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Abstract: This work aimed to boost the valorisation of Lycium intricatum Boiss. L. as a source of high
added value bioproducts. For that purpose, leaves and root ethanol extracts and fractions (chloroform,
ethyl acetate, n-butanol, and water) were prepared and evaluated for radical scavenging activity
(RSA) on 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic
acid) (ABTS) radicals, ferric reducing antioxidant power (FRAP), and metal chelating potential against
copper and iron ions. Extracts were also appraised for in vitro inhibition of enzymes implicated on the
onset of neurological diseases (acetylcholinesterase: AChE and butyrylcholinesterase: BuChE), type-2
diabetes mellitus (T2DM, α-glucosidase), obesity/acne (lipase), and skin hyperpigmentation/food
oxidation (tyrosinase). The total content of phenolics (TPC), flavonoids (TFC), and hydrolysable
tannins (THTC) was evaluated by colorimetric methods, while the phenolic profile was determined
by high-performance liquid chromatography, coupled to a diode-array ultraviolet detector (HPLC-
UV-DAD). Extracts had significant RSA and FRAP, and moderate copper chelation, but no iron
chelating capacity. Samples had a higher activity towards α-glucosidase and tyrosinase, especially
those from roots, a low capacity to inhibit AChE, and no activity towards BuChE and lipase. The
ethyl acetate fraction of roots had the highest TPC and THTC, whereas the ethyl acetate fraction
of leaves had the highest flavonoid levels. Gallic, gentisic, ferulic, and trans-cinnamic acids were
identified in both organs. The results suggest that L. intricatum is a promising source of bioactive
compounds with food, pharmaceutical, and biomedical applications.

Keywords: medicinal plants; phenolic compounds; oxidative stress; neuroprotection; diabetes;
tyrosinase; goji

1. Introduction

Medicinal herbs contain different phytochemicals, with a broad spectrum of pharma-
cological effects, that have already proved to be effective therapeutic tools in the treatment
of several diseases. For example, different flavonoids and other phenolic compounds
display strong antioxidant activities and inhibitory properties against enzymes involved in
human ailments, such as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE),
which are involved in the onset of Alzheimer’s disease (AD) and other neurodegenerative
disorders, and α-glucosidase, linked with type-2 diabetes mellitus (T2DM) [1,2].

The genus Lycium (Solanaceae) comprises about 80 species distributed worldwide [3].
Algeria has four species, namely L. arabicum Boiss., L. europaeum L., L. halmifolium Mill., and
L. intricatum Boiss., which are mainly distributed in the north [4]. Species belonging to the

Plants 2023, 12, 996. https://doi.org/10.3390/plants12050996 https://www.mdpi.com/journal/plants

https://doi.org/10.3390/plants12050996
https://doi.org/10.3390/plants12050996
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/plants
https://www.mdpi.com
https://orcid.org/0000-0002-8987-2635
https://orcid.org/0000-0001-8732-710X
https://orcid.org/0000-0002-1131-8773
https://orcid.org/0000-0003-4338-7703
https://doi.org/10.3390/plants12050996
https://www.mdpi.com/journal/plants
https://www.mdpi.com/article/10.3390/plants12050996?type=check_update&version=1


Plants 2023, 12, 996 2 of 19

genus Lycium, especially L. barbarum L. and L. chinense Mill., have been an important source
of traditional remedies against a high number of human diseases, including AD, diabetes,
obesity, and cancer, and of nutritional supplements in Southeast Asia, mostly in China [5–8].
The interest in Lycium fruits, known as goji, has increased tremendously in Western coun-
tries, due to its nutritional properties (e.g., proteins, amino acids, and vitamins) and the
presence of bioactive compounds (e.g., phenolics, flavonoids, and anthocyanins), with
functional properties (e.g., antioxidant, anti-inflammatory) which confers goji a plethora
of health promoting functions, such as, for example, anti-aging and anti-diabetic [9]. In
fact, goji berries are considered a functional food, and the global distribution and diverse
uses make Lycium a genus of global importance. Goji and other Lycium parts, such as
leaves, seeds, and flowers, display substantial biological activities, like immunomodula-
tion, retinal protection, anti-tumour, hypotensive, neuroprotective, anti-diabetic, skin care,
enzyme inhibition, and antioxidant, linked with their chemical composition that include
polyphenols, alkaloids, and sesquiterpenes [3,6,10,11]. For example, goji leaves have a
chemical composition like berries, with reduced levels of sugars and a higher abundance of
fibres [12], and are rich in bioactive metabolites (e.g., phenolic compounds and alkaloids)
and present important biological activities, including antioxidant, anti-inflammatory, and
anti-diabetic [12].

Research has mainly focused on L. barbarum and L. chinense [12], but other Lycium
species may hold potential as sources of high added value products. Lycium intricatum
Boiss., also called “Awsadj”, is a spiky shrub that can reach 3 m high, with fleshy fruits
with a red colour, when mature. In Algeria, it inhabits maritime rocks and arid lands on
the littoral [4,6]. In traditional medicine, a decoction of the leaves is made twice, left to
cool for one day, and then applied in drops for cataracts and eye inflammations [13]. The
seeds are used for helminthiasis and as a digestive, while fruits are used for the treatment
of eye diseases [14]. Several bioactive molecules were previously identified in different
organs of L. intricatum. For example, fatty acids, such as myristic, palmitic, palmitoleic,
oleic, linoleic, and erucic acids, and sterols like ergosterol, stigmasterol, and β-sitosterol,
and triterpenes like squalene, erythrodiol, and uvaol, were identified in the seeds [15].
One phenolic acid, eight phenolic acid derivatives, and six flavonoids were identified in
leaves and fruits [16], and one new ionone derivative and three known compounds, namely
isoscopoletin, 3,4,5-trimethoxybenzyl alcohol, and (+)-isolariciresinol, were isolated and
identified in leaves [17]. To our best knowledge, only one paper has described biological
activities of L. intricatum, focusing on the antioxidant activity of the methanol extract
of leaves and fruits by complementary methods, namely radical scavenging properties
towards 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azinobis (3-ethylbenzothiazoline-6-
sulphonic acid diammonium salt) (ABTS), hydroxyl free radicals, and ferric-reducing
antioxidant power (FRAP) [16]. In that work, leaves exhibited the upmost antioxidant
potential, coupled to the highest levels of phenolics and flavonoids, leading the authors to
conclude that L. intricatum should be further explored as a potential source of high added
value bioactive products [16]. Presumably, there are no reports of the biological properties
of the roots of this species.

Lycium intricatum is, therefore, considered an underexploited species, despite its high
potential to serve as a source with economic and nutritional value [15]. Providing better
information regarding the chemical composition and pharmacological properties of this
species would pave the way to its valorisation as a source of bioactive compounds, and
consequently, to agriculture and economic progress [15]. In this context, in the present
work, qualitative and quantitative analyses of the phenolic composition of an ethanol
crude extract and obtained fractions of roots and leaves of this species were performed by
colorimetric methods and high-performance liquid chromatography, coupled to a diode-
array ultraviolet detector (HPLC-UV-DAD). The extracts were also evaluated for in vitro
antioxidant capacity, by complementary assays, and for enzymatic inhibitory properties
toward enzymes related with the onset of AD (AChE and BuChE), T2DM (α-glucosidase),
obesity/acne (lipase), and skin hyperpigmentation/food oxidation (tyrosinase).
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2. Materials and Methods
2.1. Chemicals and Reagents

All the chemicals used in this work were of analytical grade. Sigma-Aldrich (Lisbon,
Portugal) supplied Folin-Ciocalteau (F-C) phenol reagent, sodium acetate, sodium nitrite,
DPPH, ABTS, ascorbic acid, butylated hydroxytoluene (BHT), AChE (from electric eel,
Type-VIS, EC 3.1.1.7), BuChE (from horse serum, EC 3.1.1.8), acetylthiocholine iodide,
butyrylthiocholine chloride, galantamine hydrobromide (from Lycoris sp.), α-glucosidase
(from yeast, Saccharomyces cerevisiae, EC 3.2.1.20), 4-nitrophenyl-α-D-glucopyranoside,
acarbose, lipase from porcine pancreas (Type II, EC 3.1.1.3), orlistat, tyrosinase (from
mushroom, EC 1.14.18.1), L-2,3-dihydroxyphenylalanine, arbutin, and phosphate buffer.
Ethylenediaminetetraacetic acid (EDTA) was obtained from VWR (Carnaxide, Portugal).
Additional reagents and solvents were obtained from Merck (Lisbon, Portugal).

2.2. Plant Material

Roots and leaves from L. intricatum plants were harvested in 2018, in Ain El Turk,
Oran, Algeria (35◦44′16.7′′ N, 0◦43′30.5′′ W, 66 m a.s.l.) during the flowering season (May).
The plant was identified by Prof. Abderrazak Marouf, Institute of Science and Technology,
University Centre of Naama, Naama, Algeria. A voucher specimen (OUE.2018.C1) was
deposited in the Department of Biology, University of Oran1, Oran, Algeria. The roots and
leaves were dried in a well-ventilated room at 30 ◦C for 72 h, fully grinded, and stored in
the dark at room temperature (RT) until use.

2.3. Extraction and Partition

Dried samples (200 g) were extracted by cold maceration, three times with ethanol,
(1.2 L) for 72 h at RT. The extracts were filtered through Whatman N◦1 filter paper, combined,
and the solvent was removed under reduced pressure at 40 ◦C. The crude extract (12 g)
was dissolved in distilled water (240 mL) and sequentially extracted with chloroform
(240 mL × 3), ethyl acetate (240 mL × 3), and n-butanol saturated with water (240 mL × 3).
Obtained fractions were dried in a rotary evaporator, as previously described, for the crude
extract. The crude extract and obtained fractions were resuspended in methanol, at a
concentration of 10 mg/mL, and stored at −20 ◦C until use.

2.4. Total Contents of Phenolics (TPC), Flavonoids (TFC), and Hydrolysable Tannins (THTC)

TPC was evaluated by the F-C assay with absorbance measured at 760 nm. Gallic acid
was used as standard, and results were expressed as milligrams of gallic acid equivalents
per gram of dried extract (mg GAE/g DE). TFC was determined by the aluminium chloride
colorimetric assay, the absorbance was measured at 510 nm using catechin as standard, and
results were expressed as milligrams of catechin equivalents per gram of dried extract (mg
CE/g DE). All methods are detailed in [18,19]. THTC were determined using potassium
iodate assay, the absorbance was measured at 550 nm using tannic acid, as standard, and
results were expressed as milligrams of tannic acid equivalents per gram of dried extract
(mg TAE/g DE) [20].

2.5. HPLC-UV-DAD Analysis and Identification of Phenolic Compounds

The extracts at the concentration of 10 mg/mL were analysed by HPLC-UV-DAD
(Agilent 1200 Series LC system, Waldbronn, Germany), as described elsewhere [21]. For
identification of phenolic compounds, the retention parameters of each assay were com-
pared with the standard controls and the peak purity with the UV-vis spectral reference
data. Commercial standards of gallic, gentisic, trans-cinnamic, ferulic, and p-coumaric
acids, gallocatechin gallate, catechin, rutin, and quercetin were prepared in methanol and
analysed separately.
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2.6. Antioxidant Activity
2.6.1. Radical Scavenging Activity (RSA) on DPPH Radical

Samples were tested for RSA against the DPPH radical at concentrations ranging from
10 to 1000 µg/mL, as described previously [22]. Ascorbic acid was used as a positive control
at concentrations ranging from 10 to 500 µg/mL. Results were expressed as percentage
of inhibition, relative to a control containing DMSO in place of the sample, and as half
effective concentration (EC50 values, µg/mL).

2.6.2. RSA on ABTS Radical Cation

The RSA against ABTS•+ was evaluated according to Re et al. [23]. A stock solution of
ABTS•+ (7.4 mM) was prepared in potassium persulfate (2.6 mM) and left in the dark for 12–
16 h at RT. The ABTS•+ solution was then diluted with ethanol to get an absorbance of 0.7 at
734 nm (Biotek Synergy 4, Biotek, Winooski, VT, USA). Samples (10 µL), at concentrations
ranging from 1 to 1000 µg/mL, were mixed with 190 µL of ABTS•+ solution in 96-well
microplates, and after 6 min of incubation, the absorbance was measured at 734 nm. Results
were presented as antioxidant activity (%), relative to a control containing DMSO, and
as EC50 values (µg/mL). Ascorbic acid was used as a positive control at concentrations
ranging from 10 to 500 µg/mL.

2.6.3. Ferric Reducing Antioxidant Power (FRAP)

The ability of the extracts to reduce Fe3+ was assayed by the method described by
Rodrigues et al. [22]. Absorbance was measured at 700 nm, and increased absorbance
of the reaction mixture indicated increased reducing power. Results were expressed as a
percentage, relative to the positive control (BHT, 1 mg/mL), and as EC50 values (µg/mL).

2.6.4. Metal Chelating Activity on Iron (ICA) and Copper (CCA)

ICA and CCA were tested on samples at different concentrations (10–4000 µg/mL),
as described previously [22]. The change in colour was measured on a microplate reader.
EDTA was used as the positive control at concentrations ranging from 10 to 500 µg/mL.
Results were expressed as percentage of inhibition, relative to a control containing DMSO
in place of the sample, and as EC50 values (µg/mL).

2.7. Enzyme Inhibitory Assays
2.7.1. AChE and BChE Inhibition Assay

The extracts, at concentrations ranging from 10 to 4000 µg/mL, were evaluated for their
inhibitory activity against AChE and BuChE, according to Orhan et al. [24]. Absorbances
were read at a wavelength of 412 nm using a 96-well microplate reader, and results were
expressed as percent inhibition, relative to a control containing DMSO instead of extract,
and as half maximal inhibitory concentration (IC50 values) (µg/mL). Galantamine (1 to
1000 µg/mL) was used as a reference.

2.7.2. α-Glucosidase Inhibition Assay

The α-glucosidase inhibitory activity was determined according to the method de-
scribed by Kwon et al. [25]. The absorbances were recorded at 405 nm in a microplate
reader and results were expressed as inhibition (%), related to a control containing DMSO,
and as IC50 values (µg/mL). Acarbose was used as a positive control at concentrations
varying from 10 to 4000 µg/mL.

2.7.3. Lipase Inhibition Assay

The inhibitory activity on lipase was evaluated according to the method described by
McDougall et al. [26], adapted to 96-well microplates. Samples (20 µL), at concentrations
ranging from 10 to 4000 µg/mL, were mixed with 200 µL of Tris-HCl buffer (100 mM, pH
8.2), 20 µL of the enzyme solution (1 mg/mL), and 20 µL of the substrate (4-nitrophenyl
dodecanoate, 5.1 mM in ethanol). After an incubation period of 10 min at 37 ◦C, the
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absorbance was read at 410 nm. Orlistat was used as the positive control at concentrations
ranging from 10 to 1000 µg/mL. Results, calculated as a percentage of inhibitory activity
in relation to a control containing the corresponding solvent, in place of the sample, were
expressed as IC50 values (µg/mL).

2.7.4. Tyrosinase Inhibition Assay

The extracts’ ability to inhibit tyrosinase was assessed following Custódio et al. [27],
using arbutin as a positive control at concentrations ranging from 10 to 1000 µg/mL. The
extracts were tested at the concentrations ranging from 10 to 4000 µg/mL. The results were
calculated and expressed, as in Section 2.7.3.

2.8. Statistical Analysis

All the tests were carried out in triplicate. Results were expressed as mean ± standard
error mean (SEM). Statistical analysis was performed by one-way analysis of variance
(ANOVA), followed by Tukey and Student–Newman–Keuls post hoc test for multiple
comparisons. Statistical analysis was performed by using IBM SPSS statistics V24 software
from IBM. A value of p < 0.05 was considered to indicate statistical significance.

3. Results and Discussion
3.1. Phenolic Composition of the Extracts

Results on the extraction yields and total contents of phenolics, flavonoids, and tannins
are summarized in Table 1. The extraction yield of the crude ethanol extracts was higher
for leaves (11.07%) than for roots (1.805%). As a result, the extraction yields of the fractions
made from the ethanol extract from leaves (range: 0.118–3.873%) were higher than their
counterparts obtained from roots (range: 0.021–0.463). Phenolics have recognized benefits
on human health, including antioxidants and enzyme inhibitors [28]. Having this in mind,
the extracts were evaluated for their total content in different phenolic groups, and results
are depicted in Table 1.

Table 1. Extraction yields and total phenolics, flavonoids, and hydrolysable tannins content of ethanol
extracts from L. intricatum and obtained fractions.

Yield (%) TPC
(mg GAE/g DE)

TFC
(mg CE/g DE)

THTC
(mg TAE/g DE)

Extract/Fraction Roots Leaves Roots Leaves Roots Leaves Roots Leaves

Ethanol 1.805 11.070 119.19 ± 4.23 a 53.39 ± 3.94 a 63.13 ± 0.47 a 21.86 ± 0.25 a 53.98 ± 4.39 a n.d.
Chloroform 0.024 0.118 118.02 ± 2.06 a 124.18 ± 4.54 a,c 13.01 ± 0.16 b 22.38 ± 0.51 a n.d. n.d.
Ethyl acetate 0.021 0.235 281.62 ± 26.64 b 268.57 ± 40.96 b,d 141.31 ± 21.36 c 185.51 ± 14.08 b 472.01 ± 39.95 b 282.01 ± 30.62

n-butanol 0.122 1.520 266.56 ± 3.47 b 215.69 ± 19.48 c,d 70.81 ± 4.85 a 75.32 ± 0.61 c 373.34 ± 27.48 b n.d.
Water 0.463 3.873 46.73 ± 4.66 c 35.09 ± 2.08 a 47.86 ± 0.26 a,b 20.55 ± 0.62 a 71.40 ± 2.00 a n.d.

n.d.: not determined. Values represent the mean ± standard error of the mean (SEM) of triplicate samples. In
the same column, values followed by different letters are significantly different according to the Tukey and
Student–Newman–Keuls multiple range tests (p < 0.05). TPC: total phenolics content; TFC: total flavonoids
content; THTC: total hydrolysable tannins content.

Root extracts had a higher content of phenolics than leaves, with TPC in the following
order: ethyl acetate fraction ≥ n-butanol fraction > ethanol extract ≥ chloroform fraction >
water fraction. In roots, flavonoids peaked in the ethyl acetate fraction, followed by the
n-butanol one. Finally, high levels of tannins were detected in the root’s ethyl acetate and
n-butanol fractions, as well as in the ethyl acetate fraction from leaves. In fact, we observed
that the ethyl acetate and the n-butanol fractions have a higher concentration of total
phenolics, flavonoids, and tannins when compared to the ethanol crude extract, probably
due to the enrichment in such compounds, due to the higher extractable capacity of such
solvents. Similar results were obtained in a related species, L. europaeum, by Bendjedou
et al. [11]. The obtained results clearly show the influence of the solvent on the extractability
of phenolics, flavonoids, and tannins. Phenolic compounds were effectively extracted from
the crude ethanol extract, with ethyl acetate and n-butanol, whereas chloroform and water
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allowed for lower amounts of those compounds. In a previous study on the chemical
composition of roots and leaves of L. europaeum from Algeria, high levels of phenolics,
flavonoids, and tannins were also detected in similar extracts [11]. However, lower contents
of phenolics and flavonoids were detected in methanol extracts made from leaves and
fruits of L. intricatum collected from Tunisia [16]. These differences may be related to the
solvent used for the extraction and to environmental factors. In effect, the extraction of
phenolics is influenced by several conditions, such as the method of extraction, climate, and
geographical region of collection, which directly affect the amounts of these molecules in the
plant tissues [29]. Phenolic compounds, like those found in high amounts in L. intricatum,
display important bioactive properties highly relevant for human health improvement,
such as anti-inflammatory, anti-anthelmintic, and anti-cataract [30–32], which can support
the traditional medicinal uses of the plant.

The phenolic composition of the extracts of L. intricatum was further investigated
through the identification of some individual phenolic compounds by HPLC-UV-DAD, and
results are depicted in Figures 1 and 2. Information related to the identified compounds
can be found in Table 2. From the twenty-four standards tested, nine compounds were
identified in those samples. Among these, five and eight compounds were detected in
extracts from roots and leaves, respectively. p-coumaric acid (4) was specific to roots,
while catechin (3), rutin (5), gallocatechin gallate (6), and quercetin (7) were preferentially
detected in leaves. Gallic (1), gentisic (2), ferulic (8), and trans-cinnamic (9) acids were
identified in both organs. To the best of our knowledge, the presence of compounds 1–4 and
6–9 in L. intricatum is described here for the first time. The detected phenolic compounds
are promising nutraceutical and food additives due to their bioactivities, which include
inhibition of enzymes involved in generating inflammatory and immune responses (e.g.,
serine protein kinases, phospholipases, lipoxygenase, cyclooxygenase, and nitric oxide
synthase), modulation of glucose and lipid metabolism, and antioxidant, anticancer, and
antimicrobial properties [33].
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Figure 1. HPLC-DAD-UV analysis (280 nm) of phenolic compounds in the crude ethanol extract 
(A), chloroform (B), ethyl acetate (C), n-butanol (D), and water (E) fractions of roots of L. intricatum. 
Gallic acid (1), gentisic acid (2), p-coumaric acid (4), ferulic acid (8), trans-cinnamic acid (9). The 
experimental conditions are described in Section 2.5. 

Figure 1. HPLC-DAD-UV analysis (280 nm) of phenolic compounds in the crude ethanol extract
(A), chloroform (B), ethyl acetate (C), n-butanol (D), and water (E) fractions of roots of L. intricatum.
Gallic acid (1), gentisic acid (2), p-coumaric acid (4), ferulic acid (8), trans-cinnamic acid (9). The
experimental conditions are described in Section 2.5.
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Figure 2. HPLC-DAD-UV analysis (280 nm) of phenolic compounds in ethanol extract (A), 
chloroform (B), ethyl acetate (C), n-butanol (D), and water (E) fractions of leaves of L. intricatum. 
Gallic acid (1), gentisic acid (2), catechin (3), rutin (5), gallocatechin gallate (6), quercetin (7), ferulic 
acid (8), trans-cinnamic acid (9). The experimental conditions are described in Section 2.5.

Figure 2. HPLC-DAD-UV analysis (280 nm) of phenolic compounds in ethanol extract (A), chloroform
(B), ethyl acetate (C), n-butanol (D), and water (E) fractions of leaves of L. intricatum. Gallic acid
(1), gentisic acid (2), catechin (3), rutin (5), gallocatechin gallate (6), quercetin (7), ferulic acid (8),
trans-cinnamic acid (9). The experimental conditions are described in Section 2.5.
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Table 2. Molecules identified in L. intricatum extracts.

Chemical Compound Chemical Structure Formula Classification Organ Biological Properties Reference

Gallic acid (1)
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Previous reports indicated the presence of several phenolic compounds, especially
phenolic acids and their derivatives, and flavonoids in fruits and leaves of L. intricatum
collected from Tunisia, such as chlorogenic, feruloylquinic, mono-caffeoylquinic, dicaf-
feoylquinic and para-coumaroylquinic acids, caffeoyl and di-caffeoyl putrescine, quercitrin,
isoquercitrin, quercetin, rutin, rutinoside, di-rhamnoside, and kaempferol [16]. Similar
results were obtained in leaf ethanol extracts of related species, namely L. barbarum and L.
chinensis [42,43]. Overall, the phenolic compounds identified in L. intricatum, either in the
present work or in previous reports, highlight the potential use of this species as a source
of natural products with health improvement potential and different biotechnological
applications, as, for example, in the food and cosmetic industries.

3.2. Antioxidant Activity

The highest RSA was obtained with the ethyl acetate and n-butanol fractions (Table 3).
The crude ethanol extracts also showed a high RSA, which was significantly higher than
that obtained with the used antioxidant standard (ascorbic acid), with EC50 values ranging
from 13.59 to 77.16 µg/mL and the highest values being obtained with the ethanol extracts
of roots. Conversely, the water fractions of leaves had the lowest capacity to scavenge the
DPPH and ABTS+ radicals.

On the other hand, the ethyl acetate and n-butanol fractions of roots and leaves had a
higher capacity to reduce iron (FRAP), but the ethyl acetate fraction of leaves was more
efficient than other samples in terms of copper chelating potential (CCA). Samples were not
active in the iron chelation assay (ICA) (Table 3). These results suggest that some extracts
contain compounds with copper chelating activity, and that these compounds may have a
phenolic nature. To the best of our knowledge, there were no previous reports regarding
the copper chelating potential of L. intricatum.
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Table 3. Radical-scavenging activity on DPPH and ABTS+ radicals, ferric reducing antioxidant power (FRAP), and metal-chelating activities on iron (ICA) and
copper (CCA) of ethanol extracts from L. intricatum and obtained fractions. Results are expressed as EC50 values (µg/mL).

DPPH ABTS FRAP ICA CCA

Extract/Fraction/
Standard Roots Leaves Roots Leaves Roots Leaves Roots Leaves Roots Leaves

Ethanol 43.92 ± 0.21 a 77.16 ± 0.94 a 13.59 ± 0.24 a 45.30 ± 0.47 a 175.06 ± 4.21 a 460.86 ± 15.91 a n.a. n.a. 2657.33 ± 45.36 a n.a.
Chloroform 95.74 ± 0.91 b 71.84 ± 2.24 a 14.69 ± 0.24 a 13.59 ± 0.42 b 599.55 ± 39.96 b 187.30 ± 15.91 b n.a. n.a. n.a. n.a.
Ethyl acetate 61.11 ± 2.09 c 20.42 ± 0.36 b 12.32 ± 0.17 a 10.32 ± 0.27 b 594.12 ± 20.02 b 181.00 ± 11.04 b n.a. n.a. n.a. 1555.66 ± 13.83 a

n-butanol 42.25 ± 0.54 a 46.48 ± 0.43 c 12.57 ± 0.26 a 21.24 ± 0.63 b 240.47 ± 17.66 a 359.36 ± 11.06 c n.a. n.a. n.a. 3323.66 ± 28.38 b

Water 69.89 ± 1.97 c 173.76 ± 1.50 d 39.84 ± 0.59 b 129.71 ± 1.88 c 859.66 ± 28.71 c 1519.33 ± 34.16 d n.a. n.a. n.a. n.a.
BHT * n.t. n.t. n.t. n.t. - - n.t. n.t. n.t. n.t.

Ascorbic acid * 125.95 ± 4.65 d 125.95 ± 4.65 e 218.31 ± 7.39 c 218.31 ± 7.39 d n.t. n.t. n.t. n.t. n.t. n.t.
EDTA * n.t. n.t. n.t. n.t. n.t. n.t. 33.04 ± 1.60 33.04 ± 1.60 120.60 ± 2.11 b 120.60 ± 2.11 c

* Positive controls; n.t.: not tested; n.a.: not active (EC50 value not reached). Values represent the mean ± standard error of the mean (SEM) of triplicate samples. In the same column,
values followed by different letters are significantly different according to the Tukey and Student–Newman–Keuls multiple range tests (p < 0.05).
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Samples had a high RSA, which was higher in the crude ethanol extract from roots,
when compared to its leaf’s counterpart, and had a significant capacity to reduce iron,
like previous findings in a related species, L. europaeum [11]. The RSA and iron reducing
capacity were higher than those reported for a methanol extract from leaves and fruits of the
same species collected in Tunisia [16], which may be related with different factors known
to affect the synthesis of secondary metabolites and, consequently, the biological properties
of obtained extracts, including different sites of collection and methods of extraction. The
values of RSA obtained in the present study were like those obtained with ethanol extracts
from the leaves of L. barbarum and L. chinense [43], while the capacity to reduce iron of
the ethyl acetate extract was similar to that reported by Yan et al. [44] for leaves of L.
barbarum. In leaves, the RSA, iron reducing, and copper chelating properties were higher
in the ethyl acetate and n-butanol fractions, which could be linked to the enrichment in
phenolic content of those samples, since it is known that phenolics are able to quench free
radicals by forming resonance-stabilized phenoxyl radicals [45]. The ethyl acetate fractions
generally showed higher RSA, which might be due to the presence of semi-polar molecules,
including flavonoids (Table 1). These results agree with others reporting that ethyl acetate
was more effective for extracting antioxidants from other plant species, including Sasa
quelpaertensis and Pistacia atlantica subsp. atlantica [46,47]. The root and leaf extracts also
had a considerable iron reducing capacity, indicating that they have effective electron
donors capable of reducing oxidized intermediates of lipid peroxidation [48]. Interestingly,
in the present study, no capability to chelate iron was detected. It has been suggested that
the iron chelating activity depends on the presence of catechol groups, which seem to be
mostly responsible for metal chelating [45]. Therefore, our results might indicate that the
phenolics present in the extracts have few catechol groups in their structures.

Phenolic compounds have a recognized strong antioxidant capacity [49]. In this
sense, we can suggest that the antioxidant activity of L. intricatum most likely reflects its
high phenolic content. Nonetheless, the detected phenolic compounds may contribute
to the L. intricatum antioxidant capacity through addictive and/or synergistic effects [50].
Furthermore, differences between the phenolic composition and content of root and leaf
extracts can be responsible for their different behaviours against the various oxidative
agents, since detected compounds can have distinct activities towards the same oxidant.
For instance, phenolic acids present in the roots and leaves of L. intricatum extracts, namely
gallic, gentisic, ferulic, and trans-cinnamic acids, are excellent RSA, and they may be
associated with the increased activity of these extracts. Gallate and dihydroxy groups can
prevent metal-induced free radicals’ formation through copper chelation, which leads to
inactive complexes formation [50]. In the same way, samples were not able to chelate iron,
possibly due to a differential selectivity of the antioxidants towards the several oxidising
agents [50,51]. From the present results, it is clear that extracts of L. intricatum, especially
those from roots, contain molecules not only able to scavenge free radicals, namely DPPH
and ABTS+, but also to reduce Fe3+ and to chelate copper; thus, they may be useful in
the prevention of oxidative-stress diseases, including, for example, neurodegeneration,
diabetes, and skin disorders [52].

3.3. Enzymatic Inhibitory Properties

The extracts were further evaluated for their capacity to inhibit enzymes implicated
in the onset of human diseases, including neurodegeneration, T2DM, obesity/acne, and
hyperpigmentation/food oxidation, and results are summarized in Table 4. Only the
chloroform and the ethyl acetate root fractions significantly inhibited AChE, while none
of the extracts were able to considerably inhibit BuChE (Table 4). To the best of our
knowledge, there is no published data regarding the cholinesterase inhibitory activity of L.
intricatum or other neuroprotective properties. A higher inhibitory capacity towards AChE
(IC50 = 92.63 µg/mL) was previously reported for the n-butanol fraction obtained from an
ethanol root extract of L. europaeum [11]. Such results were in accordance with previous
studies of Mocan et al. [53], who observed lower values in terms of cholinesterase inhibition
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for methanol/water (70:30, v/v) leaf extracts of L. barbarum. Interestingly, the n-butanol
fraction and crude ethanol extract from roots, and the ethyl acetate fraction from leaves,
were able to inhibit α-glucosidase, which were significantly higher than that obtained with
the positive control, acarbose. No information was found in the literature regarding the
α-glucosidase inhibitory activity of L. intricatum. The results obtained in this work are in
accordance with those reported in a previous one targeting L. europaeum, where the root
extracts displayed a high inhibitory capacity towards that enzyme [11]. In another study,
methanol leaf extracts of L. chinense were also found to be effective against α-glucosidase
activity [54]. The higher activity observed in the polar extracts, i.e., n-butanol and ethanol,
could be due to their higher phenolic content. Similar results were obtained by Custódio
et al. [55], who reported that extracts made from Quercus suber L., with the highest phenolic
content, also displayed the maximum α-glucosidase inhibition. It is well established that
phenolic compounds play an important role in modulating glucosidase activities and,
therefore, can contribute to the management of T2DM [55,56]. The present results suggest
that roots of L. intricatum contain molecules capable of inhibiting the dietary carbohydrate
digestive enzyme and AChE, which may be useful for the control of glucose levels in
T2DM patients and for the treatment of AD through modulation of the neurotransmitter
acetylcholine in the brain. In addition, the results also suggest that the highest AChE and
α-glucosidase inhibitory activities displayed by some extracts may be related with the
identified compounds. In fact, previous studies have demonstrated or reviewed these
inhibitory activities for gallic acid (1), catechin (3), rutin (5), and quercetin (7) [57–59].
However, we cannot discard both a synergistic effect and the activity of other compounds
not identified in the samples. None of the extracts were active against lipase. However, they
were able to inhibit tyrosinase and the inhibitory activity of n-butanol, and water fractions
from roots were higher than that of the positive control, arbutin (Table 4). Although
no reports were found regarding the tyrosinase inhibition of L. intricatum extracts, this
capacity was already reported for root extracts of a related species, L. chinense [60]. The
stronger tyrosinase inhibition capacity exhibited by the root extracts may be related to
some identified compounds, namely gallic (1) and gentisic (2) acids (Figure 1), which are
tyrosinase inhibitors [61,62]. The present results encourage further work aiming to deepen
knowledge on the potential use of L. intricatum as a source of skin whitening products
and food additives, which could be of interest for the food, cosmetic, and pharmaceutical
industries. In fact, besides its involvement in melanin production, tyrosinase is also related
with enzymatic browning, which is a major problem of fresh-cut fruits, and results from
oxidation reactions with several enzymes and leads to modifications in the appearance
of the nutritional value of food stuffs. Sulfiting agents are the most frequently used anti-
browning products but have adverse health effects. Thus, safer anti-browning additives are
much needed, and several natural products were already identified, including polyphenol-
rich extracts [63]. Of note is the fact that, although the ethanol extract was not active in
some assays, namely AChE, BuChE, lipase, and tyrosinase, the obtained fractions displayed
some inhibition, allowing for the calculation of IC50 values (Table 4). This can be explained
by an accumulation of molecules with enzymatic inhibition properties because of the
fractionating process. In the same way, Bendjedou et al. [11] investigated the root and
leaf extracts of L. europaeum for in vitro enzyme inhibitory activities. Obtained fractions
displayed relevant inhibitory activity towards AChE, BuChE, and urease, while the crude
ethanol extract was not active. These findings correlate with the results of the present study.
A more detailed analysis of the phytochemical profile of the active fractions is needed to
identify molecules with the antienzyme actions observed in this study.
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Table 4. Enzymatic inhibitory properties of ethanol extracts from L. intricatum and obtained fractions. Results are expressed as IC50 values (µg/mL).

Acetylcholinesterase Butyrylcholinesterase Glucosidase Lipase Tyrosinase

Extract/Fraction/Standard Roots Leaves Roots Leaves Roots Leaves Roots Leaves Roots Leaves

Ethanol n.a. n.a. n.a. n.a. 944.85 ± 14.17 a n.a. n.a. n.a. n.a. n.a.
Chloroform 790.93 ± 43.97 a n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.
Ethyl acetate 998.83 ± 33.87 b n.a. n.a. n.a. n.a. 1890.66 ± 56.62 a n.a. n.a. 3549.75 ± 199.06 a n.a.

n-butanol n.a. n.a. n.a. n.a. 733.20 ± 25.80 a n.a. n.a. n.a. 162.90 ± 20.05 b 3808.00 ± 413.33
a

Water n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 274.07 ± 8.09 b n.a.
Galantamine * 7.8 ± 0.44 c 7.8 ± 0.44 320 ± 30 320 ± 30 n.t. n.t. n.t. n.t. n.t. n.t.

Acarbose * n.t. n.t. n.t. n.t. 2955.00 ± 158.25 b 2955.00 ± 158.25 b n.t. n.t. n.t. n.t.
Orlistat * n.t. n.t. n.t. n.t. n.t. n.t. 120 ± 10 120 ± 10 n.t. n.t.
Arbutin * n.t. n.t. n.t. n.t. n.t. n.t. n.t. n.t. 409.08 ± 1.97 b 409.08 ± 1.97 b

* Positive controls; n.t.: not tested; n.a.: not active (IC50 value not reached). Values represent the mean ± standard error of the mean (SEM) of triplicate samples. In the same column,
values followed by different letters are significantly different according to the Tukey and Student–Newman–Keuls multiple range tests (p < 0.05).
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4. Conclusions

This study reports, for the first time, that extracts from L. intricatum roots have radical
scavenging, ferric reducing, and metal chelating activities, coupled with enzyme inhibitory
activity towards AChE, α-glucosidase, and tyrosinase. These bioactivities may be related
to the high abundance of total phenolics in the extracts and to some identified molecules,
such as gallic acid (1), catechin (3), rutin (5), and quercetin (7). Our results are generally
similar to those obtained with well-studied Lycium species, such as L. barbarum and L.
chinense, and suggest that roots and leaves of L. intricatum could be considered a source of
innovative herbal products, with applications in the food and pharmaceutical industries,
with particular interest in the prevention of oxidative stress, neurological diseases, diabetes,
and skin disorders. Additional experiments are needed to identify and characterize the
bioactive compounds present in the extracts, namely through a bioguided fractionation
and isolation of pure compounds. Our results could be used to the valorisation of this
promising species.
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