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Abstract: Performance of the APSIM (Agricultural Production Systems sIMulator) wheat model was
assessed to simulate winter wheat phenology, biomass, grain yield, and nitrogen (N) uptake for its
potential to optimize fertilizer applications for optimal crop growth and minimal environmental
degradation. The calibration and evaluation dataset had 144 and 72 different field growing conditions
(location (~7) × year (~5) × sowing date (2) × N treatment (7–13)), respectively, and included
seven cultivars. APSIM simulated phenological stages satisfactorily with both model calibration
and evaluation data sets with r2 of 0.97 and RMSE of 3.98–4.15 BBCH (BASF, Bayer, Ciba-Geigy, and
Hoechst) scale. Simulations for biomass accumulation and N uptake during early growth stages
(BBCH 28–49) were also reasonable with r2 of 0.65 and RMSE of 1510 kg ha−1, and r2 of 0.64–0.66
and RMSE of 28–39 kg N ha−1, respectively, with a higher accuracy during booting (BBCH 45–47).
Overestimation of N uptake during stem elongation (BBCH 32–39) was attributed to (1) high inter-
annual variability in simulations, and (2) high sensitivity of parameters regulating N uptake from
soil. Calibration accuracy of grain yield and grain N was higher than that of biomass and N uptake
at the early growth stages. APSIM wheat model showed high potential for optimizing fertilizer
management in winter wheat cultivation in Northern Europe.

Keywords: modelling; early growth stages; fertilizer management; parameters; variability;
parameter sensitivity

1. Introduction

Winter wheat (Triticum aestivum L.) with its high yield potential and suitability to the
environment is a widely grown cereal crop in most of northern and western Europe [1,2].
The development of high-yielding varieties, chemical fertilizers, pesticides, irrigation, and
mechanization during the 1950s and 1960s has led to intensive farming systems with
remarkably increased crop yields in many parts of the world [3]. While these intensive
farming systems have resulted in higher economic returns, losses of nitrogen to aquatic en-
vironments have also increased in many areas, which remains a big concern worldwide [4].
The European Environment Agency reported [5] that between 2015 and 2017 groundwa-
ter nitrate concentrations in many European countries were higher than the maximum
allowable limit of 50 mg NO3/L. Agriculturally intensive countries, such as Denmark,
Germany, and Hungary, had higher nitrate concentrations than the countries with less
intensive agriculture, such as Estonia, Norway, Finland, and Sweden. The primary cause of
nitrate concentration in groundwater is nitrogen fertilizer inputs in the crop production
systems [6,7].

To counteract groundwater contamination with nitrate, current agricultural practices
need to be revisited to find a suitable balance between high yields and low environmental
impacts. However, due to the complexity of several interacting factors (e.g., temporal N
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supply of the soil, plant uptake, soil moisture and temperature, and their interactions)
identifying sustainable solutions and recommendations is not easy [8]. Because of that, op-
timal site-specific information on the nitrogen requirements for high crop production with
minimal N losses to the aquatic environment is lacking. To evaluate and understand the
effect of various mitigation options, one approach is to conduct long-term field experiments
on a large scale [9]. In the context of economic feasibility and practicality, such experiments
are difficult to execute on a large scale [10]. Alternatively, using advanced tools, such as
crop simulation models, can reduce the usage of resources and time and still deliver similar
valuable information [11].

Deterministic crop simulation models (hereafter crop models) of the soil–plant–atmosphere
continuum provide an advanced and holistic way to study the effect of N fertilizer man-
agement practices on various crops and soil processes. Due to a process-based foundation,
crop models have been widely used to address research questions in the areas of climate
change and variability on crops [12], soil organic carbon [13], optimizing farming prac-
tices [14], crop–livestock systems [15], decision making and farmer advisory [16], plant
nitrogen status [17], and for guiding N fertilisation based on soil N amounts or pasture N
concentrations to reduce N leaching [18,19]. However, calibrating a crop model to address
a research question is a complex and challenging task. Different crop models use different
approaches to formalize algorithms to describe processes which, evidently, make them
produce different results, even when supplied with the same set of input data. Besides
differences in the algorithm formalisms, parameter values in the models are not univer-
sally applicable [20]. Calibrating key parameters, therefore, is a critical step to ensure the
robustness of a model when used for scenarios other than those tested [21,22].

The APSIM model (Agricultural Production Systems sIMulator) is a process-based
crop model and has been widely used globally for various aspects of crop production and
decision making [23,24]. Recently, Vogeler et al. [25] used APSIM to test its performance
in capturing the effects of variable sowing dates on N leaching for general winter cereals
(i.e., winter rye and winter wheat) in Denmark and Germany. In this study, simulations
for biomass, grain yield, grain N, and cumulative N leaching were assessed by using
default values for most parameters, while parameters related to phenology (thermal time
requirements between phenological stages), N concentration in leaf and stem, and grain
yield (grains_per_ gram_stem) were adjusted to reflect values in the observed data. The
model performed fairly well for simulating biomass, grain yield, grain N at harvest, and
cumulative N leaching over several years, but not for individual years. Calibrating crop
models, including data from early growth stages until harvest, to better capture the dynam-
ics of biomass accumulation and N uptake during crop development could improve the
prediction robustness for individual years.

A potential option for reducing N losses is by better matching the dynamics of plant
growth and N requirements with N availability in the soil and fertilization rates. This
requires data on plant growth, N uptake, and soil N at regular intervals. Since the common
fertilization practice is to apply N during the early growth stages in spring, models need
to predict biomass and N uptake adequately during these stages when used for temporal
and site-specific N recommendations. APSIM has not been rigorously tested for simulating
winter wheat under Northern European conditions, especially for the early growth stages.
Thus, calibration of parameters that influence phenology, biomass accumulation, grain yield,
and N dynamics throughout the season is needed. Therefore, this study was conducted
to calibrate and evaluate performance of the APSIM winter-wheat model using data from
a wide range of N fertilization rates and sites with different climatic conditions in Denmark
to assess its potential for devising fertilizer management strategies for optimal crop growth
and minimal environmental degradation in future.
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2. Results
2.1. Calibration and Evaluation of Phenology

APSIM simulated phenology development from as early as BBCH 23 (three tillers
visible) to physiological maturity, BBCH 90, very satisfactory with r2 and NSE close to one,
at seven locations, for five years, and two sowing dates under calibration and evaluation
(Figure 1a,b and Table 1). There were slight underestimations for very early BBCH stages
in both calibration and evaluation data sets. In about 84% of cases, the default cultivar
reached BBCH 90 on average 9 days earlier than the observed dates. Simulations with
the modified cultivar had similar maturity dates as in the calibration data set, but on
average matured 5 days later compared to the maturity in the validation data set. Overall,
phenology simulations were better in terms of r2, NSE, and RMSE with the calibrated set of
parameters for Dan_winter in this study than the parameters set for default Batten_winter
and modified Batten_winter in Vogeler et al. [25] (Table 1).
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Figure 1. Performance of APSIM winter wheat with current set of calibrated parameters to simulate
phenology with (a) calibration and (b) evaluation data sets using cultivar Dan_winter. Note: BBCH
stages from the simulations were extracted based on the date of observations in the field.

Table 1. Performance of APSIM (7.10) winter wheat with current set of calibrated parameters
(Dan_winter cultivar) under calibration and validation data sets in this study in comparison with
default cultivar, and modified cultivar used in [25].

Dan_Winter Default Cultivar in
APSIM (Batten_Winter)

Modified Cultivar
Used in [25]Calibration Validation

Phenology
r2 0.97 0.97 0.095 0.97

NSE 0.97 0.97 −0.77 0.95
* RMSE (BBCH) 4.15 3.98 30.3 5

Biomass at early growth stages (~28–47 BBCH)
r2 0.65 0.59 0.57

NSE 0.47 0.4 0.39
RMSE (kg ha−1) 1510 1607 1615

N uptake at early growth stages (~28–60 BBCH)
r2 0.66 0.64 0.62 0.63

NSE 0.57 0.24 0.46 0.58
RMSE (kg ha−1) 28 39 31 27

Grain yield at harvest
r2 0.51 0.61 0.48 0.51

NSE 0.43 0.51 0.054 0.28
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Table 1. Cont.

Dan_Winter Default Cultivar in
APSIM (Batten_Winter)

Modified Cultivar
Used in [25]Calibration Validation

RMSE (kg ha−1) 1491 1296 1923 1674
Grain N: N uptake at harvest

r2 0.6 0.688 −0.072 0.56
NSE 0.55 0.76 0.54 0.16

RMSE (kg ha−1) 32 25 50 44

* BBCH stages from the simulations were extracted based on the date of observations in the field.

2.2. Calibration and Evaluation of Biomass and N Uptake

The simulation performance of APSIM with the Dan_winter cultivar for biomass across
locations, years, and nitrogen management scenarios under calibration was satisfactory
with r2 of 0.66 and RMSE of 1510 kg ha−1 (48% of the observed mean) (Figure 2b, Table 1).
When inspecting the performance for individual locations and years, mixed responses can
be seen for different stages, with no particular pattern. For example, parameters for the
Dan_winter cultivar underestimated biomass at BBCH 37 for Rødby in 2020 and slightly
overestimated it in 2019 (Figure 2a). For BBCH 32, biomass simulations were close to
the observed data for Svenstrup in 2019 but it was overestimated for Haderslev in 2020.
Similarly, APSIM with the Dan_winter cultivar simulated N uptake satisfactorily both for
calibration and evaluation data sets (Figure 3b,d, Table 1) with r2 of 0.64–0.67 and RMSE
28–39 kg ha−1 (~39–54% of the observed mean). Simulated N uptake at different BBCH for
individual locations and years were similar with different fertilizer applications (Figure 3a)
as for biomass under calibration (Figure 2a). There was a tendency to overestimate N
uptake with higher N applications under validation (Figure 3c,d). Overall, simulations
with the Dan_winter cultivar were not very different than the simulations with the default
and modified cultivars (Table 1). However, in simulations with modified cultivars, there
were more cases of underestimation of N uptake (Figure 3b).
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Figure 2. Calibration of the APSIM winter wheat biomass under 7–13 nitrogen management scenarios
at different BBCH stages under three locations and years. Dots are observed data points and
solid, dashed, and dotted lines are model outputs with the current calibrated set of parameters
for Dan_winter, default, and modified cultivars, respectively (a). Black, white, and grey circles are
for Dan_winter, default, and modified cultivars, respectively (b). Diagonal black line is 1:1 line
(b). Discontinuous lines at 200 N application indicate the simulation outputs of single dose or split
applications at the locations (Table S1). For Rødby, discontinuous line also indicated two simulations
with different sowing dates.
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Figure 3. Calibration (a,b) and evaluation (c,d) of APSIM winter wheat model for N uptake under
7–13 nitrogen management scenarios. Coloured circles are observed data points and solid, dashed,
dotted lines are model outputs with the current set of calibrated parameters for Dan_winter, default,
and modified cultivars (a,c). Black, white, and grey circles represent model outputs using Dan_winter,
default, and modified cultivars, respectively (b,d). Diagonal black lines in b and d are 1:1 lines.
Discontinuous lines at 200 kg N application indicate the simulations output with single dose or split
applications of N at the locations in the same year (Table S1). For Rødby in 2018, discontinuous line
also indicated two simulations with different sowing dates.

2.3. Calibration and Evaluation of Grain Yield and Grain Nitrogen

The current set of calibrated parameters simulated grain yield and grain N better than
the biomass and N uptake both under calibration and evaluation considering RMSE, r2, and
NSE together. For grain yield, r2 was 0.51 and 0.61, and RMSE was 1491 and 1296 kg ha−1

(18% of the observed mean) (Figure 4b,d) and for grain N, r2 was 0.60 and 0.68, and RMSE
32 and 25 kg ha−1 (18–23% of the observed mean) (Figure 5b,d) across the locations, years,
and N management scenarios under calibration and evaluation, respectively (Table 1). The
grain yield and grain N simulations for individual locations and years under calibration
showed that the simulations were mostly in line with the observed data under most of the
N treatments (Figures 4a and 5a). However, there were a few under (e.g., for Flakkebjerg_T
in 2016 and Rødby in 2020) and overestimations (e.g., Rødby in 2019, Flakkebjerg_E in 2017,
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Bronderslev in 2018, Figure 4a,c). Grain N was underestimated for Horsens and Sæby in
2018 and Brønderslev in 2020 with the evaluation data set (Figure 5c). The r2 and RMSE
under evaluation were better than under calibration (Figure 5d, Table 1).
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Figure 4. Calibration (a,b) and evaluation (c,d) of APSIM winter wheat grain yield under 7–13
nitrogen management scenarios. Coloured circles are observed data points and solid, dashed, and
dotted lines are model outputs with Dan_winter, default, and modified cultivars, respectively (a,c).
Black, white, and grey circles represent model outputs using Dan_winter, default, and modified
cultivars, respectively (b,d). Diagonal black lines in b and d are 1:1 lines. Discontinuous lines
(e.g., Brønderslev and Sæby) at > 200 kg N application indicate the simulations output with single
dose or split applications of N at the locations in the same year (Table S1). For Rødby in 2018,
discontinuous line also indicated two simulations with different sowing dates.

Simulations using default and modified cultivars usually had more cases of underesti-
mations of grain yield than those using the Dan_winter cultivar (Figure 4a,b). Additionally,
simulations with those cultivars overestimated grain N for several cases where observed
grain N was between 150–200 kg N ha−1 (Figure 5a,b). Overall, model evaluation statis-
tics showed that simulations with the Dan_winter cultivar were better than default and
modified cultivars (Table 1).
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circles represent model outputs using Dan_winter, default, and modified cultivars, respectively (b,d).
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>200 kg N application indicate the simulation outputs with single dose or split applications of N at
the locations in the same year (Table S1). For Rødby in 2018, discontinuous line also indicated two
simulations with different sowing dates.

2.4. Inter- and Intra-Annual Variability in Observed and Simulated Data

The comparison of inter- and intra-annual variability (standard deviation, SD) between
simulation and observed data was conducted to find the reasons for mixed responses for
both biomass and N uptake during growth stages between BBCH 31 and BBCH 45 in the
model. Variability across locations, years, BBCH stages, and fertilizer treatments in the
simulation data set was higher than in the observed data set (Table 2). Further investigation
of the inter-annual variability for two locations, Rødby (from BBCH 28–47) and Svenstrup
(from BBCH 28–39), across all fertilizer treatments showed that simulation variability for
biomass was still higher. We further computed inter-annual variability from two years
(2019–2020) of simulations for one BBCH stage and one fertilizer treatment (300 kg ha−1)
and indicated a higher variability if the difference in SD between simulation and observed
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SD were higher than 20% of the observed SD. Inter-annual variability was 263% higher
than the observed variability for BBCH 31 for Haderslev, and it was 49% higher for BBCH
32 for Svenstrup. Similarly, intra-annual variability for two BBCH stages in the same season
(2020) showed that the variability in simulations was 10% higher for Rødby (BBCH 31 and
37) and 26% higher for Haderselv (year, 2019, BBCH 34 and 37). Similar to the variability
for biomass in simulations, the variability for N uptake was also higher in all variability
testing criteria.

Table 2. Inter- and intra-annual variability of simulated and observed biomass and N uptake. SD
represents standard deviation. In parenthesis are percentages of the difference between SD of
simulated and observed data over the observed data.

Category of
Variability Location Year

BBCH *
(Observed)

Applied
Nitrogen
(kg ha−1)

Biomass (kg ha−1) N uptake (kg ha−1)

Observed Simulation Observed Simulation

Across
locations 2018–2020 28–49 0–300 Mean 3169 4090 77 82

SD 2062 2674 44 46
Inter-annual Rødby 2018–2020 28–47 0–300 Mean 4298 3946 85 85

SD 2124 2443 45 49
Inter-annual Svenstrup 2019–2020 28–39 0–300 Mean 1516 2556 48 62

SD 735 2218 24 42
Inter-annual Haderselv 2019 31 300 845 406 37 16

2020 31 300 1196 1680 31 55
SD 248 901 (263%) 4 28 (550%)

Inter-annual Svenstrup 2019 32 300 1166 2011 51 66
2020 32 300 1453 2157 52 71

SD 203 103 (49%) 0.7 3.5 (400%)
Intra-annual Rødby 2020 31 200 3380 3392 88 94

37 200 8067 7591 168 134
SD 3315 2969 (10%) 57 28 (50%)

Intra-annual Haderslev 2019 34 200 3639 3930 102 100
37 200 5319 5180 128 116

SD 1188 884 (26%) 18 11 (39%)

* Simulation data were extracted on the same dates when these BBCH stages were recorded in the fields. Simula-
tions BBCH may necessarily be the same as observed BBCH.

2.5. Sensitivity Analysis to Assess Overestimation of N Uptake

Sensitivity analysis on the parameters that regulate critical and upper bounds of N
concentration in leaf (n_conc_crit_leaf and n_conc_max_leaf) and stem (n_conc_crit_stem
and n_conc_max_stem) showed that these parameters are stable and have little influence
on the variations for N uptake during early growth stages (Figures S1 and S2). However,
the sensitivity analysis of total_n_uptake_max and kno3 indicated that these parameters
are highly sensitive for N uptake (Figure 6a,b). When total_n_uptake_max value was set to
the default of 0.6 or higher, the sensitivity was low. In contrast, values < 0.6 showed large
differences in N uptake throughout the plant development with a higher amount of applied
nitrogen. There was no variation in N uptake with zero fertilizer application. In contrast,
the sensitivity analysis of kno3 showed an opposite response. It was more sensitive to zero
N application than to 270 kg N ha−1.
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3. Discussion
3.1. Performance of APSIM for Simulating Phenology and Early Stage Biomass and N Uptake

Calibration with less detailed and smaller data sets affect prediction accuracy of crop
models [26,27]. Data to calibrate dynamics of winter wheat phenology, N uptake, and
growth and productivity variables in Northern Europe from early growth stages to maturity
are scarce. This has limited robust calibration and evaluation of crop models and their
applications in identifying fertilizer management strategies for reducing N inputs and
environmental degradation such as groundwater contamination. In this study, data on
winter wheat phenology, biomass accumulation, N uptake, grain yield, and grain N from
early growth stages to maturity were obtained from two sources: (1) field trials conducted
in farmers’ fields and (2) research stations, and the APSIM wheat model was calibrated and
evaluated using the data for its potential to be used for fertilizer management strategies for
reducing nitrate leaching in future.

Winter wheat is sown in autumn, around September, and fertilizers are applied during
the following spring months in Northern Europe. Therefore, crop models need to predict
early growth stages, biomass accumulation, and N uptake in spring adequately to be robust
and reliable for their applications. The APSIM wheat model predicted phenology accurately
with only a few cases of underestimations during early BBCH stages for both calibration
and evaluation data sets. The trials were conducted on farmers’ fields to observe grain
yield and N uptake to find the balance between optimal crop growth, fertilizer application,
and environmental degradation. Due to this, the exact measurements of physiological
maturity were not recorded. The same approach was adopted for the trials in the experi-
mental stations at Flakkebjerg and the same variables were measured. Thus, for the model
calibration, physiological maturity was set to the date of harvest (recorded as BBCH 90).
This might have created an unquantifiable and unverifiable degree of uncertainty, which
could be the reason for the slight underestimation of terminal stages. When simulations
with the calibrated parameters for the Dan_winter cultivar were compared with the default
cultivar, Batten_winter, and the modified Batten_winter cultivar used in Vogeler et al. [25],
we found that Dan_winter gave similar or better phenology outputs. It can be argued that
due to discrepancies in BBCH 90 measurements such a conclusion cannot be formed. In
addition to the better performance of Dan_winter under validation data set for phenology,
the simulations were also better for the grain yield and grain N than the simulations with
default and modified cultivars. The underestimations of the grain yield with default and
modified cultivars could be linked with early maturity (on average 5–9 days) than the
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observed maturity days, thus, lower grain yields. Therefore, it can be concluded that the
current set of calibrated phenology parameters is more accurate.

The performance of APSIM regarding phenology was particularly accurate and robust
for BBCH 31 and 37 which are usually the target growth stages for fertilizer application
in spring [25,28]. Furthermore, one set of calibrated parameters accurately simulated the
dynamics of phenology from early to physiological maturity for seven different cultivars
that were grown at seven locations in Denmark. This indicates that these parameters can be
used for winter wheat cultivars with similar phenology across Northern Europe for a wider
application of the model.

In traditional agronomy, information on biological optimal crop N uptake has been
used for computing critical N demand and designing crop N management for obtaining
optimal biomass [29]. Crop models have also been used to assess plant nitrogen status
and guide N fertilization to reduce N leaching [17,18]. In this study, the APSIM simulated
biomass and N uptake during the early stages of spring reasonably well. However, better
accuracy for biomass and N uptake simulations for growth stages around tillering (BBCH
28–31) and booting (BBCH 45–47) was observed than in between growth stages (BBCH
32–39). The good accuracy at booting, when plants experience a sudden increase in N
demand due to the subsequent development of grains, is reassuring that APSIM can be
used to refine N fertilisation rates during early growth stages. Simulation accuracy of
biomass and N uptake followed a similar pattern with growth stages, which shows the
interdependence of biomass and N and is not surprising as APSIM, like other crop models
(e.g., DSSAT, [30]), allocates N based on dry matter accumulation and growth stage [31,32].
There were not enough data to evaluate biomass simulations. Nevertheless, a similar
pattern of biomass and N uptake simulations under calibration and the dependency of N
concentration on biomass indicates that the calibration accuracy for biomass prediction is
likely to be robust under wider growing conditions.

The higher inter- and intra-annual variability in the simulation outputs than the
observed data for biomass and N uptake during early growth stages suggest that responses
for biomass and N uptake could be related to different metabolic and structural demands
of N in different organs generated by interactions ofclimatic and soil characteristics in
different years [33] and was probably not well captured in the model. High inter-annual
variability for N uptake in most cases (e.g., 400–550%) can also explain the tendency to
overestimate N uptake in the evaluation data set.

The difficulty in accurately measuring biomass at early stages adds another level of
uncertainty. Due to the extreme variability of individual plants even at a small scale, the
determination of grass biomass is very difficult [34], and this could also be expected at
early growth stages for winter wheat in Northern Europe. APSIM also does not account
for the increasing ratio of diffused light with increasing latitude for biomass production,
which can affect the balance between photosynthesis and respiration [24]. Therefore, mixed
responses for the simulations of biomass, overestimation for N uptake, and high inter-
annual variability could also be associated with the uncertainty in the observed data and
model formalism to simulate biomass accumulation.

Most formalisms of algorithms in crop models are typically based on the declining
concentration of N in dry matter with crop development (e.g., [35]). Such functions are
usually defined by upper and lower bounds, which may have different empirical robustness
during crop development [32]. An earlier study by Hansen et al. [36] showed that bound
defined functions might underestimate the N concentration, especially in early growth
stages. In contrast, Justes et al. [29] reported that bound-based N uptake is better in
capturing the variability of the observed N in the crop based on dry matter. Overall, r2

of 0.64–0.66 indicate that the bound-based approach in APSIM captured the N uptake
relationship between simulations and observations accurately and in line with the findings
of Justes et al. [29]. In the calibration process with the modified cultivar in Vogeler et al. [25],
parameters that regulate lower, upper, and middle bounds of N concentration in the leaf
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and stem were adjusted, which might be the reason for lower RMSE for N uptake compared
with calibrated parameters for Dan_winter (Table 1).

The APSIM wheat model under non-limiting conditions can access all soil nitrogen
within the root zone (by default only the nitrate form of nitrogen is taken up) regulated
by the parameter total_n_uptake_max. Under limiting N conditions, the extracted N
from individual soil layers is regulated by parameter kno3. However, in reality, plants
cannot access all nitrate available in the soil at early growth stages due to a less developed
root zone [37]. Such implementation in the model likely overestimated N uptake during
early stages, particularly with the higher fertilizer inputs. However, the overestimation
of N uptake during these stages was not transferred or reflected in grain N (discussed in
the following section). When total_n_uptake_max value was set to the default of 0.6 or
higher, the N demand by the crop was satisfied, hence, the sensitivity was low. In contrast,
values < 0.6 showed large differences in N uptake throughout the plant development
with a higher amount of applied nitrogen. There was no variation in N uptake with
zero fertilizer application as without N fertilization soil mineral N would be limiting
the uptake regardless of differential access to N from the root zone. In contrast, kno3
was more sensitive to zero N application than to 270 kg N ha−1, which suggested that
with sufficient N variable access to N from the root zone does not affect N uptake much.
However, under limited N conditions differential access to N from the soil, based on
different values of kno3, the plant produces variations in N uptake. The sensitivity analyses
suggest that the overestimation of N uptake during early growth stages may be reduced or
eliminated if the parameters total_n_uptake_max and kno3 are included in the calibration
process. However, caution to calibrate crop-specific parameters such as total_n_uptake_max
is always recommended [38,39]. We computed a maximum N uptake across fertilizer
applications, sites, and years during early stages (BBCH 28–49) from the observed data
based on 20 g m−2 on 235 days after sowing. The value was 0.09 g m−2 d−1. This value
was much lower than the default value of 0.6. Considering satisfactory simulations for
grain yield and grain N with default values of total_n_uptake_max and kno3, we did not
calibrate these parameters.

3.2. Grain Yield and Grain N Simulation Capacity of APSIM

In this study, similar or better r2 and RMSE values for grain yield and grain N under
the evaluation data set compared with the calibration data set, and better performance
than the default and modified cultivars, indicate that the prediction accuracy of calibrated
parameters was robust for Danish conditions and that the calibrated model can be used
for a wider range of scenarios across Northern Europe. Better performance for grain yield
and grain N simulations than for biomass and N uptake (based on lower RMSE) for early
growth stages can be explained by the fact that the development of equations/parameters
for predicting grain yield and grain N in the models were performed by utilizing, usually,
larger data sets in different growing conditions compared to the equations/parameters that
were developed to predict biomass and N uptake in the earlier growth stages, as well as the
above mentioned difficulty in accurately determining biomass during early growth stages.
Model calibration with a smaller data set can lead to a high degree of prediction errors [21].
A larger available data set for grain yield and grain N calibration than biomass and N
uptake might be another reason for robust simulations of grain yield and grain N [26].

Grain N compared with N uptake during early growth stages is regulated by more
numbers of parameters related to grain development, including grain number, grain size,
thermal time for grain filling, and potential grain filling rate. Besides the interdependency of
these grain development parameters, they are also linked to N availability in the soil. Thus,
the role of a larger data set, the parameters, and the formalism of the algorithm for grain N
prediction appear to contribute to the prediction robustness more than the parameters and
formalism of the mechanism that predicts N uptake in the early growth stages.

The overestimation of N uptake during early stages was not translated to grain N. This
further suggested the differences in the parameters and their sensitivities to environmental
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factors (e.g., temperature) for simulating grain N during grain development and N uptake
during the vegetative phase. As mentioned above, grain yield and grain N calibration were
performed in the third step after calibrating phenology, biomass, and N uptake. Calibration
to achieve better performance of grain N resulted in a loss of accuracy for grain yield and
N uptake, a problem generally associated with multi-objective calibration [40].

4. Materials and Methods
4.1. Description of Field Trials

The winter wheat trials were conducted at seven locations: in Rødby and Haderslev
from 2018 to 2020, in Svenstrup from 2019 to 2020, in Flakkebjerg from 2016 to 2019, in
Brønderslev for 2018 and 2020, and in Sæby and Horsens for 2018 (Figure 7). In Flakkebjerg,
the trials were conducted at the Aarhus University research station and repeated each year
in the same fields. At the other sites, the trials were set up on farmers’ fields (conducted by
SEGES innovation (https://en.seges.dk/About-us, accessed on 21 April 2021), and different
nearby fields were used each year. These trials were conducted under 7–13 different N
treatments to investigate the effect of N rate on yield and N uptake. N application was
applied in two broad approaches, with either single-dose application, or split applications
with either 2 or 3 application timings. Each N treatment was replicated 3–4 times. Locations,
sowing dates, wheat cultivars, and N treatments in the trials used for model calibration and
evaluation are presented in Table S1 (Calibration) and Table S2 (Evaluation), respectively. In
Flakkebjerg, crops were either sown on time (Flakkebjerg_T) according to common practice
at the end of September, or three weeks earlier (Flakkebjerg_E). The crop was only sown on
time at the other sites. The cultivars used in the study were all of the same maturity class
(https://www.landbrugsinfo.dk/public/c/9/5/planter_afgroder_sortinfo_dk, accessed
on 29 August 2022). However, they differed slightly in yield with differences in grain yield
within −9% to +7%, and in dry matter crude protein within −7% to +8% relative to the
mean of reference cultivars in the national trials. To control pests, diseases, and weeds
recommended amounts of insecticides and herbicides were applied.
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4.2. Data Collection

Phenological development was assessed based on observations of events or growth
stages following the BBCH scale (BBCH scale was developed jointly by BASF, Bayer, Ciba-
Geigy, and Hoechst for numeric coding of growth stages that can be readily adapted to
all crops, [41]). Depending on the location and years 5–11, growth stages were visually
assessed during the growth cycle of the crop (Table 3) and corresponding dates were
recorded. Sampling occasions for the measurements of biomass, N uptake, grain yield,
and grain N are provided in Table 3. Biomass and N uptake measurements in spring were
performed on plant samples cut approximately 1 cm above the soil surface from an area of
0.25 m2. Eight samples were taken from each treatment and these samples were pooled
before N analysis from farmers’ fields, except at Flakkebjerg where samples from each plot
from four replications were analysed separately for N concentration. All plant samples were
dried at 60 ◦C before analysis. Grain yield and grain N measurements were performed
from the samples harvested from an area of at least 15 m2 in each plot. Samples from
Flakkebjerg were analysed for total N (Dumas) on a flash 2000 organic elemental analyzer
in the laboratory at the Aarhus University campus Viborg. Near-infrared transmission
(NIT) was used to estimate protein content in the samples from farmers’ fields [42]. The N
content in grains was afterward calculated using a protein factor of 5.70 for wheat [43].

Table 3. Measurement dates of the variables used for calibration and evaluation. DAS = days after
sowing. The number of BBCH assessments that were performed during the crop cycle are mentioned
in the parenthesis in phenology observation column.

Location Year Date of
Measurement DAS Biomass N Uptake Grain

Yield Grain N
Phenology

Observation
(BBCH)

Calibration data set

Rødby 2018 23 May 2018 243 x x
23 July 2018 304 x x
23 May 2018 239 x x
23 July 2018 300 x x 24–90 (9 stages)

2019 8 April 2019 203 x x
23 April 2019 218 x x
6 May 2019 231 x x
27 July 2019 313 x x 27–90 (9 stages)

2020 31 March 2020 191 x x
22 April 2020 213 x x
11 May 2020 232 x x

2 August 2020 315 x x 23–90 (7 stages)
Haderslev 2018 2 August 2018 310 x x 24–90 (7 stages)

2019 3 April 2019 189 x x
7 May 2019 223 x x

14 May 2019 230 x x 27–90 (6 stages)
27 August 2019 335 x x

2020 22 April 2020 209 x x
13 May 2020 230 x x

12 August 2020 321 x x 31–90 (5 stages)
Svenstrup 2019 15 April 2019 195 x x

29 April 2019 209 x x
15 May 2019 225 x x

30 August 2019 332 x x 26–90 (8 stages)
2020 14 April 2020 206 x x

28 April 2020 220 x x
27 May 2020 249 x x

25 August 2020 339 x x 31–90 (8 stages)
Flakkebjerg_T 2016 At final harvest x x 31–88 (11 stages)

2017 At final harvest x x 30–85 (8 stages)
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Table 3. Cont.

Location Year Date of
Measurement DAS Biomass N Uptake Grain

Yield Grain N
Phenology

Observation
(BBCH)

2018 At final harvest x x 30–89 (10 stages)
Flakkebjerg_E 2016 At final harvest x x 32–88 (9 stages)

2017 At final harvest x x 30–85 (8 stages)
2018 At final harvest x x 30–89 (10 stages)

Evaluation data set

Brønderslev 2018 15 May 2018 252 x x
29 May 2018 266 x x
30 July 2018 328 x x 26–90 (9 stages)

2020 12 August 2020 320 x x 32–90 (9 stages)
Horsens 2018 3 May 2018 236 x x

16 May 2018 249 x x
25 May 2018 258 x x
23 July 2018 317 x x 30–90 (9 stages)

Sæby 2018 15 May 2018 252 x x
28 May 2018 265 x x

3 August 2018 332 x x 26–90 (9 stages)
Flakkebjerg_T

and E 2019 1 May 2019 238 x

15 May 2019 252 x
27 May 2019 264 x 32–47 (3 stages)

At final harvest x x

4.3. Soil Characteristics

Data on soil texture, pH, wilting point, field capacity, saturation point, and organic
matter were obtained from two studies [44,45]. An overview of the extracted soil charac-
teristics from the above sources and initial available water and nitrogen content for the
locations used in APSIM is presented in Table 4. The soils at most locations are sandy
or sandy loams (51 to 77% sand in topsoil), with the highest silt content at Sæby and the
highest clay content at Haderslev.

Table 4. Soil characteristics of the locations used for calibration and evaluation of APSIM. Volumetric
water content at permanent wilting point (water potential of −1.5 MPa), field capacity (water potential
of −0.1 kPa), and saturation. APSIM was set up with five soil layers for up to 160 cm depth for each
location. Depth of topsoil layers are provided and those of remaining individual layers increased
between 15 cm and 80 cm with increasing depth of soil profile. Plant available water content (PAW)
for entire soil profile.

Location Depth
(cm)

Bulk
Densit
(g/cc)

Wilting
Point

(mm/mm)

Field
Capacity
(mm/mm)

Saturation
(mm/mm)

Organic
Carbon

(%)
pH Sand

(%)
Silt
(%)

Clay
(%)

NO3−

(kg/ha)
NH4

+

(kg/ha)
PAW
(mm)

Rødby 0–25 1.49 0.08 0.28 0.44 3.4 7.7 76 11 11 0.03 0.12
50–160 1.75 0.10 0.22 0.34 0.9 8.2 62 10 10 0.03 0.03 217

Haderselv 0–28 1.43 0.09 0.30 0.46 5.0 7.4 67 16 14 0.09 0.15
70–160 1.47 0.15 0.37 0.44 0.6 6.0 44 23 33 0.06 0.05 246

Svenstrup 0–22 1.50 0.08 0.30 0.43 4.5 6.2 77 12 8 0.08 0.15
50–160 1.90 0.07 0.22 0.28 0.5 6.4 79 8 14 0.09 0.05 187

Flakkebjerg 0–20 1.53 0.09 0.26 0.40 1.4 6.0 77 17 7 2.00 5.00
50–160 1.71 0.12 0.27 0.37 0.2 6.0 69 20 11 0.00 0.67 174

Bronderslev 0–28 1.31 0.08 0.41 0.45 3.7 7.5 57 30 7 0.08 0.15
60–160 1.54 0.02 0.29 0.38 0.4 5.7 78 19 3 0.07 0.05 325

Horsens 0–26 1.42 0.07 0.30 0.43 1.5 6.2 58 30 9 0.08 0.15
50–160 1.68 0.07 0.21 0.31 0.1 7.1 70 23 9 0.08 0.05 172

Sæby 0–30 1.30 0.08 0.35 0.44 2.4 6.8 51 36 9 0.09 0.15
60–160 1.81 0.09 0.26 0.30 0.1 5.6 58 28 14 0.08 0.05 223
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4.4. Weather Data

Weather data were collated from two sources from 2015 to 2020. Data on global
radiation and rainfall were obtained from the online gridded (10 × 10 km) database
(http://agro-web01t.uni.au.dk/KlimaDB/, accessed on 21 November 2021) managed by
Aarhus University. Data on maximum and minimum temperature were obtained from
the website of the Danish Meteorological Institute for the nearest weather stations to
the studied locations. The weather stations were Lolland (for Rødby), Haderslev (for
Haderslev), Aalborg (for Svenstrup), Tylstrup (for Brønderslev), Stenhøj (for Sæby), and
Horsens (for Horsens). The monthly average temperature and radiation showed little
differences among the locations (Figure 8). Rødby had the highest average temperature
and radiation from June to August in some years compared with the other six locations.
The differences in rainfall were more visible among the locations, however, without any
particular trend. In contrast to temperature and radiation, Rødby had the lowest rainfall in
most of the years.
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4.5. APSIM Model Description

APSIM (classic version, APSIM 7.10) is a process-based deterministic crop model that
simulates crop growth and development, and carbon and nitrogen dynamics in the soil,
and plants at a daily time step depending on climatic conditions and agronomic inputs [46].
APSIM crop model (in this case wheat model) primarily simulates crop development using
a thermal time approach to identify different phenological stages and phases. Vernalisation
and photoperiod factors are incorporated into phenology algorithm to account for their
respective effects during vernalisation and photoperiod sensitive stages. Water and nitrogen
stresses affect leaf appearance rate (phyllochron), which, depending on intensity, can delay
phenology during the vegetative stages.

Biomass assimilation is calculated from intercepted radiation by leaf area which is
multiplied by radiation use efficiency factor [47]. To account for temperature, water and
N stress biomass reduction factors are incorporated into the algorithm. After computing
the available biomass for growth, it is then partitioned into leaf, stem, roots, and pods
(grain) based on growth stage and partitioning factors. Depending on the available biomass
for grain development, grain yield is simulated by interacting parameters regulating
kernel number, grain growth, and grain filling rate. N concentration (demand) in different
plant organs is primarily simulated based on the dry weight of the organ during the
early growth stage, while after anthesis, N concentration in the grain is simulated by
the parameter potential_grain_n_filling_rate together with the parameters that regulate
grain development. The APSIM crop model interacts with SurfaceOM (surface organic
matter), SoilN (soil nitrogen), SoilWat (soil water) models to simulate the dynamics of N,
C, and water, respectively, with manager scripts accounting for fertilizer, manure, and
crop residue input [48]. More description of the wheat model can be found online (https:
//www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf, accessed
on 31 July 2022).

4.6. APSIM Winter Wheat Model Calibration and Evaluation

A combination of sowing dates, N treatments, locations, and years created 144 growing
conditions for calibration (Table S1) and 72 growing conditions for evaluation data sets
(Table S1). A larger data set was used for calibration in order to capture broader variabilities
in the response variables. This approach improves the prediction robustness and makes
the model applicable to wider scenarios [26]. An overview of the date of measurements
on biomass, N uptake, grain yield, and grain N under each N treatment during the crop
cycle is provided in Table 3. There are several default spring and only a few winter
wheat cultivars in APSIM but none of them represent a cultivar that is grown in Danish
conditions and was calibrated for phenology, biomass, grain yield grain nitrogen, and
nitrogen uptake in a detailed way. Initially, we tested a default cultivar Batten_winter in
APSIM that represents winter wheat and a cultivar (modified Batten_winter) created in
a recent study conducted in Denmark [25]. Although modified Batten_winter performed
better than the default Batten_winter, both cultivars did not simulate the variables of interest
satisfactorily. Therefore, we created a new cultivar using the parameters based on three
criteria: (1) expert knowledge and information on the parameter, (2) their direct influence
on measured variables, (3) frequent use in earlier studies (e.g., [47,49,50]). Such an approach
to select the parameters for calibration is common [27]. Estimation of parameter values was
performed manually within a reasonable range by changing one parameter at a time with
a trial-and-error approach similar to earlier studies [51,52]. Following the most common
calibration approach [27], phenology was calibrated first using the data from five years
(2016–2020) and four locations, i.e., Rødby, Haderslev, Svenstrup, and Flakkebjerg. As
observed, BBCH stages are similar to Zadok stages [53]; we renamed Zadok stages [54]
output from APSIM as BBCH in the figures and tables presented here. Same dates as of
BBCH stage observations in the field were extracted from simulation outputs and BBCH
stages on those dates were used to compute RMSE, NSE, and r2 (Section 4.2). For the second
step, biomass and N uptake, and for the third step, grain yield and grain N were calibrated.

https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf
https://www.apsim.info/wp-content/uploads/2019/09/WheatDocumentation.pdf
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Model performance was computed (Section 4.2) after the third step of calibration, which is
similar to full parameterization or a high level of calibration approach for best performance
of crop models [55,56]. A comparison of the calibrated set of parameters in this study with
the parameters of default winter wheat in APSIM 7.10 (cv. Batten_winter) and calibrated
parameters in an earlier study in Denmark [25] is shown in the results. The cultivar
with the calibrated set of parameters in this study will be named Dan_winter cultivar
(signifies Danish winter wheat cultivar), Batten_winter as default cultivar, and the one
modified parameters of Batten_winter in Vogeler et al. [25] as modified cultivar, hereafter.
Most parameters that were calibrated in this study are cultivar-specific parameters, except
SLAmax and initial_tpla, which are crop-specific parameters. The parameters SLAmax and
initial_tpla were calibrated because only these two parameters were most effective and
could reduce the overestimation of biomass during early growth stages. The calibrated
parameters are presented in Table 5 with their default values. Due to the same maturity
class, and only slight differences in grain yield and crude protein in dry matter of the
cultivars, only one set of parameters was calibrated for the seven cultivars. This approach
potentially makes the model applicable to a range of cultivars, while we acknowledge that
accuracy may be compromised based on cultivar characteristics and growing conditions.

Table 5. Parameters used for calibrating APSIM winter wheat phenology, biomass accumulation,
grain yield, grain N, and N uptake.

Parameter Unit Parameter Description Default Value Calibrated Value

Phenology
vern_sens - Sensitivity to vernalisaiton 1.5 4.65

photop_sens - Sensitivity to photoperiod 3 3.35

tt-end_of_juvenile ◦Cd
Thermal time required from

emergence to start of
panicle/spikelet/floral initiation

400 450

tt_start_grain_fill ◦Cd
Thermal time required from start

of grain filling to end of
grain filling

545 750

Biomass
y_sla_max mm2 g−1 Regulates specific leaf area 27,000, 22,000 24,500, 18,000

initial_tpla mm2 plant−1 Intial plant leaf area after
emergence 200 100

Grain Yield

grains_per_gram_stem grain/g stem weight
Regulates number of grains per

gram of stem weight at the end of
flowering (zadok stage 65)

25 37

max_grain_size g Regulates maximum weight of
individual grain 0.041 0.045

potential_grain_filling_rate g grain−1 day−1
Regulates potential daily grain

filling rate from grain filling
to maturity

0.002 0.0038

potential_grain_growth_rate g grain−1 day−1 Regulates growth rate from
flowering to start of grain filling 0.001 0.0006

Grain N

potential_grain_n_filling_rate g grain−1 day−1
Regulates potential daily N filling

rate to grain from grain filling
to maturity

0.000055 0.000035

We would also like to mention that we tried to compute the values using observed data for
potential_grain_filling_rate, potential_grain_growth_rate, and potential_grain_n_filling_rate
using the default value for grains_per_gram_stem (i.e., 25). These computed values from the
treatment of 300 kg N ha−1 (assumption of potential conditions) resulted in overestimation
of grain yield and underestimation of grain N. Additionally, stem biomass tends to increase
from the mid grain filling period towards maturity, which suggested sink limitation in the
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model (i.e., lower value for grains_per_gram_stem). Since we did not have recorded data
for grain number per g stem weight, we went ahead with the trial-and-error approach to
find the calibrated values of those four parameters for best calibrated balance of grain yield,
grain N, and no sign of sink limitation.

4.7. Sensitivity Analysis

After the model calibration, we found that calibrated set of parameters tends to
overestimate N uptake during early growth stages. Therefore, we performed a sensitivity
analysis of parameters that regulate critical and maximum N concentration in the leaf and
stem (i.e., n_conc_crit_leaf, n_conc_max_leaf, n_conc_crit_stem, and n_conc_max_stem),
and N access and uptake from the soil (i.e., total_n_uptake_max and kno3) to find the reason
for overestimation. The overestimation was primarily observed in early developmental
stages; so, the sensitivity analysis was performed only on parameter values that regulate N
concentration in the leaf and stem from emergence (BBCH 10) to the end of the juvenile
stage (BBCH 32). The values were changed with a regular interval both higher and lower
than the default values (Figures S1 and S2). For total_n_uptake_max and kno3, one but
different values for each parameter is used for the whole crop duration. Similar to the
above parameters, higher and lower values than the default ones, 0.6 and 0.02, respectively,
for total_n_uptake_max and kno3 were changed in a regular interval for the sensitivity
analysis (Figure 6). The sensitivity analysis was conducted for three years (2016–2018)
under two contrasting applications of nitrogen 0 and 270 kg N ha−1 using the simulation
setup of Flakkebjerg location to capture possible interaction with limited and non-limited
N conditions.

4.8. Model Performance Determinants

Parameter values that simulated phenology, biomass, grain yield, and grain N closest
to the observed data were identified by commonly used criteria, minimizing the root mean
square error (RMSE, Equation (1)) [27]. Besides RMSE, the coefficient of determination (r2,
Equation (2)) and Nash–Sutcliffe model efficiency coefficient (NSE, Equation (3)) were also
computed to further evaluate the calibrated model for the overall relationship between
simulation and measured data points. RMSE can be interpreted as the prediction error
that is not resolved by the model, r2 indicates the goodness of fit, and NSE, the predictive
power of the model. Ideally, RMSE should be close to zero, r2 and NSE close to 1, and NSE
at least positive.

RMSE =

√
1
n ∑n

i=1(oi − si)
2 (1)

r2 =
n ∑n

i=1(si − oi)− ∑n
i=1 si ∑n

i=1 oi√
(n ∑n

i=1 si
2 − ∑n

i=1 si ∑n
i=1 si) (n ∑n

i=1 oi
2 − ∑n

i=1 oi ∑n
i=1 oi)

(2)

NSE = 1 − ∑n
i=1(si − oi)

2

∑n
i=1(oi − O)

(3)

5. Conclusions

Low availability of comprehensive data on winter wheat has limited detailed cal-
ibration and evaluation of crop models, particularly APSIM, which further limits their
application for planning fertilizer management strategies in Northern Europe. Field trial
data were obtained from two sources, (1) farmers’ fields and (2) research stations, to assess
the performance of the APSIM-wheat model (hereafter model) to simulate the dynamics of
winter wheat phenology, biomass, N uptake, grain yield, and grain N with various fertilizer
applications at seven sites in Denmark. Calibrated parameters in the model simulated phe-
nology from the early growth stages to maturity with a high accuracy both with calibration
and evaluation data sets. Simulation accuracy for biomass accumulation and N uptake
during the early growth stages (BBCH 28–49) was also satisfactory, with a high accuracy
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during target stages of fertilizer application in spring (BBCH 28–31) and booting (45–47).
There were mixed responses to simulate biomass and N uptake for BBCH 32–39 with
a tendency to overestimate the N uptake with a high fertilizer input. This was attributed to
high inter-annual variability in the simulation outputs. The sensitivity analysis showed that
high inter-annual variability may be linked with high sensitivity of parameters regulating
the maximum total N uptake from the root zone and the individual soil layer in the model.
Simulations for grain yield and grain N showed a higher accuracy with the low root mean
square error than the simulations for biomass and N uptake during the early growth stages.
Overall, the calibrated parameters captured the dynamics of phenology, biomass, N uptake,
grain yield, and grain N satisfactorily and better than the default Batten_winter cultivar in
APSIM and the recently modified Batten_winter in an earlier study. Considering the usual
fertilizer application during the early growth stages in spring, the calibrated parameters
in the APSIM-wheat model can be applied, which has rarely been attempted earlier, to
develop fertilizer management strategies to optimize the N uptake and reduce N leaching
to groundwater in Northern Europe. To further improve the simulation accuracy for the N
uptake during the early growth stages, further research on the understanding of algorithm
formalism for the interactions of climate–soil–plant (parameters regulating the N uptake
from the soil) are suggested.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12050986/s1, Table S1. Agronomic management in the field trials
at Rødby, Haderslev, Svenstrup, Flakkebjerg from 2015 to 2020 used for calibrating the parameters
of APSIM wheat model. Numbers in parenthesis are the amount of N applications in kg ha−1.
At Flakkebjerg, crops were either sown on time (Flakkebjerg_T) or early (Flakkebjerg_E): Table S2.
Agronomic management in the field trials conducted at Horsens, Sæby, and Bronderslev from 2018
to 2020 used for evaluating APSIM’s parameters. Numbers in parenthesis are the amount of N
applications in kg ha−1: Figure S1. Sensitivity analysis of parameters regulating N concentration in
leaf during early growth stages (from emergence to end of juvenile phase) for biomass (a), N uptake
(b), grain yield (c), grain N (d), n_conc_crit_leaf, n_conc_max_leaf are parameters that regulate
critical and maximum N concentration in leaf. The numbers in the parenthesis, for example in
crit (0.030–0.030), indicate parameter n_conc_crit_leaf values from emergence (BBCH 10) to end of
juvenile phase (BBCH 32). Simulation outputs are shown from BBCH 25 (mid of end of juvenile) to 90
(maturity): Figure S2. Sensitivity analysis of parameters regulating N concentration in stem during
early growth stages (from emergence to end of juvenile phase) for biomass (a), N uptake (b), grain
yield (c), grain N (d), n_conc_crit_stem, n_conc_max_stem are parameters that regulate critical and
maximum N concentration in stem. The numbers in parenthesis, for example in crit (0.040–0.030),
indicate parameter n_conc_crit_stem values from emergence (BBCH 10) to end of juvenile phase
(BBCH 32). Simulation outputs are shown from BBCH 25 (mid of end of juvenile) to 90 (maturity).

Author Contributions: U.K.: Conceptualization, data curation, formal analysis, investigation,
methodology, visualization, writing original draft, review, and editing. E.M.H.: Data curation,
project administration, writing review, and editing. I.K.T.: Data curation, project administration,
writing review, and editing. I.V.: Project administration, conceptualization, supervision, validation,
data curation, visualization, methodology, writing review, and editing. All authors have read and
agreed to the published version of the manuscript.

Funding: The study contributes to the project N-Tool-Precise (Grant number: 34009-18-1445), finan-
cially supported by The Ministry of Food, Agriculture and Fisheries of Denmark under the Green
Development and Demonstration Program (GUDP).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The article and Supplementary Materials contain all data.

https://www.mdpi.com/article/10.3390/plants12050986/s1
https://www.mdpi.com/article/10.3390/plants12050986/s1


Plants 2023, 12, 986 20 of 22

Acknowledgments: The technical assistance of the staff at Foulum and Flakkebjerg Experimental
Stations is gratefully acknowledged. The authors also express their gratitude to Bo Vangsø Iversen
from the Soil Physics and Hydrology section, Department of Agroecology, Aarhus University for
helping acquisition of soil characteristics data, and Leif Knudsen, Mette Kramer Langgaard, and
Nanna Hellum Kristensen from SEGES for executing trials, data collection, and analysis.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lobell, D.B. The case of the missing wheat. Environ. Res. Lett. 2012, 7, 021002. [CrossRef]
2. Supit, I.; Van Diepen, C.A.; De Wit, A.J.W.; Kabat, P.; Baruth, B.; Ludwig, F. Recent changes in the climatic yield potential of

various crops in Europe. Agric. Syst. 2010, 103, 683–694. [CrossRef]
3. Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277,

504–509. [CrossRef]
4. Musacchio, A.; Re, V.; Mas-Pla, J.; Sacchi, E. EU Nitrates Directive, from theory to practice: Environmental effectiveness and

influence of regional governance on its performance. Ambio 2020, 49, 504–516. [CrossRef]
5. European Environment Agency. Nutrients in Freshwater in Europe. 2018. Available online: https://www.eea.europa.eu/data-

and-maps/indicators/nutrients-in-freshwater/nutrients-in-freshwater-assessment-published-9 (accessed on 11 May 2022).
6. Biernat, L.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluss, C.; Loges, R. Is organic agriculture in line with the EU-Nitrate directive?

On-farm nitrate leaching from organic and conventional arable crop rotations. Agric. Ecosyst. Environ. 2020, 298, 106964.
[CrossRef]

7. Greer, K.D.; Pittelkow, C.M. Linking Nitrogen Losses with Crop Productivity in Maize Agroecosystems. Front. Sustain. Food Syst.
2018, 2, 29. [CrossRef]

8. Öborn, I.; Edwards, A.C.; Witter, E.; Oenema, O.; Ivarsson, K.; Withers, P.J.A.; Nilsson, S.I.; Stinzing, A.R. Element balances
as a tool for sustainable nutrient management: A critical appraisal of their merits and limitations within an agronomic and
environmental context. Eur. J. Agron. 2003, 20, 211–225. [CrossRef]

9. Qi, A.M.; Murray, P.J.; Richter, G.M. Modelling productivity and resource use efficiency for grassland ecosystems in the UK. Eur.
J. Agron. 2017, 89, 148–158. [CrossRef]

10. Rossel, R.A.V.; McBratney, A.B. Soil chemical analytical accuracy and costs: Implications from precision agriculture. Aust. J. Exp.
Agric. 1998, 38, 765–775. [CrossRef]

11. Wallach, D.; Makowski, D.; Jones, J.W. Working with Dynamic Crop Models: Evaluation, Analysis, Parameterization, and Applications,
1st ed.; Elsevier: Amsterdam, The Netherlands; Boston, MA, USA, 2006; p. 462.

12. Kristensen, K.; Schelde, K.; Olesen, J.E. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 2011, 149,
33–47. [CrossRef]

13. Ghaley, B.B.; Wosten, H.; Olesen, J.E.; Schelde, K.; Baby, S.; Karki, Y.K.; Borgesen, C.D.; Smith, P.; Yeluripati, J.; Ferrise, R.; et al.
Simulation of Soil Organic Carbon Effects on Long-Term Winter Wheat (Triticum aestivum) Production Under Varying Fertilizer
Inputs. Front. Plant Sci. 2018, 9, 1158. [CrossRef] [PubMed]

14. Mesbah, M.; Pattey, E.; Jego, G. A model-based methodology to derive optimum nitrogen rates for rainfed crops—A case study
for corn using STICS in Canada. Comput. Electron. Agric. 2017, 142, 572–584. [CrossRef]

15. Parsons, D.; Nicholson, C.F.; Blake, R.W.; Ketterings, Q.M.; Ramirez-Aviles, L.; Fox, D.G.; Tedeschi, L.O.; Cherney, J.H. Develop-
ment and evaluation of an integrated simulation model for assessing smallholder crop-livestock production in Yucatan, Mexico.
Agric. Syst. 2011, 104, 1–12. [CrossRef]

16. Phelan, D.C.; Harrison, M.T.; McLean, G.; Cox, H.; Pembleton, K.G.; Dean, G.J.; Parsons, D.; Richter, M.E.A.; Pengilley, G.;
Hinton, S.J.; et al. Advancing a farmer decision support tool for agronomic decisions on rainfed and irrigated wheat cropping in
Tasmania. Agric. Syst. 2018, 167, 113–124. [CrossRef]

17. Gyldengren, J.G.; Abrahamsen, P.; Olesen, J.E.; Styczen, M.; Hansen, S.; Gislum, R. Effects of winter wheat N status on assimilate
and N partitioning in the mechanistic agroecosystem model DAISY. J. Agron. Crop Sci. 2020, 206, 784–805. [CrossRef]

18. Cichota, R.; Vogeler, I.; Werner, A.; Wigley, K.; Paton, B. Performance of a fertiliser management algorithm to balance yield and
nitrogen losses in dairy systems. Agric. Syst. 2018, 162, 56–65. [CrossRef]

19. Khaembah, E.N.; Cichota, R.; Vogeler, I. Simulation of management strategies to mitigate nitrogen losses from crop rotations in
Southland, New Zealand. J. Sci. Food Agric. 2021, 101, 4241–4249. [CrossRef]

20. Wallach, D. Crop Model Calibration: A Statistical Perspective. Agron. J. 2011, 103, 1144–1151. [CrossRef]
21. Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, J.L.; Ruane, A.C.; Boote, K.J.; Thorburn, P.J.; Rotter, R.P.; Cammarano,

D.; et al. Uncertainty in simulating wheat yields under climate change. Nat. Clim. Change 2013, 3, 827–832. [CrossRef]
22. Rötter, R.P.; Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Bindi, M.; Ewert, F.; Ferrise, R.; Hlavinka, P.; Moriondo, M.; Nendel, C.; et al.

Simulation of spring barley yield in different climatic zones of Northern and Central Europe: A comparison of nine crop models.
Field Crop Res. 2012, 133, 23–36. [CrossRef]

23. Gaydon, D.S.; Balwinder-Singh Wang, E.; Poulton, P.L.; Ahmad, B.; Ahmed, F.; Akhter, S.; Ali, I.; Amarasingha, R.; Chaki, A.K.;
Chen, C.; et al. Evaluation of the APSIM model in cropping systems of Asia. Field Crops Res. 2017, 204, 52–75. [CrossRef]

http://doi.org/10.1088/1748-9326/7/2/021002
http://doi.org/10.1016/j.agsy.2010.08.009
http://doi.org/10.1126/science.277.5325.504
http://doi.org/10.1007/s13280-019-01197-8
https://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-freshwater/nutrients-in-freshwater-assessment-published-9
https://www.eea.europa.eu/data-and-maps/indicators/nutrients-in-freshwater/nutrients-in-freshwater-assessment-published-9
http://doi.org/10.1016/j.agee.2020.106964
http://doi.org/10.3389/fsufs.2018.00029
http://doi.org/10.1016/S1161-0301(03)00080-7
http://doi.org/10.1016/j.eja.2017.05.002
http://doi.org/10.1071/EA97158
http://doi.org/10.1017/S0021859610000675
http://doi.org/10.3389/fpls.2018.01158
http://www.ncbi.nlm.nih.gov/pubmed/30135696
http://doi.org/10.1016/j.compag.2017.11.011
http://doi.org/10.1016/j.agsy.2010.07.006
http://doi.org/10.1016/j.agsy.2018.09.003
http://doi.org/10.1111/jac.12412
http://doi.org/10.1016/j.agsy.2018.01.017
http://doi.org/10.1002/jsfa.11063
http://doi.org/10.2134/agronj2010.0432
http://doi.org/10.1038/nclimate1916
http://doi.org/10.1016/j.fcr.2012.03.016
http://doi.org/10.1016/j.fcr.2016.12.015


Plants 2023, 12, 986 21 of 22

24. Morel, J.; Parsons, D.; Halling, M.A.; Kumar, U.; Peake, A.; Bergkvist, G.; Brown, H.; Hetta, M. Challenges for Simulating Growth
and Phenology of Silage Maize in a Nordic Climate with APSIM. Agronomy 2020, 10, 645. [CrossRef]

25. Vogeler, I.; Jensen, J.L.; Thomsen, I.K.; Labouriau, R.; Hansen, E.M. Fertiliser N rates interact with sowing time and catch crops in
cereals and affect yield and nitrate leaching. Eur. J. Agron. 2021, 124, 126244. [CrossRef]

26. Kumar, U.; Morel, J.; Bergkvist, G.; Palosuo, T.; Gustavsson, A.M.; Peake, A.; Brown, H.; Ahmed, M.; Parsons, D. Comparative
Analysis of Phenology Algorithms of the Spring Barley Model in APSIM 7.9 and APSIM Next Generation: A Case Study for High
Latitudes. Plants 2021, 10, 443. [CrossRef]

27. Seidel, S.J.; Palosuo, T.; Thorburn, P.; Wallach, D. Towards improved calibration of crop models—Where are we now and where
should we go? Eur. J. Agron. 2018, 94, 25–35. [CrossRef]

28. Christensen, B.T.; Jensen, J.L.; Thomsen, I.K. Impact of Early Sowing on Winter Wheat Receiving Manure or Mineral Fertilizers.
Agron. J. 2017, 109, 1312–1322. [CrossRef]

29. Justes, E.; Mary, B.; Meynard, J.M.; Machet, J.M.; Thelierhuche, L. Determination of a Critical Nitrogen Dilution Curve for
Winter-Wheat Crops. Ann. Bot. 1994, 74, 397–407. [CrossRef]

30. Yakoub, A.; Lloveras, J.; Biau, A.; Lindquist, J.L.; Lizaso, J.I. Testing and improving the maize models in DSSAT: Development,
growth, yield, and N uptake. Field Crop Res. 2017, 212, 95–106. [CrossRef]

31. Grindlay, D.J.C. Towards an explanation of crop nitrogen demand based on the optimization of leaf nitrogen per unit leaf area.
J. Agric. Sci. 1997, 128, 377–396. [CrossRef]

32. Zhao, Z.G.; Wang, E.L.; Wang, Z.M.; Zang, H.C.; Liu, Y.P.; Angus, J.F. A reappraisal of the critical nitrogen concentration of wheat
and its implications on crop modeling. Field Crop Res. 2014, 164, 65–73. [CrossRef]

33. Lemaire, G.; Jeuffroy, M.H.; Gastal, F. Diagnosis tool for plant and crop N status in vegetative stage theory and practices for crop
N management. Eur. J. Agron. 2008, 28, 614–624. [CrossRef]

34. Rueda-Ayala, V.P.; Pena, J.M.; Hoglind, M.; Bengochea-Guevara, J.M.; Andujar, D. Comparing UAV-Based Technologies and
RGB-D Reconstruction Methods for Plant Height and Biomass Monitoring on Grass Ley. Sensors 2019, 19, 535. [CrossRef]
[PubMed]

35. Porter, J.R. AFRCWHEAT2: A model of the growth and development of wheat incorporating responses to water and nitrogen.
Eur. J. Agron. 1993, 2, 69–82. [CrossRef]

36. Hansen, S.; Jensen, H.E.; Nielsen, N.E.; Svendsen, H. Simulation of Nitrogen Dynamics and Biomass Production in Winter-Wheat
Using the Danish Simulation-Model Daisy. Fertil. Res. 1991, 27, 245–259. [CrossRef]

37. King, J.; Gay, A.; Sylvester-Bradley, R.; Bingham, I.; Foulkes, J.; Gregory, P.; Robinson, D. Modelling cereal root systems for water
and nitrogen capture: Towards an economic optimum. Ann. Bot. 2003, 91, 383–390. [CrossRef] [PubMed]

38. Van Oort, P.A.J.; Zhang, T.Y.; De Vries, M.E.; Heinemann, A.B.; Meinke, H. Correlation between temperature and phenology
prediction error in rice (Oryza sativa, L.). Agric. For. Meteorol. 2011, 151, 1545–1555. [CrossRef]

39. Zhang, T.Y.; Zhu, J.; Yang, X.G. Non-stationary thermal time accumulation reduces the predictability of climate change effects on
agriculture. Agric. Forest Meteorol. 2008, 148, 1412–1418. [CrossRef]

40. Wöhling, T.; Gayler, S.; Priesack, E.; Ingwersen, J.; Wizemann, H.D.; Hogy, P.; Cuntz, M.; Attinger, S.; Wulfmeyer, V.; Streck, T.
Multiresponse, multiobjective calibration as a diagnostic tool to compare accuracy and structural limitations of five coupled
soil-plant models and CLM3.5. Water Resour. Res. 2013, 49, 8200–8221. [CrossRef]

41. Lancashire, P.D.; Bleiholder, H.; Vandenboom, T.; Langeluddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal
Code for Growth-Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [CrossRef]

42. Buchmann, N.B.; Joseffson, H.; Cowe, A.A. Performance of European Artificial Neural Network (ANN) Calibrations for Moisture
and Protein in Cereals Using the Danish Near-Infrared Transmission (NIT) Network. Cereal Chem. 2001, 78, 572–577. [CrossRef]

43. Jones, D.B. Factors for Converting Percentages of Nitrogen in Foods and Feeds into Percentages of Protein; Circular No. 183; US
Department of Agriculture: Washington, DC, USA, 1941.

44. Adhikari, K.; Kheir, R.B.; Grev, M.B.; Bocher, P.K.; Malone, B.P.; Minasny, B.; McBratney, A.B.; Greve, M.H. High-Resolution 3-D
Mapping of Soil Texture in Denmark. Soil Sci. Soc. Am. J. 2013, 77, 860–876. [CrossRef]

45. Haarder, E.B.; Olsen, P.; Jakobsen, P.R.; Albers, C.N.; Iversen, B.V.; Greve, M.H.; Plauborg, F.; Kørup, K.; Skov, M.; Gudmundsson,
L.; et al. The Danish Pesticide Leaching Assessment Programme Site Characterization and Monitoring Design for the Lund Test Field;
Geological Survey of Denmark and Greenland Danish Ministry of Energy, Utilities and Climate, Department of Agroecology
Aarhus University: Copenhagen, Denmark, 2021; p. 53.

46. Holzworth, D.P.; Huth, N.I.; Devoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; Van Oosterom, E.J.; Snow, V.;
Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Modell. Softw. 2014,
62, 327–350. [CrossRef]

47. Asseng, S.; Van Keulen, H.; Stol, W. Performance and application of the APSIM Nwheat model in the Netherlands. Eur. J. Agron.
2000, 12, 37–54. [CrossRef]

48. Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.;
Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003,
18, 267–288. [CrossRef]

http://doi.org/10.3390/agronomy10050645
http://doi.org/10.1016/j.eja.2021.126244
http://doi.org/10.3390/plants10030443
http://doi.org/10.1016/j.eja.2018.01.006
http://doi.org/10.2134/agronj2016.11.0677
http://doi.org/10.1006/anbo.1994.1133
http://doi.org/10.1016/j.fcr.2017.07.002
http://doi.org/10.1017/S0021859697004310
http://doi.org/10.1016/j.fcr.2014.05.004
http://doi.org/10.1016/j.eja.2008.01.005
http://doi.org/10.3390/s19030535
http://www.ncbi.nlm.nih.gov/pubmed/30696014
http://doi.org/10.1016/S1161-0301(14)80136-6
http://doi.org/10.1007/BF01051131
http://doi.org/10.1093/aob/mcg033
http://www.ncbi.nlm.nih.gov/pubmed/12547691
http://doi.org/10.1016/j.agrformet.2011.06.012
http://doi.org/10.1016/j.agrformet.2008.04.007
http://doi.org/10.1002/2013WR014536
http://doi.org/10.1111/j.1744-7348.1991.tb04895.x
http://doi.org/10.1094/CCHEM.2001.78.5.572
http://doi.org/10.2136/sssaj2012.0275
http://doi.org/10.1016/j.envsoft.2014.07.009
http://doi.org/10.1016/S1161-0301(99)00044-1
http://doi.org/10.1016/S1161-0301(02)00108-9


Plants 2023, 12, 986 22 of 22

49. Palosuo, T.; Kersebaum, K.C.; Angulo, C.; Hlavinka, P.; Moriondo, M.; Olesen, J.E.; Patil, R.H.; Ruget, F.; Rumbaur, C.;
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