
weight of roots and shoots was recorded (Figure 8A,B). All of the treatments and the control
showed significantly higher root fresh weight (FW) in the presence of P. protegens CHA0
in the normal and salinity stress conditions (Figure 8A). Among treatments, ANE and
fucoidan were better in all conditions (presence or absence of P. protegens CHA0 or/and
salinity stress) as compared to alginate and mannitol. In the absence of salt stress and of
P. protegens CHA0, only alginate was not different from the control while, in the pres-
ence of P. protegens CHA0, alginate and mannitol were not statistically different from the
control (Figure 8A).
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Figure 7. Effect of ANE, fucoidan, alginate, and mannitol on plant growth in the absence and presence
of P. protegens CHA0 and salinity stress. Con, control; ANE, 0.1% Acadian®; Fuc, 0.01% fucoidan;
Alg, 0.01% alginate; Man, 0.01% mannitol; PP, P. protegens CHA0; −S, normal conditions (no salt
treatment); +S, 30 mM NaCl.

While the presence of P. protegens CHA0 had a significant effect on root FW, the overall
effects on shoot FW were not that obvious (Figure 8A,B). Overall, fucoidan, ANE, and
mannitol improved shoot growth, while alginate was found to be better than the control,
only in the presence of P. protegens CHA0 and salinity. Also, ANE and fucoidan performed
better in the presence of P. protegens CHA0, in both the absence and presence of salt
stress (Figure 8B).
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Figure 8. Effect of ANE, fucoidan, alginate, and mannitol on plant growth in the absence and presence
of P. protegens CHA0 and/or salinity stress. (A) Root fresh weight. (B) Shoot fresh weight. Con,
control; ANE, 0.1% Acadian; Fuc, 0.01% fucoidan; Alg, 0.01% alginate Man, 0.01% mannitol; Pp,
P. protegens CHA0; −S, normal conditions (no salt treatment); +S, 30 mM NaCl. Statistical analy-
sis was done using One-Way ANOVA (p ≤ 0.05), followed by Tukey’s multiple comparison test
(p ≤ 0.05). Error bars represent SD. Letter grouping indicates significant differences according to
Tukey’s test.

3. Discussion

Tritrophic interaction between root-soil and rhizosphere microorganisms is a crucial
phenomenon affecting plant growth, health, and defense. Several physiological activities
of plants, such as nutrient uptake, can be improved by rhizosphere microbes, which can
reduce the use of agrochemicals [51]. Microorganisms are recruited by exudates produced
by root cells. Root exudates are a rich source of fixed carbon, such as polysaccharides,
and of chemicals related to chemotaxis for the microorganisms found in the rhizosphere.
Rhizospheric microorganisms perceive the signals produced by the plant roots and produce
a wide range of chemicals in response to these signals, promoting plant growth and
enhancing their tolerance against biotic and abiotic stresses [52–54].
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The results of the current study indicate that ANE, and components present in ANE
(fucoidan, alginate, and mannitol), can (i) enhance the production by P. protegens CHA0
of essential products associated with root colonization, (ii) promote the colonization of
pea root by P. protegens CHA0, and (iii) mitigate salt stress in pea, a process that is further
improved in the presence of P. protegens CHA0. This last effect was found to be more
pronounced in root growth promotion than shoot growth. A. nodosum extract (ANE)
has been shown to exhibit strong biostimulant activity against several biotic and abiotic
stresses [13,14,19,23,55]. However, the effects of fucoidan, alginate, and mannitol, which
are main components of A. nodosum, and therefore of ANE, are less characterized, though
oligosaccharides and polysaccharides present in ANE have been shown to be elicitors of
plant defense responses [56]. The role of ANE in the potentiation of beneficial bacteria
growth and root colonization is still unexplored. On the other hand, several species from
the Pseudomonas genus are well known to enhance plant defense mechanisms against abiotic
and biotic stresses [37,57,58].

The presence of ANE improved the PGPR activities of P. protegens CHA0. Siderophores
are well-known high-affinity iron-chelating compounds, which facilitate iron uptake from
soil by plants. Plants assimilate iron from the soil through the roots [59–61]; siderophore
production by P. protegens CHA0 can enhance iron transport across the plasma membrane of
root epidermal cells and, therefore, the assimilation process. Results from the current study
showed that all treatments improved siderophore production of P. protegens CHA0, though,
overall, ANE was found to perform the best. It is likely that the more complex composition
of ANE can explain this effect, suggesting potential synergistic effects of the components
present in ANE. Pyoverdines are major fluorescent siderophores in Pseudomonas spp. [61,62],
and pvdS is a key gene in the regulation of pyoverdine synthesis [49,50]. All treatments,
including that with ANE, had a rather limited effect on the expression of pvdS, and the
addition of salt in the medium determined changes in its abundance. The lack of a pos-
itive correlation between siderophore production by P. protegens CHA0 under different
treatments and pvdS expression suggests that several other genes related to pyoverdines
biosynthesis, secretion, and iron uptake [50,63] may contribute to the observed pheno-
type; also, inconsistencies can occur when comparing and integrating transcriptomics,
proteomics, and metabolomics data [64–66].

Phosphorus (P) is a major limiting factor for plant growth. Insufficient amounts of
phosphorus in agricultural soils are often counterbalanced by the excessive use of high-
priced P-based chemical fertilizers [67]. Organic acids produced by phosphate-solubilizing
bacteria can make the P present in the soil more accessible to plants [68,69]. Among the
A. nodosum components analyzed, the phosphate solubilizing activity of P. protegens CHA0
was found to be enhanced in the presence of fucoidan and ANE, suggesting that fucoidan is
the main component in ANE responsible for potentiating this activity in P. protegens CHA0.

Beneficial Pseudomonas spp. have been reported to suppress different plant diseases by
producing antimicrobial metabolites, such as hydrogen cyanide [48,69]. The production of
HCN by P. protegens CHA0 was not influenced by ANE, though mannitol, alginate, and
fucoidan were found to increase around 3-fold this activity. It is likely that ANE compo-
nents, other than polyols and complex polysaccharides, counterbalanced the enhancing
effects determined by mannitol, alginate, and fucoidan. Interestingly, in absence of salt
stress, the expression of hcnaA was found to be the highest in presence of ANE, a pattern
that is opposite to that of HCN production. The hcnaA encodes subunit A of hydrogen
cyanide synthase, responsible for the volatile HCN production by bacteria. The functional
protein is a heterotrimer, formed by subunits HcnA, HcnB, and HcnC [46–48]. It is difficult
to rationalize the effects triggered by ANE, which had no effect on HCN production, but
enhanced the expression of hcnaA. One possible explanation is that ANE compounds, such
as polyphenols, had inhibitory effects on the enzymatic activity of HCN synthase.

Plant growth promotion is one of the important effects of beneficial PGPR. Production
of phytohormones, such as IAA, is the key mechanism behind growth promotion by PGPR.
Several studies provided support for IAA production by PGPR [70–72]. IAA production
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ability of P. protegens CHA0 was found to be enhanced in the presence of ANE; fucoidan
and alginate, but not mannitol, were found to have similar effects. Similarly to the results
observed in siderophore production, the better activity of ANE might be explained by the
potential synergistic effects of fucoidan and alginate.

Plants are essential sources of nutrition and provide shelter for rhizospheric bacte-
ria. Several factors affect the colonization of microorganisms in the rhizosphere of plants.
Rhizobacteria can be attracted and move toward plant roots by several chemoattractants
secreted by plants [51,73,74]. Chemotaxis allows bacteria to move along the signal gradi-
ent [75], and the final number of cells colonizing the root can be in the range of 1011 cells per
gram of root [76]. In absence of salt stress, pea root colonization by P. protegens CHA0 was
not strongly enhanced, though mannitol, ANE, and fucoidan had some stimulating effects.
In the presence of salt stress, root colonization was promoted by ANE and fucoidan, while
the effects of mannitol and alginate were limited. These results indicate that (i) the addition
of salt influences the effects of A. nodosum components, and (ii) A. nodosum components
influence differently the various P. protegens CHA0 functions related to root colonization.
Gene expression analysis of cheW and WspR in P. protegens CHA0, after treatment with
ANE and components, provided limited support to pea root colonization; overall, no clear
positive correlation between transcript abundance and enhanced physiological responses
could be determined. CheW is one of the proteins involved in the transmission of sen-
sory signals from the chemoreceptors to the motor proteins of the flagellar apparatus,
which is responsible for the movement of bacteria toward the rhizosphere [43]. The WspR
chemosensory system is well characterized in bacteria; WspR is the response regulator
of this system. WspR contains the conserved GGDEF domain, which is involved in the
formation of the intracellular-signaling molecule cyclic diguanylate (c-diGMP) [44,45].
Increased levels of c-diGMP result in enhanced biofilm formation and, therefore, of root
colonization [44]. ANE-enhanced root colonization in the absence and presence of salt
stress; however, treatments with ANE determined a large increase of transcript abundance
only in the case of cheW, in the presence of salt stress. Fucoidan also had significant effects
on root colonization, but determined the up-regulation of WspR. It is likely that, to have a
more comprehensive view, at a molecular level, of the effects of ANE and its components
on root colonization, more genes have to be analyzed, or different omics approaches should
be considered because of the rather complicated relationship between transcriptomics,
proteomics, metabolomics, and phenotype data [64–66].

The effects of the treatments with ANE, fucoidan, alginate, and mannitol were found
to be more pronounced on root growth compared to shoot growth, and these effects on root
growth were further enhanced in the presence of salt stress. The addition of P. protegens
CHA0 also had a marked effect on root growth, while the overall effects on shoot growth
were more limited. ANE is well known for its biostimulant activity [29,77–80], including
improved seed germination, seedling vigor, and plant growth [14,19]. Mannitol is naturally
synthesized in numerous bacteria, fungi, algae, and land plants, and functions as an
osmolyte, energy storage, and antioxidant [34,81,82]. Mannitol treatment can improve
salt tolerance in different plant species [83,84]. However, in the current work, except for
shoot-fresh weight under the normal condition, which was marginally enhanced, mannitol
treatment did not significantly influence root or shoot growth under both normal and stress
conditions. Slightly better results have been observed on shoot growth in the presence of
P. protegens CHA0. These results can be ascribed to the low concentration of the mannitol
used in this study, that is, 0.01% mannitol; this concentration is equivalent to ~0.5 mM
mannitol, which is quite low compared to the concentration of mannitol proved to act
as an osmolyte [83,84]. The present study supports these findings, as ANE and fucoidan
consistently improved root and shoot growth in the absence and presence of salinity stress,
while P. protegens CHA0 further augmented these effects.
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4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of pea (Pisum sativum L. cv. Sabre) were used in the experiments. Pea seeds,
selected to have a weight of around 0.35 g, were surface-sterilized with 1% of sodium
hypochlorite for 3 min, followed by rinsing in a series of distilled water. Seeds were
soaked in distilled water overnight. Imbibed seeds were incubated in moist chambers for
germination under a 16/8 light and dark period at 22 ± 2 ◦C. Germinated seeds with a
radicle length of 2–4 cm were transferred to the hydroponics system containing 1

4 MS media
(without sucrose; pH 5.8).

4.2. Source of ANE, Fucoidan, Alginate, and Mannitol

Acadian®, a commercial ANE product, was provided by Acadian Seaplants Limited,
Dartmouth, NS, Canada. Fucoidan was obtained from Marinova (Marinova Pty Ltd.,
Cambridge, TAS, Australia). The sodium salts of alginate and mannitol were from Sigma-
Aldrich. (Oakville, ON, Canada).

4.3. Bacterial Cultures Screening

Seventeen beneficial bacterial cultures (Table 1) were characterized for their various
biochemical activities, such as phosphate solubilization, siderophore production, IAA
production, and HCN production. Bacterial cultures were provided by Dr. Zhenyu Cheng,
Dalhousie University, NS, Canada. All the bacterial cultures were grown on their respective
media (Table S1) at 28 ± 2 ◦C.

4.4. Siderophore Production Assay

Siderophore production assay was performed by using the Chrome Azurol S dye (CAS,
Sigma-Aldrich) method described by Schwyn and Neilands [85]. This assay estimates
siderophore production qualitatively and quantitatively. The qualitative test was done on
King’s B agar media containing the CAS solution at a ratio of 1:15. Aqueous suspensions
of bacterial cultures with a CFU count of 2.4 × 108 were spotted on the middle of CAS
agar plates in triplicate. All Petri dishes were incubated at 28 ± 2 ◦C temperature for
48 h. The formation of an orange halo zone around the developing bacterial colonies
indicated a positive reaction for the assay. For quantitative estimation, 0.5 mL of the culture
supernatant was added to 0.5 mL of CAS solution, followed by 10 µL of sulfosalicylic
acid (0.2 M) (shuttling reagent). After 30 min of incubation at room temperature, the
optical density was recorded at 630 nm. Siderophore production was quantified in terms of
percent siderophore units (psu), using the formula: (Ar − As)/Ar × 100; where Ar is the
absorbance of the reference solution, and As is the absorbance of samples.

4.5. Phosphate Solubilization Assay

Phosphate solubilization by microbes was assayed using the NBRIP-BPB medium
described by Nautiyal [86]. Bacterial strains with CFU count of 2.4 × 108 were inocu-
lated on solid NBRIP-BPB medium in triplicate and incubated for 2–3 days at 28 ± 2 ◦C.
The clear zone around the growing colonies was considered as a positive result for
phosphate solubilization.

Quantitative estimation of phosphate solubilization was carried out in broth medium
NBRIP, amended with different treatments in triplicates. The amount of released phosphate
by the activity of P. protegens CHA0 was estimated using the method described by Fiske
and Subbarow [87].

4.6. HCN Production Assay

HCN production assay was performed as described by Lorck [88]. Bacterial strains
with a CFU count of 2.4 × 108 were inoculated on the middle of the Petri plate in triplicate.
Picrate filter paper (0.5% picric acid in 0.2% w/v Na2CO3) was placed on the lid of the Petri
plate. HCN formation determines the change of color from deep yellow to orange, and,
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finally, to dark brown. Bacterial strains changing the color of the picrate filter paper from
deep yellow to brown were considered as positive for HCN production. The plates were
sealed by parafilm and incubated for 72 h at 28 ◦C.

Dissolved, free cyanide ions concentration in the liquid medium was determined
using the colorimetric methemoglobin method described by von Rohr et al. [89]. The liquid
medium and the methemoglobin reagent were mixed at a 1:1 ratio, and the optical density
was recorded at 424 nm.

4.7. Indole-3-Acetic Acid (IAA) Production Assay

The IAA production assay was performed using the modified protocol described by
Malik and Sindhu [90]. Bacterial cultures were grown on their respective media for 48 h
and 72 h, respectively, at 28 ± 2 ◦C. Culture suspension (2.4 × 108 CFU) was centrifuged
at 3000× g for 30 min, and 2 mL of supernatant was used for the assay. The reaction was
performed by the addition of 3 µL of orthophosphoric acid (85%) and 4 mL of Salkowski
reagent (50 mL of 35% perchloric acid and 1 mL 0.5 M FeCl3). Optical density was recorded
at 530 nm.

4.8. Protease Assay

Protease assay was performed as previously described by Kembhavi et al. [91]. In
brief, the bacterial culture was centrifuged at 5000 rpm for 6 min. The supernatant
(150 µL) was transferred to a tube and was mixed with 300 µL of 1% (w/v) casein (prepared
in 20 mM Tris-HCl buffer, pH 7.4) and incubated at 37 ◦C for 30 min. Then, 0.45 mL of a
10% (w/v) trichloroacetic acid (TCA) solution was added to stop the proteolysis reaction,
followed by incubation of the mixture at room temperature for one hour. Eventually, the
reaction mixture was centrifuged at 12,000× g for 5 min, and the absorbance of the super-
natant was measured at 280 nm. One unit of protease is defined as the amount of enzyme
that hydrolyses casein to produce equivalent absorbance to 1 µmol of tyrosine/min with
tyrosine as standard [91].

4.9. Effect of ANE, Fucoidan, Alginate, and Mannitol on Gene Expression Profiles of
P. protegens CHA0

P. protegens CHA0 cells were collected after 24 h of growth in the presence and absence
of ANE, fucoidan, alginate, or mannitol. RNA isolation was performed using a RNeasy
mini kit (Qiagen Inc., Toronto, ON, Canada). Total RNA was quantified with a NanoDrop™

2000 spectrophotometer (Thermo Fisher Scientific Inc., Mississauga, ON, Canada). 2 µg
of RNA was used to synthesize cDNA using a RevertAid First Strand cDNA Synthesis
Kit (Thermo Fisher Scientific Inc). The relative gene expression of pvdS (coding the sigma
factor PvdS, which is involved in the regulation of pyoverdine synthesis), cheW (CheW
protein is implicated in chemotaxis), wspR (coding the WspR protein with diguanylate
cyclase activity, involved in signal transduction, cell adhesion, and biofilm formation) and
hcnA (HcnA is an enzyme with glycine dehydrogenase, cyanide-forming activity), was
determined by real-time quantitative PCR (RT-qPCR) (QuantStudio 3, Applied Biosystems,
Burlington, ON, Canada), using the SYBR® Green Supermix Kit (Bio-Rad Laboratories
(Canada) Ltd., Mississauga, ON, Canada). Gene-specific primers were used at a final
concentration of 0.1 µM. Primer3 software, version 4.1.0, was used to design the primers
used in the experiments (Table S2). RT-qPCR assays were carried out under the following
conditions: denaturation at 95 ◦C for 2 min, 40 repeats at 95 ◦C for 20 s, 60 ◦C for 30 s,
and 72 ◦C for 25 s. Transcript abundance was estimated using the 2−∆∆CT method [92] for
relative quantification by normalizing the data against the endogenous gene (rpoC) and
the individual with the lowest gene expression in controls. Fold change was calculated
with respect to the mean of the CT values of the three biological replicates from treatment
C (control). All RT-qPCR experiments were carried out with three biological and three
technical replicates.
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4.10. Effect of ANE, Fucoidan, Alginate, and Mannitol on the Biochemical Activities and Root
Colonization Activity of P. protegens CHA0

The concentration of ANE was adjusted to 0.1% [23], while that of fucoidan, alginate,
and mannitol were adjusted to 0.01%, considering that the proportion of these compounds
in brown seaweed extracts ranges between 2 and 10% [29–32]. All biochemical assays were
performed as mentioned in the previous sections. P. protegens CHA0 was grown in the
King’s B broth, with incubation at 28 ± 2 ◦C in a shaking incubator.

To study the effect of ANE, fucoidan, alginate, and mannitol on the root colonization
activity of P. protegens CHA0, the CFU count was performed using samples taken from the
rhizoplane, after 24 h of stress challenge. 0.2 g of the root sample from each treatment was
taken for the experiment. Samples were crushed in 1 mL of sterilized, Millipore water and
filtered. 100 µL of 10−5 and 10−6 dilution was transferred to Petri dishes containing King’s
B medium. The plates were incubated at 28 ± 2 ◦C, and CFU was counted after 24 h.

4.11. Effect of ANE, Fucoidan, Alginate, and Mannitol on Plant Growth in the Presence of P.
protegens CHA0 under Salinity Stress

Treatments, that is, 0.1% ANE, 0.01% fucoidan, mannitol, alginate, and 25 mL of
P. protegens CHA0 (2.4 × 107 CFU/mL), were added two days after the germinated seeds
were placed in the hydroponic system. Salinity stress was carried out at the same time by
the addition of 30 mM NaCl in each treatment. The phenotype of the plants grown in the
Magenta jars was observed after eight days of salinity stress challenge. Experiments were
repeated 3 times. Each treatment had 5 replicates and there were 4 plants in each replicate.

4.12. Statistical Analysis

Analysis of variance (One-Way ANOVA) was performed by using Minitab Statistical
Software Version 21.1 (Minitab Inc., State College, PA, USA). A Tukey post hoc test was
used to perform multiple mean comparisons at p ≤ 0.05.

5. Conclusions

The action of ANE and of biological compounds, such as fucoidan, which are found in
large amounts in A. nodosum, increased the production of antimicrobial compounds and the
synthesis of chemotaxis-related chemicals by P. protegens CHA0. These results suggest that
A. nodosum extract, as well as various A. nodosum components, can potentiate the beneficial
PGP effects of P. protegens CHA0 in terms of phosphate solubilization, siderophore, HCN,
and IAA production. Colonization of pea roots by P. protegens CHA0 was also enhanced,
mainly by ANE and fucoidan, under salinity stress. Overall, the combined applications of
ANE and P. protegens CHA0 greatly improved the growth and tolerance against salinity
of pea plants grown in hydroponic conditions. The current study suggests that ANE and
compounds such as fucoidan, derived from A. nodosum, could be used for the improvement
of crop growth under salinity stress. New formulations, containing various formulations of
ANE supplemented with beneficial microbes, could also be envisioned for improved yield
and plant health.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12061208/s1, Table S1: Media used for growing the different
bacterial cultures. Table S2: List of primers used in the qPCR experiment.
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