Next Article in Journal
Propagation of Medicinal Plants for Sustainable Livelihoods, Economic Development, and Biodiversity Conservation in South Africa
Next Article in Special Issue
Detailed Seed Cone Morpho-Anatomy Provides New Insights into Seed Cone Origin and Evolution of Podocarpaceae; Podocarpoid and Dacrydioid Clades
Previous Article in Journal
Dynamic Regulation of the Light-Harvesting System through State Transitions in Land Plants and Green Algae
Previous Article in Special Issue
Contribution of Morphoanatomic Characters to the Taxonomy of the Genus LAELIA (Orchidaceae) in Mexico and Their Implication in Environmental Adaptation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Diversity, Distribution, Systematics and Conservation Status of Podocarpaceae

1
School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
2
CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
3
Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
*
Author to whom correspondence should be addressed.
Plants 2023, 12(5), 1171; https://doi.org/10.3390/plants12051171
Submission received: 24 December 2022 / Revised: 6 February 2023 / Accepted: 19 February 2023 / Published: 3 March 2023
(This article belongs to the Collection Advances in Plant Diversification and Biosystematics)

Abstract

:
Among conifer families, Podocarpaceae is the second largest, with amazing diversity and functional traits, and it is the dominant Southern Hemisphere conifer family. However, comprehensive studies on diversity, distribution, systematic and ecophysiological aspects of the Podocarpaceae are sparse. We aim to outline and evaluate the current and past diversity, distribution, systematics, ecophysiological adaptations, endemism, and conservation status of podocarps. We analyzed data on the diversity and distribution of living and extinct macrofossil taxa and combined it with genetic data to reconstruct an updated phylogeny and understand historical biogeography. Podocarpaceae today contains 20 genera and approximately 219 taxa (201 species, 2 subspecies, 14 varieties and 2 hybrids) placed in three clades, plus a paraphyletic group/grade of four distinct genera. Macrofossil records show the presence of more than 100 podocarp taxa globally, dominantly from the Eocene–Miocene. Australasia (New Caledonia, Tasmania, New Zealand, and Malesia) is the hotspot of living podocarps diversity. Podocarps also show remarkable adaptations from broad to scale leaves, fleshy seed cones, animal dispersal, shrubs to large trees, from lowland to alpine regions and rheophyte to a parasite (including the only parasitic gymnosperm—Parasitaxus) and a complex pattern of seed and leaf functional trait evolution.

1. Introduction

Conifers are economically and ecologically important, form extensive forests in both Hemispheres and are currently the most diverse gymnosperms. There are seven conifer families (Araucariaceae, Cupressaceae, Pinaceae, Podocarpaceae, Sciadopityaceae, Cephalotaxaceae and Taxaceae), including 72 genera and approximately 702 species [1]. They are estimated to have evolved in the late Devonian from progymnosperms, and then dominated the Mesozoic Era [2,3,4]. Leslie et al. [5] investigated the evolutionary dynamics of conifers on a hemispheric scale based on molecular studies of 489 species and concluded that extant conifers have diverged in the Neogene with older splits in the Southern Hemisphere. Pinaceae and Cupressaceae have their main distribution in the temperate and subtropical regions of the Northern Hemisphere, while the Southern Hemisphere conifers are dominated by the Araucariaceae, Podocarpaceae and the Callitroideae of the Cupressaceae. The podocarps are monoecious and dioecious evergreen trees, shrubs, and subshrubs with mostly spirally arranged leaves and fleshy cones [6]. They are morphologically highly diverse [7,8]. Although the ecological and environmental variation (mostly rainforest and wet montane) is restricted, the morphological variation in leaves and seed cones is very high [9,10]. The extant and extinct taxa present in Australasia and South America show the wider distribution of the family across Gondwana in the past. Phylogenetically, the Podocarpaceae are closest to the Araucariaceae, Sciadopityaceae and Taxaceae [11,12]. Podocarps are significant both ecologically and economically and are a vital component of global forests and biodiversity [4,13]. The Podocarpaceae are very important from an evolutionary and systematic point of view due to their remarkable eco-physiological adaptations as compared to other conifer families, and they can provide us with valuable information on evolution and response to climate change [4,14]. Podocarps provide an exceptional opportunity for the understanding of comparative diversification processes, the evolution of different functional traits and ecophysiological adaptations. However, comprehensive studies are lacking on the different taxonomic, phylogenetic, ecological, biogeographic, and evolutionary aspects of most Podocarpaceae due to fragmented data on living species, sparse fossil records, difficulty in sampling and ecological data collection and less attraction compared to other conifer families. Many species described from Papua New Guinea, Malaysia, Indonesia, and New Caledonia are based on single records, and these areas remain under-explored. To evaluate these different aspects and several other key features, updated checklists for living and extinct taxa, phylogenetic analysis and ecophysiological adaptation research is required.
In this study, we evaluate the diversity, distribution, taxonomy, phylogeny, ecophysiology, and ecology of podocarps with the following aims: 1. To tabulate updated podocarp checklists for both extant and extinct taxa. 2. To reconstruct a new dated phylogeny of Podocarpaceae using relevant macrofossil records. 3. To assess the historical overview of taxonomic classifications of podocarps. 4. To discuss the diversity and historical biogeography. 5. To consider ecophysiological adaptations and threats.

2. Material and Methods

2.1. Phylogenetic Studies

A new, dated phylogenetic tree was produced for the Podocarpaceae. For phylogenetic analysis, DNA sequences of Podocarpaceae and Araucariaceae were sourced from GenBank (https://www.ncbi.nlm.nih.gov/genbank/, accessed on 25 January 2021). The sequences were cleaned and six markers, rbcL, matK, trnL-trnF, NEEDLY, PHYP and ITS species, were selected based on alignment confidence and availability of sequences. The final concatenated alignment consists of 190 taxa with 14 taxa as an out-group. The data were analyzed with BEAST version 2.6.3 at the CIPRES Science Gateway [15], set to run an uncorrelated lognormal relaxed clock and a GTR+I+G substitution model [16]. For calibration of the tree, we used the 20 oldest unequivocal macrofossil records (see supplementary file Table S1). Sixteen fossil constraints were assigned to the Podocarpaceae, two were assigned to the Araucariaceae and two were assigned to other conifers. The Fossil Birth–Death (FBD) model [17] was used as the tree prior, which imposes a time structure on the tree, while accounting for uncertainty in the placement of the fossil data by allowing all plausible placements for the fossil taxon on the extant tree [18].

2.2. Updated Checklist, Distribution, and IUCN Conservation Status of Podocarps

An updated checklist of all podocarp species was compiled based on the available literature [4], herbarium specimen observations and online databases, e.g., The Gymnosperm Database [19]; Global Biodiversity Information Facility-GBIF [20]; plants of the world online [21]; Australasian Virtual Herbarium-AVH [22]; Flora of China [23].

2.3. Distribution Data Analysis

The distribution of the species was analyzed in PC-ORD [24]. The Cluster Analysis (CA) and the Two-Way Cluster Analyses (TWCA) were used to identify significant and species-rich countries using Sorensen measures, based on presence/absence data.

2.4. Updated Checklist for Macrofossils of Extant Genera of Podocarpaceae

A checklist of fossil podocarps species belonging to extant genera was compiled using published literature and an online database Fossilworks [25].

3. Results

3.1. Phylogenetic Relationships

The fossil-calibrated phylogenetic tree under the FBD model indicates that the Podocarpaceae and Araucariaceae diverged around the early–mid Permian and the extant podocarp clades split during the mid–late Triassic. The extant podocarp genera have an estimated divergence time of the early Jurassic. The extant podocarp species predominantly show recent diversification from the Oligocene onwards. The phylogeny of the Podocarpaceae shows three major clades, I. Podocarpoid, II. Dacrydioid, III. Prumnopityoid, as well as a distinctive paraphyletic group/grade (Figure 1).
I. Podocarpoid clade—four genera, i.e., Afrocarpus, Nageia, Podocarpus and Retrophyllum. The suggested crown age for the Podocarpoid clade is approximately 75 Ma (54–85 Ma). The phylogeny also supports the split of Podocarpus into two subgenera i.e., Foliolatus and Podocarpus.
II. Dacrydioid clade—three genera, i.e., Dacrydium, Dacrycarpus and Falcatifolium. The suggested crown age for the Dacrydioid clade is approximately 75 Ma (54–95 Ma).
III. Prumnopityoid clade—nine genera, i.e., Lepidothamnus, Phyllocladus, Manoao, Lagarostrobos, Parasitaxus, Halocarpus, Sundacarpus, Pectinopitys and Prumnopitys. The newly dated phylogeny shows that the crown age for the Prumnopityoid clade is approximately 175 Ma (150–210 Ma).
IV. Paraphyletic group/grade—four genera, i.e., Acmopyle, Pherosphaera, Microcachrys and Saxegothaea.

3.2. Diversity at Genus Level and Distribution

Currently, in the Podocarpaceae, 20 genera and approximately 219 taxa (201 species, 2 subspecies, 14 varieties and 2 hybrids) are recognized (Table 1). Podocarpus is the most speciose genus with approximately 120 species distributed in approximately 70 countries. Two-way cluster analysis of Podocarpaceae species distribution shows five major groups, I. New Caledonian group, II. New Zealand group, III. Malesian group, IV. Southeast Asian group and V. Podocarpian group, widely distributed across several countries (Figure 2). Some of the widely distributed species are Afrocarpus gracilior (7 countries) and A. falcatus (5 countries), Dacrycarpus imbricatus (11 countries), Dacrydium elatum (7 countries), Dacrydium pectinatum (5 countries), Nageia wallichiana (11 countries), Podocarpus coriaceus (7 countries), P. guatemalensis (9 countries), P. milanjianus (15 countries), P. neriifolius (16 countries), P. oleifolius (11 countries), P. pilgeri (9 countries), P. polystachyus (7 countries) and Sundacarpus amarus (6 countries). The current species diversity and distribution is listed in Table 1 and summarized here:
  • Acmopyle has two species in New Caledonia (A. pancheri) and Fiji (A. sahniana).
  • Afrocarpus has five species distributed across Africa.
  • Dacrycarpus has nine species and two varieties distributed in New Caledonia, New Zealand, some Pacific Islands and Southeast Asia (Figure 3A).
  • Dacrydium has 20 species and two hybrids distributed in New Caledonia, New Zealand, some Pacific Islands and Southeast Asia.
  • Falcatifolium has six species distributed in New Caledonia, Papua New Guinea, Indonesia, Malaysia, the Philippines and Brunei Darussalam.
  • Halocarpus has three species endemic to New Zealand.
  • Manoao has one species distributed in New Zealand.
  • Pherosphaera has two species endemic to Australia.
  • Lagarostrobos has one species endemic to Australia.
  • Microcachrys has one species endemic to Australia (Figure 3B).
  • Lepidothamnus has three species distributed in Argentina, Chile and New Zealand.
  • Nageia has six species distributed in Southeast Asia to India and Myanmar, Papua New Guinea, the Philippines and Japan.
  • Parasitaxus has one parasitic species endemic to New Caledonia.
  • Phyllocladus has four species and one variety distributed in Papua New Guinea, Indonesia, Malaysia, the Philippines, New Zealand and Australia.
  • Podocarpus is the largest genus, with 120 species, 4 subspecies, 9 varieties and one hybrid and has a wide distribution, occurring in all continents (approximately 70 countries) except Europe and Antarctica.
  • Prumnopitys has three species distributed in New Zealand and South America.
  • Pectinopitys has six species distributed in New Zealand, Australia, New Caledonia and South America.
  • Retrophyllum has six species distributed in New Caledonia, South America and the Pacific Islands.
  • Saxegothaea has one species distributed in South America.
  • Sundacarpus has one species distributed in Australia, Indonesia, Malaysia, Papua New Guinea (Timor-Leste) and the Philippines.
The Podocarpaceae has its highest diversity of genera in New Zealand (nine) with fewer in other regions New Caledonia and Malesia (eight), Australia (seven), South America (four) and Africa and Asia (two). Of the 20 genera, three are endemic to Australia and two are endemic to New Zealand. Countries with a rich diversity of podocarps include Indonesia (51 species), Papua New Guinea (43 species), Malaysia (39 species), the Philippines (23 species), New Caledonia (20 species), New Zealand (19 species), China (17 species), Venezuela (15 species), Australia (14 species), Brazil, Peru and Bolivia (12 species each), Fiji (11 species), Ecuador (9 species) and Madagascar, Thailand, Brunei Darussalam and Colombia (8 species each).

3.3. Podocarpaceae in Space and Time

This checklist consists of macrofossils assigned to extant podocarp genera and includes more than one hundred taxa from the Cretaceous to the Pleistocene (Table 2). The macrofossils are predominantly recorded from Eocene–Miocene deposits. Australian and New Zealand macrofossil records dominate. Most of the macrofossils are foliage but well-preserved reproductive parts (seed and pollen cones) are also recorded for Lepidothamnus, Lagarostrobos, Dacrycarpus, Phyllocladus, Podocarpus and Nageia. Extant podocarps dominate in the Southern Hemisphere and analysis of extinct taxa assigned to living podocarp genera supports their past importance in the Southern Hemisphere (Table 2). A number of extinct species assigned to Podocarpaceae genera have been reported from Australia, New Zealand and South America [26]. An analysis shows that:
  • Acmopyle has eight fossil species recorded (A. antarctica, A. compactus, A. engelhardti, A. florinii, A. glabra, A. masonii, A. setiger and A. tasmanica) from the Eocene–Oligocene of the Antarctic Peninsula, Australia, New Zealand and Argentina [27,28,29,30,31,32]. The fossil record shows a wider past distribution of Acmopyle compared to its current occurrence in New Caledonia and Fiji.
  • Dacrycarpus has approximately 25 fossil taxa reported (D. acutifolius, D. arcuatus, D. carpenterii, D. chilensis, D. crenulatus, D. cupressiformis, D. dacrydoides, D. geminus, D. guipingensis, D. involutus, D. elandensis, D. falcatus, D. lanceolatus, D. latrobensis, D. linearis, D. linifolius, D. microfolius, D. mucronatus, D. patulus, D. praecupressinus, D. puertae, Dacrycarpus sp. (four separate records)) from the Eocene–Early Pleistocene of Australia, New Zealand, China, Argentina [28,30,32,33,34,35,36,37,38,39,40,41,42,43,45,71,76]. Although Dacrycarpus currently has no living species in Australia or South America, the fossil record shows its extensive distribution in both those landmasses in the past.
  • Dacrydium has approximately 14 fossil taxa reported from Australia (D. aciculare, D. fimbriatus, D. mucronatus, D. sinuosum, D. rhomboideum, D. tasmanicum and six taxa described to genus level) and two species from New Zealand (D. microphyllum and D. waimumuensis) [32,33,38,39,47,48]. These suggest an Australasian origin in the Late Cretaceous [77].
  • Falcatifolium has only one fossil extinct species (F. eocenica) from the Middle Eocene of Victoria, Australia [49]. Currently, Australia has no living species of Falcatifolium.
  • Nageia has four extinct species (N. hainanensis, N. maomingensis, N. ryosekiensis, N. sujfunensis), from the Early Cretaceous–Eocene in China, Southwest Japan, and Far East Russia [53,54,55,56,78]. This demonstrates that Nageia had a wider past distribution and occurred in Japan and Russia.
  • Retrophyllum has four extinct species (R. australe, R. oxyphyllum, R. superstes, R. vulcanense) recorded from the Cretaceous–Miocene in Australia, Argentina, and New Zealand [28,41,65,74]. Currently, Australia and New Zealand have no living species of Retrophyllum.
  • Podocarpus has at least 16 extinct species reported and approximately seven taxa identified at the genus level. These are Podocarpus platyphyllum, P. sinuatus, P. strzeleckianus, P. tasmanicus and P. witherdenensis (Eocene) from Australia; P. travisiae and P. alwyniae (Miocene) from New Zealand; P. andiniformis, P. araucoensis and P. inopinatus (Eocene–Miocene) from South America; and P. pliomacrophyllus, P. yunnanensis and P. forrestii (lower Pliocene) from China [27,28,38,42,65,69,70,71,79].
  • Halocarpus has a single occurrence of one extinct species (Halocarpus highstedii) reported from the Oligocene–Miocene of New Zealand [39].
  • Manoao colensoi has a fossil record from the Oligocene of Cethana, Tasmania (Australia) (reported as Lagarostrobos colensoi) [38], showing that this current New Zealand endemic genus was once also distributed in Australia.
  • Lepidothamnus has three fossil records: L. intermedius from the Miocene in New Zealand [30], L. diemenensis from the Eocene of Hasties, Tasmania [28] and an undescribed extinct species from the middle Cretaceous of Winton, Queensland [51]. This indicates a wider distribution of Lepidothamnus in the Late Mesozoic across the Southern Gondwana regions [51].
  • Lagarostrobos has two fossil records, e.g., L. marginatus from the Early Oligocene and the extant L. franklinii from the Early Pleistocene in Tasmania, Australia [33,34,39,45,50]. Current and macrofossil records suggest a narrow distribution and endemism to Australia for this genus.
  • Phyllocladus has seven fossil species described, including records of the extant P. aspleniifolius (the fossil species are P. aberensis, P. annulatus, P. elongatus, P. lobatus, P. morwellensis, P. palmeri) and six at genus level from Late Eocene–Pliocene in Australia, New Zealand and Antarctica (Cretaceous) [38,39,47,50,57,58,59,61,62,63,64]. Protophyllocladus Berry [80], an extinct genus that resembles the foliage morphology of Phyllocladus, is recorded from the Jurassic and Cretaceous of the United States and southwestern Canada, Western Greenland, Serbia, Romania, Portugal, Kazakhstan, Japan, northeastern Russia, Germany [81]. Dörken et al. [82] considered that it is unlikely that Protophyllocladus is closely related to Phyllocladus. Wagstaff [83] suggested that extant species are the remnants of one of the recently diverged lineages of Phyllocladus, but there is no unequivocal fossil evidence to support this.
  • Prumnopitys has two extinct species (P. portensis and P. tasmanica) and a fossil record of one extant species (P. montana) from the Eocene in Australia and one extinct species (P. opihiensis) and a fossil record of one extant species (P. taxifolia) from the Cretaceous–Miocene in New Zealand [28,30,42,43,72].
  • Sundacarpus has two extinct species: S. anglica and S. tzagajanicus, from the Eocene–Oligocene in Australia and Cretaceous–Paleocene in Argentina, respectively [75].
  • Pherosphaera has two extinct species: P. sommervillae (Microstrobos sommervillae) from the Early Eocene and P. microfolius (Microstrobos microfolius) from the Oligocene–Miocene of Tasmania [31,33].
  • Microcachrys has one extinct species (Microcachrys novae-zelandiae) from the Oligo-Miocene of New Zealand and fossils of the extant Microcachrys tetragona from the Early Pleistocene of western Tasmania [34,45,52].

3.4. Chromosomal Number

The chromosomal number in the Podocarpaceae varies from x = 9 to x = 19 (Acmopyle x = 10, Afrocarpus x = 12, Dacrycarpus x = 10, Dacrydium x = 10, Falcatifolium x = 10, Halocarpus x = 9, 11, 12, Lagarostrobos x = 15, Lepidothamnus x = 14, 15, Manoao x = 10, Microcachrys x = 15, Nageia x = 18, Parasitaxus x = 18, Pectinopitys x = 19, Pherosphaera x = 13, Phyllocladus x = 9, Podocarpus x = 10, 11, 17, 18, 19, Prumnopitys x = 18, Retrophyllum x = 10, Saxegothaea x = 12 and Sundacarpus x = 12) [84].

4. Discussion

4.1. Phylogenetic History of the Podocarpaceae

Molecular studies suggest Araucariaceae as the sister family of Podocarpaceae, although these families are morpho-anatomically divergent [4,11,12,13], which was also supported by our results. Previous molecular and fossil records suggest that podocarps originated in the Triassic–Jurassic in Gondwana [12,85], or the Early Cretaceous [10], or Late Triassic [13], but recent podocarp fossils from Jordan push back the origin of the Podocarpaceae to the Permian (Figure 1) and show that they survived the “great dying” at the end of Permian [86,87]. Our results suggest that Lepidothamnus and Phyllocladus diverged in the Late Jurassic, when incorporating the oldest Lepidothamnus fossil record [51,88], which is earlier than the previous estimate of mid-Cretaceous–early Paleogene [10,12] and Early Jurassic [13]. Our studies recognized the presence of three major Prumnopityoid, Dacrydioid and Podocarpoid clades and a paraphyletic group similar to Chen et al. [13].
Several studies based on both morphological [7,89,90,91,92] and molecular [7,92,93,94,95,96] studies have been published evaluating the phylogenetic relationship among different genera of the Podocarpaceae. Based on morphology and 18S rDNA, Kelch [7] concluded that the Podocarpaceae are monophyletic except for Podocarpus (paraphyletic) and Dacrydium (polyphyletic). Conran et al. [93], based on molecular analysis (plastid rbcL), reported that Podocarpaceae are polyphyletic and supported the separation of Afrocarpus from Podocarpus and its placement as sister to Retrophyllum instead of Nageia, and also suggested that Podocarpus is monophyletic, a conclusion supported by Sinclair et al. [94]. Biffin et al. [85], based on their molecular studies of 94 Podocarpaceae species, reported that Podocarpus is closely related to Nageia, Afrocarpus and Retrophyllum. Knopf et al. [92] investigated the phylogeny of 145 species (including 77 species of Podocarpus) of Podocarpaceae based on morphological, anatomical and DNA sequences (rbcL, nrITS1 and NEEDLY). Their most significant findings were the support of subgenera in Podocarpus, the transfer of Sundacarpus amarus to Prumnopitys and the incorporation of the Phyllocladaceae into the Podocarpaceae as Phyllocladus. Lu et al. [11] reported two monophyletic sister groups: the Dacrydioid group (Dacrycarpus, Dacrydium and Falcatifolium) and the Podocarpoid group (RetrophyllumNageia subclade and the Afrocarpus–Podocarpus subclade). Little et al. [95] used DNA barcoding (matK, rbcL and nrITS2 DNA barcodes) for the identification of Podocarpaceae (18 genera and 145 species) and to construct a phylogenetic tree. Quiroga et al. [97], based on molecular and fossil data, reported that Podocarpus originated in late Cretaceous–early Paleogene (~63 Ma) and supported the two subgenera in Podocarpus. Leslie et al. [96], using more comprehensive sampling and markers, recognized 19 genera and supported the division of Podocarpus into two subgenera. Recently, Page [75] again split the genus Prumnopitys into three genera (Prumnopitys, Sundacarpus and the new genus Pectinopitys) based on morphological and molecular data. The current phylogeny supports the division of the 20 genera of podocarps into main three clades and a paraphyletic grade (Figure 1). Similarly, the current phylogeny also recognizes and supports the division of Podocarpus into two subgenera, i.e., Podocarpus and Foliolatus [12,13,92,97].

4.2. Historical Taxonomic Treatment

The most extensive taxonomic studies on the Podocarpaceae have been by de Laubenfels, Buchholz, Gray and Page, with many other contributions, which are summarized in Table 3.
Initially, podocarps were placed in two genera, Podocarpus and Dacrydium, mainly based on leaf morphology [98]. Several early taxonomists including Gordon [111] and Philippi [112] recognized variation in Podocarpus and Dacrydium and classified them into several sections, subgenera, and subgroups. From the 1960s onwards, Podocarpus was then divided into eight genera and Dacrydium into five. Based on leaf morphology and anatomy, Podocarpus was initially divided into eight sections (Afrocarpus, Dacrycarpus, Eupodocarpus, Microcarpus, Nageia, Polypodiopsis, Stachycarpus and Sundacarpus). After a more detailed examination, de Laubenfels [113] raised section Dacrycarpus to the genus Dacrycarpus. Quinn [114] suggested raising the eight sections of Podocarpus to generic level and de Laubenfels [115] raised the section Microcarpus to generic level as Parasitaxus. Later, de Laubenfels [104] revised the genus Podocarpus into 18 sections and described 94 species. Page [106] raised section Sundacarpus into the genus Sundacarpus, section Polypodiopsis to the genus Retrophyllum, section Nageia to the genus Nageia and section Afrocarpus to the genus Afrocarpus. Some taxonomists reject these changes of status [116,117,118]. Page [107] divided the Podocarpaceae into 17 genera (Phyllocladus was excluded and Sundacarpus was included). Biffin et al. [85] recognized three major clades, i.e., the Podocarpoid clade (Afrocarpus, Nageia, Podocarpus, Retrophyllum), the Dacrydioid clade (Dacrydium, Dacrycarpus, Falcatifolium) and the Prumnopityoid clade (Halocarpus, Lagarostrobos, Manoao, Parasitaxus, Prumnopitys).
The concept of the separate family Phyllocladaceae has been supported in several different studies [93,107,119], and while this is no longer regarded as valid, its status as the genus Phyllocladus has been well supported by other taxonomists and recent phylogenetic studies [12,13,83,92,94,95,120,121,122,123,124].
Our studies recognize 20 extant genera (Acmopyle, Afrocarpus, Dacrycarpus, Dacrydium, Falcatifolium, Halocarpus, Lagarostrobos, Lepidothamnus, Manoao, Microcachrys, Nageia, Parasitaxus, Pectinopitys, Pherosphaera, Phyllocladus, Podocarpus, Prumnopitys, Retrophyllum, Saxegothaea and Sundacarpus), two subgenera in both Podocarpus (Podocarpus and Foliolatus) and Prumnopitys (Prumnopitys and Botryopitys) in Podocarpaceae, similar to Page [75] and Yang et al. [1], Chen et al. [13] proposes the splitting of Prumnopitys into Prumnopitys and Pectinopitys but reported 19 genera for Podocarpaceae. Our checklist enlists 201 living species for Podocarpaceae than previously reported 181 species by Yang et al. [1], which will increase the total number of conifer species from 702 to 722.

4.3. Current Diversity and Distribution of Podocarpaceae

Podocarps occur mainly in the Southern Hemisphere, although some genera extend northward, i.e., subtropical China and Japan and to Mexico and the Caribbean [125]. The living species of Podocarpaceae are a small representation of a once highly diverse group [55,126]. Today, several genera have low species representation (e.g., monospecific in Manoao, Lagarostrobos, Microcachrys, Parasitaxus and Saxegothaea and two in Acmopyle and Pherosphaera), although the fossil record suggests a more extensive diversity for at least some of these genera in the past. The center of diversity for the Podocarpaceae is Australasia (New Caledonia, Tasmania, New Zealand and Malesia), South America (Andes mountains), Indo-China and the Philippines [125,127].
Podocarps favor mostly cool and wet climates but usually do not tolerate extreme cold like some Northern Hemisphere conifers [128]. However, some temperate Podocarpaceae species occur as shrubs and prostrate woody plants above the tree line in the alpine ecosystems of Tasmania, Victoria, and New Zealand (Figure 4).
The tropical podocarps are mostly confined to mountain forests and heathlands and nutrient-poor habitats in the lowlands, although some also grow in forest understories. Temperate podocarps are good competitors in nutrient-poor soils probably because the light is more easily available within the incomplete canopies, but they are outcompeted in nutrient-rich soil as the canopy and forest floor is occupied by angiosperms and the growth of new individuals is slow due to shading. Such conditions favor broad-leaved podocarps (Nageia and broad-leaved Podocarpus species are shade-tolerant) and exclude imbricate-leaved podocarps due to competition [128]. This is supported by Adie and Lawes [129], who concluded that African podocarps are not lowland rainforest survivors but are temperate forest relicts.

4.4. Historical Biogeography

The historical reconstruction of Podocarpaceae confirms that it is a Southern Hemisphere family that was initially centered in Gondwana [130]. Leslie et al. [12] suggest that Podocarpaceae diversified in the Cretaceous and earliest Cenozoic after its appearance in the Triassic of Gondwana. Klaus and Matzke [10], based on the reconstruction of ancestral ranges, suggested that podocarps originated in the Early Jurassic in what is today Central–South America, Australia, and New Zealand. The family subsequently dominated Australasia and Southern America and later (and through to the present) in Malesia [77]. However, the discovery of macrofossils of podocarps from the early Permian of Jordan [86,87] will require a re-assessment of the early history of the family [88].
Klaus and Matzke [10] used living taxa to reconstruct the ancestral ranges and suggested that the ancestral area for the Podocarpoid clade is the Australia–New Guinea–Malesian region; for the Dacrydioid clade it is New Caledonia; for the Prumnopityoid clade it is New Zealand and for the paraphyletic group/grade, South America to Australia. Macrofossil evidence and the historical biogeographic reconstruction by Klaus and Matzke [10] support an Australian origin of Podocarpus and multiple dispersals to South America, Asia, New Zealand, Malesia, and New Caledonia. Morley [77] concluded that Podocarpus dispersed into South Asia in the Late Eocene, either by dispersal from India or by multiple long-distance dispersal events from Australia. Similarly, he concluded that Podocarpus was possibly present in Africa during the mid-Cenozoic but its dispersal to West Africa occurred by island-hopping in the late Pliocene. According to Nieto-Blázquez et al. [131], Podocarpus species in the Caribbean are the result of colonization from the Andes during the Eocene to Oligocene (c. 45–31 Ma). Fossil records and living species distributions of Nageia support an Asian origin [10,54]. The living species of Afrocarpus strongly support an African origin for that genus. The living taxa and fossil record suggest a Gondwanan origin of Retrophyllum, with it evolving by the early Eocene [65,74]. Although the historical biogeographic reconstruction produced by Klaus and Matzke [10] suggests the origin of Dacrydium in New Caledonia, the macrofossil record strongly suggests an Australasian origin [32,39]. Morley [77] also concluded that Dacrydium originated in Australasia in the Late Cretaceous and dispersed to Southeast Asia in the Early Oligocene, probably by island-hopping (e.g., it dispersed to the Ninety East Ridge by the Paleocene and to India by the Early Eocene and later expanded to Japan during the Middle Miocene climatic optimum). According to Wu et al. [36,76], Dacrycarpus also had an Australasian origin during the Late Cretaceous. Dacrycarpus was present by the Eocene in Patagonia, supporting biogeographic connections during the warm Eocene from Patagonia to Australasia across Antarctica [35]. According to Morley [77], Dacrycarpus dispersed to New Guinea from Australia by the late Miocene and then during the mid-Pliocene, it island-hopped to Borneo, and during the Pleistocene, to Sumatra and the Malay Peninsula. However, the Dacrycarpus megafossil from the Miocene of South China shows its earlier arrival to Asia from the Southern Hemisphere and China during Late Miocene [36]. Paleoclimatic studies also support the existence of Dacrycarpus in high-precipitation areas and explain its possible extinction in Australia as that continent dried [36,85]. Dacrycarpus possibly became extinct around the Paleogene–Neogene transition from both South America and Antarctica and during the Neogene from Australia [36]. Klaus and Matzke’s [10] historical biogeographic reconstruction suggests that Falcatifolium originated in the Fiji–New Guinea region around the Late Eocene. However, the fossil record of Falcatifolium from the Middle Eocene of Australia suggests an Australian origin [49], Falcatifolium probably dispersed later to New Caledonia and Papua New Guinea [84].
Klaus and Matzke [10] also concluded that the Prumnopityoid clade originated in New Zealand around the mid-Cretaceous. However, a recent phylogeny of the podocarps suggests an Early to Mid-Jurassic origin for this clade (Figure 1). Leslie et al. [5] and Wang and Ran [84] reported that the phylogenetic divergence of Podocarpaceae shows that the three genera (Lepidothamnus, Podocarpus and Prumnopitys) were dispersed from Australia to South America through Antarctica. A Lepidothamnus macrofossil from the middle Cretaceous of Winton, Queensland [51,88] also supports its Australian origin. The living and macrofossil records of Phyllocladus indicates a Gondwanan origin and wider distribution. Phyllocladus dispersed to New Guinea by the late Miocene and then, during the mid-Pliocene, it island-hopped to Borneo [77]. The extant and extinct species (Halocarpus highstedii from the Oligocene–Miocene) are endemic to New Zealand [39]. Today, Manoao is a monotypic endemic genus to New Zealand but one fossil specimen from the Oligocene (35 Ma) of Cethana, Tasmania (Australia) is similar to that of Manoao colensoi (reported as Lagarostrobos colensoi), showing this genus was once present in Australia [38]. Parasitaxus is a monotypic endemic genus to New Caledonia with no macrofossil records. Lagarostrobos is also a monotypic endemic genus in Tasmania and the macrofossil records from Early Oligocene to Early Pleistocene are also restricted to Tasmania [33,34].
Prumnopitys has three living species distributed in New Zealand and South America. The macrofossil records (Cretaceous–Miocene) demonstrate a Gondwanan origin and wider distribution [43,75]. Although Sundacarpus is now a monotypic genus, the macrofossil records (S. anglica from England and S. tzagajanicus from Russia) from the Uppermost Cretaceous and Eocene show a wider past distribution [75]. Pectinopitys is widely distributed in New Zealand, Australia, New Caledonia, and South America, but with no macrofossil record.
Klaus and Matzke [10] conclude that Acmopyle originated in New Caledonia, but macrofossils from the Eocene–Oligocene suggest a Gondwanan origin [27,28,29,30,31,32]. Microcachrys is now endemic to Australia but is also present in the Oligocene–Miocene of New Zealand [52]. Saxegothaea is the oldest genus in the family and is part of an ancient lineage endemic to South America. Pherosphaera has two living species and two macrofossils from Australia [33].

4.5. Eco-Physiological Adaptations

Most podocarps have evolved flattened leaves and fleshy seed cones, which enable them to survive in low-light conditions beneath the tree canopy and disperse their seeds biotically [85,88,132,133]. Podocarps mature as trees or shrubs. Some of the most significant ecophysiological adaptations and strategies are discussed here.

4.5.1. Seed Cone Morpho-Anatomy

The Podocarpaceae have evolved distinct seed cone morphotypes and display marked variation in functional traits across the 20 genera [88,133,134]. Most podocarp genera produce fleshy seed cones utilizing the epimatium, aril, bracts, receptaculum or a combination of these [109]. Podocarpus is the largest genus in the Podocarpaceae and has a cone composed of one or two seeds covered mostly by a papery and sometimes a fleshy epimatium [10,109]. Several podocarp genera have cones with a brightly colored, fleshy receptaculum [10,88,134].

4.5.2. Leaf Morpho-Anatomy

The Podocarpaceae is prominent in many mixed conifer/broadleaf vegetation types in the Southern Hemisphere, and they exhibit great variation in leaf morphology across the 20 genera [135]. The diversity in leaf morphology of Podocarpaceae is remarkable, ranging from uni-veined needle and scale-like leaves to multi-veined broad leaves. Podocarpaceae foliage can be divided into two main types, imbricate (Dacrycarpus, Dacrydium, Halocarpus, Manoao, Lagarostrobos, Lepidothamnus, Microcachrys, Pherosphaera and Parasitaxus) and broad (flattened) leaved (Acmopyle, Nageia, Afrocarpus, Falcatifolium, Phyllocladus, Podocarpus, Retrophyllum, Pectinopitys, Sundacarpus, Prumnopitys and Saxegothaea). These genera have leaves either spirally arranged or in opposite pairs. Most Podocarpaceae species possess flattened or composite leaves (in 11 genera and more than 140 species) and this may be an adaptation to light requirements, as most of these species grow in the understory of forests with a low-light environment and are unable to reach the canopy level and high sunlight [9] unless a canopy gap occurs. Nageia is characterized by having leaves with multiple parallel veins [55]. All Phyllocladus species have evolved multi-veined phylloclades (Supplementary Figure S1), probably to compete with angiosperms for light [9,82,136]. Acmopyle, Dacrycarpus and Falcatifolium have bilaterally flattened leaves, lacking a true petiole. Leaf dimorphism is present in many genera of Podocarpaceae (Supplementary Figure S2). All other broad-leaved species have bifacially flattened broad leaves [135].

4.5.3. Pollen Morphology

All conifer species are wind-pollinated and those in the Podocarpaceae (except Saxegothaea) and Pinaceae have developed special wing-like structures called sacci [2]. The Podocarpaceae usually have saccate pollen with a tectate exine but usually with a smaller grain than the Pinaceae [137]. Pollen of all genera are bi-saccate except Microcachrys, Pherosphaera and Dacrycarpus, which are tri-saccate, and Saxegothaea which does not have sacci [91,138,139]. Because of this, Erdtman [138] suggested shifting Saxegothaea to the Araucariaceae, while Gaussen [103] and Woltz [140] suggested promoting it to the new family Saxegothaeaceae. The fossil pollen record of the Podocarpaceae is not considered here but is in need of revision, with much important data currently difficult to assess without expert comment on the validity of published interpretations.

4.6. Dispersal Biology

The Podocarpaceae are predominantly zoochorous as their main seed dispersal mechanism, although some genera have other dispersal strategies [141]. The zoochorous mode of dispersal is reported in Dacrycarpus, Halocarpus, Dacrydium, Microcachrys, Afrocarpus, Nageia¸ Podocarpus, Lepidothamnus, Phyllocladus, Parasitaxus, Manoao, Sundacarpus, Falcatifolium, Retrophyllum, Prumnopitys and Pectinopitys [88,134]. Klaus and Matzke [10] reported that 11 genera of Podocarpaceae show endozoochory, two (Prumnopitys and Afrocarpus) epizoochory and seven genera are not ornithochorous. Barochory is present in Pherosphaera and Saxegothaea. Hydrochory and zoochory are reported in Retrophyllum comptonii, R. minor and Lagarostrobos [109].
Leslie et al. [96] reported that cone morphology and seed size are co-evolved in a correlated pattern in animal-dispersed conifers and animal-dispersed species have a relatively larger seed size to attract animals. Similarly, climate change (higher temperatures or water stress in drier conditions) can affect the evolution of cone shape. Interpreting the cone morphology and animal dispersal in Podocarpaceae is difficult because animal-dispersed seeds (fleshy cones) evolved many times in the deep past (from the Cretaceous or even earlier, based on ancestral reconstruction) [88,96,134]. Podocarpus can be interpreted as zoochorous and mainly bird-dispersed due to their colorful fleshy receptacle and epimatium. Bird and bat dispersal have been reported from South African podocarps [142]. The Emu (Dromaius novaehollandiae) is a large bird with a wide distribution range in Australia and it is the main disperser of Podocarpus drouynianus in southwestern Australia, keeping the seeds for up to 50 h in the digestive tract and dispersing them several kilometers [143].

4.7. Ecology of Podocarpaceae

The major Southern Hemisphere conifer family Podocarpaceae is different in morphology, functional physiology, and ecology from the Northern Hemisphere’s major conifer family Pinaceae. Pinaceae are successful in Northern Hemisphere forests, where angiosperms are outcompeted during freezing temperatures, and also occur in low-rainfall areas. Podocarp species are more abundant and compete more successfully with broadleaf angiosperms in the tropical montane forest through multiple morphological and anatomical adaptations but in most cases avoid low-rainfall areas [144]. Ecologically, podocarps have a highly conserved association with the conifer families Araucariaceae and Cupressaceae and with the angiosperm families Nothofagaceae, Winteraceae and Cunoniaceae [9,136]. However, ecological data are lacking for most of the species in these families [4].
Podocarps are unable to bear extreme cold temperate but can tolerate moderate frosts [128] and some exist as alpine shrubs in relatively cold climates (e.g., alpine Tasmania) where permanent snow is uncommon (Figure 4). They possess broad to scale leaves, phylloclades and fleshy cones and they are adapted to a range of conditions from alpine to lowland, understory environments beneath a dense canopy, semi-aquatic (Retrophyllum minus), drought-and fire-prone conditions (Podocarpus drouynianus). The only parasitic gymnosperm (Parasitaxus usta) grows on the roots of another podocarp species (Falcatifolium taxoides). The occurrence of extant species of Podocarpaceae in angiosperm-dominated humid forests is of great interest to ecologists and paleontologists. The Podocarpaceae have preferred wet climates throughout their history [77] and nutrients are a stronger limiting factor for their distribution than the temperature [145], with Coomes and Bellingham [128] reporting that within temperate and tropical rainforests with few exceptions, podocarps are well adapted to nutrient-poor soils.
Coomes and Bellingham [128] evaluated the ecological similarities and differences of temperate and tropical podocarps. They concluded that angiosperm diversification and expansion during the Late Cretaceous was responsible for driving conifers from the lowland tropics and mesic temperate regions due to inferior reproductive competitiveness. However, Bond [146] and Midgley and Bond [147] challenged this view and hypothesized that the physiological traits of conifers (slow seedling establishment and later growth) put them at a disadvantage in competitive regeneration in changing climates (increasing cold and droughts) and habitats (nutrient-poor soil, poorly drained soil, and low light). Podocarps are predominantly slow-growing with low photosynthetic capacity per unit leaf mass and per unit leaf area compared with angiosperms with the same leaf are [128]. The studies that evaluated the growth of podocarps in different habitats lead to the conclusion that podocarp growth is slow compared to other conifers and to angiosperms (e.g., in lowland cool temperate forest, the growth rate is half that of angiosperms [148], and in subalpine shrublands, podocarps grow more slowly than several angiosperm species [149]. In the nutrient-rich soil of southern New Zealand, even tree ferns grow faster than podocarps [150,151].
Brodribb [144] argues that drought is one of the major agents that prevents podocarp success at high altitudes in the Southern Hemisphere. The Late Cenozoic was a major drying period in the temperate region and resulted in the contraction and extinction of Australian and other southern podocarps [152]. The cool and wet conditions (on the continental margins of Gondwana) necessary for the diversification of the Podocarpaceae favor the theory of the drought sensitivity of Podocarps [135,153]. High wood density (that lowers hydraulic efficiency) and leaf sclereids (that collapse under water tension, which results in a loss of hydraulic and photosynthetic function in the leaf) are also present in the broad-leaved tropical podocarps and may be the cause of poorer drought performance and weak competition in drier forests but favor cool, shady, and wet regions of the Southern Hemisphere for podocarp persistence [135,144,154]. In contrast, the Pinaceae have tough and waxy needle-like leaves, lower wood density, fewer sclereids and a high photosynthetic rate, making them resistant and adaptable to drought and freezing temperatures that are common in parts of the Northern Hemisphere [144,155]. This also provides a possible insight into why podocarps are today almost absent from the Northern Hemisphere, despite their potential for long-distance dispersal. A few podocarps are tolerant of drier regions, e.g., Afrocarpus falcatus (southern Africa), Podocarpus drouynianus (Western Australia) and Halocarpus bidwillii, Phyllocladus alpinus and Podocarpus laetus (dry lowland forests of New Zealand) [134]. Podocarp morphology is unusual compared to other conifers, since, despite possessing thick tracheid walls that are vulnerable to embolism at low tensions [154]. (Pittermann et al., 2006b), they also have high hydraulic resistance across pit membranes [156] and that makes the implosion of sclereids in podocarp leaves under tension a real possibility [157].

4.8. IUCN Conservation Status and Threats

The analysis of the available data on the IUCN conservation status of Podocarpaceae shows that 8 species (1 variety) are Critically Endangered (CR), 27 species (2 varieties) are Endangered (EN), 23 species (one subspecies) are Vulnerable (VU), 3 species are Threatened (TH), 33 species (2 varieties) are Near Threatened (NT), 89 species (8 varieties and one subspecies) are Least Concern (LC), 10 species are Data Deficient (DD) and 7 species (2 hybrids) are Not Evaluated (NE) for IUCN status (Figure 5). The Critically Endangered (CR) species are Acmopyle sahniana (Fiji), Pherosphaera fitzgeraldii (Australia), Dacrydium guillauminii (New Caledonia), Podocarpus urbanii (Jamaica), P. costaricensis (Costa Rica and Panama), P. decumbens (New Caledonia), P. palawanensis (the Philippines), P. perrieri (Madagascar) and P. sellowii var. angustifolius (Brazil). The IUCN conservation status for tropical podocarps states that 5 species are considered critically endangered, 18 species are endangered, and 16 species are vulnerable (Cernusak et al., 2011). The New Caledonian podocarp species are facing serious conservation threats due to their restricted populations (Enright and Jaffré, 2011); i.e., Retrophyllum minus (endangered), Podocarpus decumbens (critically endangered) P. longefolaliatus (endangered), Dacrydium guillauminii (critically endangered), Acmopyle pancheri (nearly threatened) and Parasitaxus usta (vulnerable).
Deforestation associated with mining, expansion of tropical agricultural activities and other anthropogenic activities poses a serious threat to tropical podocarps [158]. Deforestation and climate change are also posing a serious threat to montane endemic podocarps [159]. Similarly, more extreme dry seasons are also damaging for tropical podocarps because they are drought and fire intolerant [158]. Wildfire is posing a huge threat to Australian podocarps (Figure 6) and in some areas, the podocarp population has been driven to extinction by these fires [160]. The harvest of podocarp timber has been an important industry, but their slow growth makes it detrimental and unsustainable for the species involved [161]. Mill [162] reported habitat loss, climate change and deforestation as major threats causing the extinction of Podocarpus species. Failure of regeneration and aging of the current populations are two major threats for at least some podocarp species [128,163,164].

4.9. Current Gaps and Future Perspectives

Some clear gaps still exist that need to be filled in order for us to gain a better understanding of the Podocarpaceae and include some of the following aspects:
  • Descriptions and taxonomic treatments of several species from less explored/remote areas such as Papua New Guinea, Malaysia, Indonesia, and New Caledonia are based only on collections of one or a few specimens. Additionally, some of these areas are not well explored and may contain undescribed species.
  • Field-and laboratory-based studies on pollination biology, the reproductive cycle and anatomical structures are not well developed for most podocarps and require further detailed evaluation.
  • Extensive research is required to understand why Podocarpaceae have such remarkable seed cone and leaf morphology.
  • Very few studies report the dispersal biology of podocarp seeds and comprehensive assessments are required to understand the dispersal biology and ecology of podocarps.
  • Despite the several high-quality publications on the leaf cuticle morphology of various genera, a good quality publication is necessary that describes the taxonomic and phylogenetic authenticity of these foliar cuticular diagnostic characters. Similarly, studies are required to assess the infraspecific variation in the leaf morphology for different populations.
  • Phylogenomic and population-based studies are available only for a few Podocarpus species (P. matudae, P. nubigenus, P. parlatorei, P. salignus, P. latifolius, P. guatemalensis and P. oleifolius), and with fairly limited geographic scope (the Americas). With the availability of modern NGS techniques and bioinformatic tools, more comprehensive studies are required to unveil their phylogeny, historical biogeography, speciation, and population history.
  • Only a few studies are available on the historical biogeography of Podocarpaceae and the discovery of new podocarp fossils from the Early Permian (Paleozoic) of Jordan [86,87] questions the Gondwanan origin of the Podocarpaceae. The inclusion of well-placed podocarp fossils will help in better understanding the reconstruction of historical biogeography.
  • Comparative studies of the three Southern Hemisphere conifer families (Araucariaceae, Cupressaceae and Podocarpaceae) to evaluate the impact of these families on the habitats they occupy and their relationships with the rest of the Southern Hemisphere biota.
  • Evolution of photosynthetic units in these three families in response to the closed forests that predated the rise to dominance of the angiosperms and angiosperm-dominated rainforests and then the major aridification of the Southern Hemisphere.
  • A better understanding of the response of podocarp foliage to drought stress and the adaptations that have evolved to deal with the constraint of most podocarps in having only a single vein per leaf is required to better understand the distribution and ecology of the family.
  • Use of species distribution modelling to predict the possible ecological niche and the effect of climate change on species range dynamic.
  • A better understanding of the evolutionary history and biology, ecology and life history are important in conservation efforts, given that so many species are threatened.

5. Conclusions

The current study provides a comprehensive overview on the systematics, diversity, hotspots, evolutionary adaptations, and conservation status of podocarps. Podocarps are morphologically more diverse compared to other conifer families and the updated phylogeny based on more extensive macrofossil records broadens our understanding of the evolutionary history of Podocarpaceae. Most podocarp genera currently exhibit low species richness and high endemism and often have disjunct distributions. Today, the Malesian region is the diversity hotspot for living podocarp taxa. However, the fossil record demonstrates wider distributions in the past. Podocarpus, Dacrydium and Dacrycarpus are the most dominant genera (approximately 75% of living podocarps) and have acquired particular morpho-anatomical adaptations that help them to survive in tropical forests. Podocarps demonstrate a remarkable seed cone and leaf diversity compared with other conifers. The genera with fleshy seed cones predominantly rely on bird dispersal. Podocarps are facing serious threats from deforestation, climate change, drought and wildfire, and the need for further targeted research is urgent. Among the conifers, podocarps are less well known and receive less attention than their counterparts that dominate the Northern Hemisphere, despite their remarkable morphological diversity and long evolutionary history.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants12051171/s1. Figure S1. Phyllocladus aspleniifolius (with phylloclades) found in rainforest Tasmania. Figure S2. Leaf dimorphism in Dacrycarpus dacrydioides. Table S1. Fossil taxa used for calibration of the phylogeny [165,166].

Author Contributions

Conceptualization, R.K. and R.S.H.; methodology, E.B. and R.K.; software, E.B. and R.K.; validation, R.K., E.B. and R.S.H.; formal analysis, R.K., E.B. and R.S.H.; writing—original draft preparation, R.K.; writing—review and editing, E.B., J.L. and R.S.H.; supervision, R.S.H. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Key Research Program of Frontier Sciences, CAS (ZDBS-LY-7001), National Natural Science Foundation of China (41971071, 42211540718), CAS “Light of West China” Program, and Top-notch Young Talents Project of Yunnan Provincial “Ten Thousand Talents Program” (YNWR-QNBJ-2018-146).

Data Availability Statement

Data available in article supplementary material. Additional supporting information may be found in the online version of the article at the publisher’s website.

Acknowledgments

We acknowledge Adelaide Microscopy, University of Adelaide, Australian National Botanic Gardens, Canberra, Mount Lofty Botanical Garden, SA and The Tasmanian Arboretum, Devonport, National Natural Science Foundation of China.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Yang, Y.; Ferguson, D.K.; Liu, B.; Mao, K.S.; Gao, L.M.; Zhang, S.Z.; Wan, T.; Rushforth, K.; Zhang, Z.X. Recent advances on phylogenomics of gymnosperms and an updated classification. Plant Divers. 2022, 44, 340–350. [Google Scholar] [CrossRef] [PubMed]
  2. Owens, J.N.; Takaso, T.; Runions, C.J. Pollination in conifers. Trends Plant Sci. 1998, 3, 479–485. [Google Scholar] [CrossRef]
  3. Conway, S. Beyond pine cones: An introduction to gymnosperms. Arnoldia 2013, 70, 2–14. [Google Scholar]
  4. Farjon, A. The Kew review: Conifers of the world. Kew Bull. 2018, 73, 1–16. [Google Scholar] [CrossRef] [Green Version]
  5. Leslie, A.B.; Beaulieu, J.M.; Rai, H.S.; Crane, P.R.; Donoghue, M.J.; Mathews, S. Hemisphere-scale differences in conifer evolutionary dynamics. Proc. Natl. Acad. Sci. USA 2012, 109, 16217–16221. [Google Scholar] [CrossRef] [Green Version]
  6. Ran, J.-H.; Gao, H.; Wang, X.-Q. Fast evolution of the retroprocessed mitochondrial rps3 gene in Conifer II and further evidence for the phylogeny of gymnosperms. Mol. Phylogenetics Evol. 2010, 54, 136–149. [Google Scholar] [CrossRef]
  7. Kelch, D.G. Phylogeny of Podocarpaceae: Comparison of evidence from morphology and 18S rDNA. Am. J. Bot. 1998, 85, 986–996. [Google Scholar] [CrossRef]
  8. Biffin, E.; Brodribb, T.J.; Hill, R.S.; Thomas, P.; Lowe, A.J. Leaf evolution in Southern Hemisphere conifers tracks the angiosperm ecological radiation. Proc. R. Soc. B Biol. Sci. 2012, 279, 341–348. [Google Scholar] [CrossRef]
  9. Brodribb, T.; Hill, R.S. The rise and fall of the Podocarpaceae in Australia—A physiological explanation. In The Evolution of Plant Physiology; Elsevier: Amsterdam, The Netherlands, 2004; pp. 381–399. [Google Scholar]
  10. Klaus, K.V.; Matzke, N.J. Statistical comparison of trait-dependent biogeographical models indicates that Podocarpaceae dispersal is influenced by both seed cone traits and geographical distance. Syst. Biol. 2020, 69, 61–75. [Google Scholar] [CrossRef]
  11. Lu, Y.; Ran, J.-H.; Guo, D.-M.; Yang, Z.-Y.; Wang, X.-Q. Phylogeny and divergence times of gymnosperms inferred from single-copy nuclear genes. PLoS ONE 2014, 9, e107679. [Google Scholar] [CrossRef]
  12. Leslie, A.B.; Beaulieu, J.; Holman, G.; Campbell, C.S.; Mei, W.; Raubeson, L.R.; Mathews, S. An overview of extant conifer evolution from the perspective of the fossil record. Am. J. Bot. 2018, 105, 1531–1544. [Google Scholar] [CrossRef]
  13. Chen, L.; Jin, W.T.; Liu, X.Q.; Wang, X.Q. New insights into the phylogeny and evolution of Podocarpaceae inferred from transcriptomic data. Mol. Phylogenetics Evol. 2022, 166, 107341. [Google Scholar] [CrossRef]
  14. Kelch, D.G. Phylogenetic assessment of the monotypic genera Sundacarpus and Manoao (Coniferales: Podocarpaceae) utilising evidence from 18S rDNA sequences. Aust. Syst. Bot. 2002, 15, 29–35. [Google Scholar] [CrossRef]
  15. Miller, M.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 11572–11578. [Google Scholar] [CrossRef] [Green Version]
  16. Drummond, A.J.; Ho, S.Y.W.; Phillips, M.J.; Rambaut, A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006, 4, e88. [Google Scholar] [CrossRef]
  17. Gavryushkina, A.; Welch, D.; Stadler, T.; Drummond, A.J. Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput. Biol. 2014, 10, e1003919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  18. Heath, T.A.; Huelsenbeck, J.P.; Stadler, T. The fossilized birth–death process for coherent calibration of divergence-time estimates. Proc. Natl. Acad. Sci. USA 2014, 111, E2957–E2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  19. Earle, C.J. The Gymnosperm Database. 2022. Available online: https://www.conifers.org/ (accessed on 20 March 2022).
  20. GBIF. GBIF: The Global Biodiversity Information Facility. 2022. Available online: https://www.gbif.org/ (accessed on 22 September 2022).
  21. Plants of the World Online. 2021. Available online: https://powo.science.kew.org/ (accessed on 10 May 2021).
  22. AVH Australasian Virtual Herbarium, Council of Heads of Australasian Herbaria. 2022. Available online: https://avh.chah.org.au/ (accessed on 14 July 2022).
  23. Flora of China. 2021. Available online: http://www.efloras.org/flora_page.aspx?flora_id=2 (accessed on 4 June 2021).
  24. McCune, B.; Mefford, M. Multivariate Analysis on the PC-ORD System, Version 4; MjM Software Design: Gleneden Beach, OR, USA, 1999.
  25. Alroy, J. Fossilworks: Gateway to the Paleobiology Database. 2022. Available online: http://www.fossilworks.org/ (accessed on 24 April 2022).
  26. Mill, R.R. Towards a biogeography of the Podocarpaceae. Acta Hortic. 2003, 615, 137–147. [Google Scholar]
  27. Florin, R. Die heutige und fruhere Verbreitung der Koniferengattung Acmopyle Pilger. Sven. Bot. Föreningen 1940, 34, 117–140. [Google Scholar]
  28. Pole, M. Eocene vegetation from Hasties, north-eastern Tasmania. Aust. Syst. Bot. 1992, 5, 431–475. [Google Scholar] [CrossRef]
  29. Hill, R.; Carpenter, R. Evolution of Acmopyle and Dacrycarpus (Podocarpaceae) foliage as inferred from macrofossils in south-eastern Australia. Aust. Syst. Bot. 1991, 4, 449–479. [Google Scholar] [CrossRef]
  30. Pole, M. Miocene conifers from the Manuherikia group, New Zealand. J. R. Soc. N. Z. 1997, 27, 355–370. [Google Scholar] [CrossRef]
  31. Townrow, J.A. Notes on Tasmanian Pines. I-Some Lower Tertiary Podocarps. Pap. Proc. R. Soc. Tasman. 1965, 99, 87–108. [Google Scholar]
  32. Carpenter, R.; Pole, M. Eocene plant fossils from the Lefroy and Cowan paleodrainages, Western Australia. Aust. Syst. Bot. 1995, 8, 1107–1154. [Google Scholar] [CrossRef]
  33. Wells, P.; Hill, R. Fossil imbricate-leaved Podocarpaceae from Tertiary sediments in Tasmania. Aust. Syst. Bot. 1989, 2, 387–423. [Google Scholar] [CrossRef]
  34. Jordan, G.J. Extinct conifers and conifer diversity in the Early Pleistocene of western Tasmania. Rev. Palaeobot. Palynol. 1995, 84, 375–387. [Google Scholar] [CrossRef]
  35. Wilf, P. Rainforest conifers of Eocene Patagonia: Attached cones and foliage of the extant Southeast Asian and Australasian genus Dacrycarpus (Podocarpaceae). Am. J. Bot. 2012, 99, 562–584. [Google Scholar] [CrossRef]
  36. Wu, X.K.; Zavialova, N.E.; Kodrul, T.M.; Liu, X.Y.; Gordenko, N.V.; Maslova, N.P.; Jin, J.H. Northern Hemisphere megafossil of Dacrycarpus (Podocarpaceae) from the Miocene of South China and its evolutionary and paleoecological implications. J. Syst. Evol. 2021, 59, 352–374. [Google Scholar] [CrossRef]
  37. Hill, R.S.; Whang, S.S. Dacrycarpus (Podocarpaceae) macrofossils from Miocene sediments at Elands, eastern Australia. Aust. Syst. Bot. 2000, 13, 395–408. [Google Scholar] [CrossRef]
  38. Carpenter, R.J. Palaeovegetation and Environment at Cethana, Tasmania. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 1991. Available online: https://eprints.utas.edu.au/18972/ (accessed on 15 April 2021).
  39. Jordan, G.J.; Carpenter, R.J.; Bannister, J.M.; Lee, D.E.; Mildenhall, D.C.; Hill, R.S. High conifer diversity in Oligo-Miocene New Zealand. Aust. Syst. Bot. 2011, 24, 121–136. [Google Scholar] [CrossRef]
  40. Lewis, E.K.; Drinnan, A.N. The Miocene conifer flora of Balcombe Bay, Victoria, Australia. Aust. Syst. Bot. 2013, 26, 145–155. [Google Scholar] [CrossRef]
  41. Hill, R.S.; Merrifield, H.E. An early tertiary macroflora from West Dale, southwestern Australia. Alcheringa 1993, 17, 285–326. [Google Scholar] [CrossRef]
  42. Greenwood, D.R. Early Tertiary Podocarpaceae-megafossils from the Eocene Anglesea locality, Victoria, Australia. Aust. J. Bot. 1987, 35, 111–133. [Google Scholar] [CrossRef]
  43. Mill, R.R.; Hill, R.S. Validations of the names of seven Podocarpaceae macrofossils. Taxon 2004, 53, 1043–1046. [Google Scholar] [CrossRef] [Green Version]
  44. Pole, M.S.; Hill, R.S.; Green, N.; Macphail, M.K. The Oligocene Berwick Quarry flora—Rainforest in a drying environment. Aust. Syst. Bot. 1993, 6, 399–427. [Google Scholar] [CrossRef]
  45. Carpenter, R.; Hill, R.; Jordan, G. Cenozoic vegetation in Tasmania: Macrof ossil evidence. In History of the Australian Vegetation: Cretaceous to Recent; Cambridge University Press: Cambridge, UK, 1994; pp. 276–298. [Google Scholar]
  46. Hill, R.S.; Christophel, D.C. Two new species of Dacrydium (Podocarpaceae) based on vegetative fossils from Middle Eocene sediments at Nelly Creek, South Australia. Aust. Syst. Bot. 2001, 14, 193–205. [Google Scholar] [CrossRef]
  47. Cookson, I.C.; Pike, K.M. A contribution to the Tertiary occurrence of the genus Dacrydium in the Australian region. Aust. J. Bot. 1953, 1, 474–484. [Google Scholar] [CrossRef]
  48. Blackburn, D. Palaeobotany of the Yallourn and Morwell Coal Seams; Palaeobotanical Project, Report; State Electricity Commission Victoria: Victoria, Australia, 1985; p. 108. [Google Scholar]
  49. Hill, R.S.; Scriven, L.J. Falcatifolium (Podocarpaceae) macrofossils from Paleogene sediments in south-eastern Australia: A reassessment. Aust. Syst. Bot. 1999, 11, 711–720. [Google Scholar] [CrossRef]
  50. Hill, R.; Macphail, M. A Fossil Flora from Rafted Plio-Pleistocene Mudstones at Regatta Point, Tasmania. Aust. J. Bot. 1985, 33, 497–517. [Google Scholar] [CrossRef]
  51. Peters, M.D. A Taxonomic Analysis of a Middle Cretaceous Megafossil Plant Assemblage from Queensland, Australia. Ph.D. Thesis, University of Adelaide, Adelaide, Australia, 1985. [Google Scholar]
  52. Carpenter, R.J.; Jordan, G.J.; Mildenhall, D.C.; Lee, D.E. Leaf fossils of the ancient Tasmanian relict Microcachrys (Podocarpaceae) from New Zealand. Am. J. Bot. 2011, 98, 1164–1172. [Google Scholar] [CrossRef]
  53. Jin, J.; Qiu, J.; Zhu, Y.; Kodrul, T.M. First fossil record of the genus Nageia (Podocarpaceae) in south China and its phytogeographic implications. Plant Syst. Evol. 2010, 285, 159–163. [Google Scholar] [CrossRef]
  54. Liu, X.Y.; Gao, Q.; Jin, J.H. Late Eocene leaves of Nageia (section Dammaroideae) from Maoming Basin, South China and their implications on phytogeography. J. Syst. Evol. 2015, 53, 297–307. [Google Scholar] [CrossRef]
  55. Kimura, T.; Ohana, T.; Mimoto, K. Discovery of a podocarpaceous plant from the Lower Cretaceous of Kochi Prefecture, in the Outer Zone of Southwest Japan. Proc. Jpn. Acad. Ser. B. 1988, 64, 213–216. [Google Scholar] [CrossRef] [Green Version]
  56. Krassilov, V. New coniferales from Lower Cretaceous of Primorye. Bot. J. 1965, 50, 1450–1455. [Google Scholar]
  57. Hill, R.S. New species of Phyllocladus (Podocarpaceae) macrofossils from southeastern Australia. Alcheringa 1989, 13, 193–208. [Google Scholar] [CrossRef]
  58. Ettingshausen, C. V Beitrage zur Kenntniss der Tertiarflora australiens. Denkschriften der Kaiserlichen Akademie der Wissenschaften. Math.-Nat. Cl. 1886, 53, 81–142. [Google Scholar]
  59. Von Ettingshausen, C. Contributions to the Tertiary flora of Australia. Mem. Geol. Surv. New South Wales Palaeontol. 1888, 2, 1–189. [Google Scholar] [CrossRef]
  60. Cookson, I.C.; Pike, K.M. The fossil occurrence of Phyllocladus and two other podocarpaceous types in Australia. Aust. J. Bot. 1954, 2, 60–68. [Google Scholar] [CrossRef]
  61. Deane, H. Fossil leaves from the open cut, state brown coal mine, Morwell. Rec. Geol. Surv. Vic. 1925, 4, 492–498. [Google Scholar]
  62. Pole, M.; Moore, P.R. A late Miocene leaf assemblage from Coromandel Peninsula, New Zealand, and its climatic implications. Alcheringa 2011, 35, 103–121. [Google Scholar] [CrossRef]
  63. McLoughlin, S.; Hill, R. The succession of Western Australian Phanerozoic Terrestrial Floras. In Gondwanan Heritage: Past, Present and Future of the Western Australian Biota; Surrey Beatty & Sons: Chipping Norton, Australia, 1996; pp. 61–80. [Google Scholar]
  64. McLoughlin, S.; McNamara, K.; George, A.S. Ancient Floras of Western Australia; Western Australian Museum: Perth, Australia, 2001. [Google Scholar]
  65. Wilf, P.; Donovan, M.P.; Cúneo, N.R.; Gandolfo, M.A. The fossil flip-leaves (Retrophyllum, Podocarpaceae) of southern South America. Am. J. Bot. 2017, 104, 1344–1369. [Google Scholar] [CrossRef] [Green Version]
  66. Berry, E.W. The flora of the Concepción-Arauco coal measures of Chile. Johns Hopkins Univ. Stud. Geol. 1922, 4, 73–143. [Google Scholar]
  67. Awasthi, N.; Mehrotra, R.C.; Lakhanpal, R. Occurrence of Podocarpus and Mesua in the Oligocene sediments of Makum Coalfiedl, Assam, India. Geophytology 1992, 22, 193–198. [Google Scholar]
  68. Zhou, Z.; Li, H. Some Late Cretaceous plants from King George Island, Antarctica. Stratigraphy and palaeontology of Fildes Peninsula, King George Island, Antarctica. State Antarctic Committee. Monograph 1994, 3, 85–96. [Google Scholar]
  69. Chen, H.; Tang, D.-L.; Zhang, Y.; An, P.-C.; Yan, X.-Y.; Ding, S.-T.; Wu, J.-Y. Fossil Podocarpus (Podocarpaceae) from the lower Pliocene of Tengchong, Yunnan Province, China and its biogeographic significance. Hist. Biol. 2019, 33, 1352–1361. [Google Scholar] [CrossRef]
  70. Wu, J.-Y.; Chen, H.; Ruan, S.-C.; Yang, M.; Mo, L.-B.; Ji, B.-Q.; Zhang, J.-L.; Ding, S.-T. Fossil leaves of Podocarpus subgenus Foliolatus (Podocarpaceae) from the Pliocene of southwestern China and biogeographic history of Podocarpus. Rev. Palaeobot. Palynol. 2021, 287, 104380. [Google Scholar] [CrossRef]
  71. Pole, M. Miocene broad-leaved Podocarpus from Foulden Hills, New Zealand. Alcheringa 1993, 17, 173–177. [Google Scholar] [CrossRef]
  72. Pole, M. Paleocene plant macrofossils from Kakahu, South Canterbury, New Zealand. J. R. Soc. N. Z. 1997, 27, 371–400. [Google Scholar] [CrossRef] [Green Version]
  73. He, W.L.; Wang, X.J. A Miocene flora from the Toupi Formation in Jiangxi Province, southeastern China. Palaeoworld 2021, 30, 757–769. [Google Scholar] [CrossRef]
  74. Wilf, P. Eocene “Chusquea” fossil from Patagonia is a conifer, not a bamboo. PhytoKeys 2020, 139, 77. [Google Scholar] [CrossRef] [Green Version]
  75. Page, C.N. New and maintained genera in the taxonomic alliance of Prumnopitys s. l. (Podocarpaceae), and circumscription of a new genus: Pectinopitys. N. Z. J. Bot. 2019, 57, 137–153. [Google Scholar] [CrossRef]
  76. Wu, X.; Liu, X.; Kodrul, T.; Quan, C.; Jin, J. Dacrycarpus pattern shedding new light on the early floristic exchange between Asia and Australia. Natl. Sci. Rev. 2019, 6, 1086–1090. [Google Scholar] [CrossRef] [Green Version]
  77. Morley, R.J. Dispersal and paleoecology of tropical podocarps. In Ecology of the Podocarpaceae in Tropical Forests; Turner, B.L., Cemusak, L., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 21–41. [Google Scholar] [CrossRef]
  78. Krassilov, V. Podocarpus from the Upper Cretaceous of eastern Asia and its bearing on the theory of conifer evolution. Palaeontology 1974, 17, 365–370. [Google Scholar]
  79. Dutra, T.L.; Batten, D.J. Upper Cretaceous floras of King George Island, West Antarctica, and their palaeoenvironmental and phytogeographic implications. Cretac. Res. 2000, 21, 181–209. [Google Scholar] [CrossRef]
  80. Berry, E.W. The American species referred to Thinnfeldia. Bull. Torrey Bot. Club 1903, 30, 438–445. [Google Scholar] [CrossRef]
  81. Nosova, N.; Golovneva, L. The Mesozoic genus Protophyllocladus Berry (Pinopsida). Rev. Palaeobot. Palynol. 2014, 210, 77–88. [Google Scholar] [CrossRef]
  82. Dörken, V.M.; Hill, R.S.; Jordan, G.J.; Parsons, R.F. Evolutionary and ecological significance of photosynthetic organs in Phyllocladus (Podocarpaceae). Bot. J. Linn. Soc. 2021, 196, 343–363. [Google Scholar] [CrossRef]
  83. Wagstaff, S.J. Evolution and biogeography of the austral genus Phyllocladus (Podocarpaceae). J. Biogeogr. 2004, 31, 1569–1577. [Google Scholar] [CrossRef]
  84. Wang, X.-Q.; Ran, J.-H. Evolution and biogeography of gymnosperms. Mol. Phylogenetics Evol. 2014, 75, 24–40. [Google Scholar] [CrossRef] [PubMed]
  85. Biffin, E.; Conran, J.G.; Lowe, A.J. Podocarp evolution: A molecular phylogenetic perspective. In Ecology of the Podocarpaceae in Tropical Forests; Turner, B.L., Cernusak, L.A., Eds.; Smithsonian Contributions to Botany, Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 1–19. [Google Scholar]
  86. Pennisi, E. Fossils push back origin of key plant groups millions of years. Am. Assoc. Adv. Sci. 2018, 362, 1340. [Google Scholar] [CrossRef] [PubMed]
  87. Blomenkemper, P.; Kerp, H.; Hamad, A.A.; DiMichele, W.A.; Bomfleur, B. A hidden cradle of plant evolution in Permian tropical lowlands. Science 2018, 362, 1414–1416. [Google Scholar] [CrossRef] [Green Version]
  88. Khan, R.; Hill, R.S.; Dörken, V.M.; Biffin, E. Detailed seed cone morpho-anatomy of the Prumnopityoid clade: An insight into the origin and evolution of Podocarpaceae seed cones. Ann. Bot. 2022, 130, 637–655. [Google Scholar] [CrossRef]
  89. Keng, H. The phylloclade of Phyllocladus and its possible bearing on the branch systems of progymnosperms. Ann. Bot. 1974, 38, 757–764. [Google Scholar] [CrossRef]
  90. Hart, J.A. A cladistic analysis of conifers: Preliminary results. J. Arnold Arbor. 1987, 68, 269–307. [Google Scholar] [CrossRef]
  91. Kelch, D.G. The phylogeny of the Podocarpaceae based on morphological evidence. Syst. Bot. 1997, 22, 113–131. [Google Scholar] [CrossRef]
  92. Knopf, P.; Schulz, C.; Little, D.P.; Stützel, T.; Stevenson, D.W. Relationships within Podocarpaceae based on DNA sequence, anatomical, morphological, and biogeographical data. Cladistics 2012, 28, 271–299. [Google Scholar] [CrossRef] [PubMed]
  93. Conran, J.G.; Wood, G.M.; Martin, P.G.; Dowd, J.M.; Quinn, C.J.; Gadek, P.A.; Price, R.A. Generic relationships within and between the gymnosperm families Podocarpaceae and Phyllocladaceae based on an analysis of the chloroplast gene rbcL. Aust. J. Bot. 2000, 48, 715–724. [Google Scholar] [CrossRef]
  94. Sinclair, W.; Mill, R.; Gardner, M.; Woltz, P.; Jaffré, T.; Preston, J.; Hollingsworth, M.; Ponge, A.; Möller, M. Evolutionary relationships of the New Caledonian heterotrophic conifer, Parasitaxus usta (Podocarpaceae), inferred from chloroplast trn LF intron/spacer and nuclear rDNA ITS2 sequences. Plant Syst. Evol. 2002, 233, 79–104. [Google Scholar] [CrossRef]
  95. Little, D.P.; Knopf, P.; Schulz, C. DNA barcode identification of Podocarpaceae—The second largest conifer family. PLoS ONE 2013, 8, e81008. [Google Scholar] [CrossRef] [Green Version]
  96. Leslie, A.B.; Beaulieu, J.M.; Mathews, S. Variation in seed size is structured by dispersal syndrome and cone morphology in conifers and other nonflowering seed plants. New Phytol. 2017, 216, 429–437. [Google Scholar] [CrossRef] [Green Version]
  97. Quiroga, M.P.; Mathiasen, P.; Iglesias, A.; Mill, R.R.; Premoli, A.C. Molecular and fossil evidence disentangle the biogeographical history of Podocarpus, a key genus in plant geography. J. Biogeogr. 2016, 43, 372–383. [Google Scholar] [CrossRef]
  98. Endlicher, S.F.L. Synopsis Coniferarum; Scheittin et Zollikofer: Switzerland, 1847. [Google Scholar]
  99. Pilger, R. Podocarpaceae. In Die natürlichen Pflanzenfamilien, 2nd ed.; 13 Band, Gymnospermae; Engler, A., Ed.; Wilhelm Engelmann: Leipzig, Germany, 1925; pp. 211–249. [Google Scholar]
  100. Buchholz, J.T.; Gray, N.E. A taxonomic revision of Podocarpus: I. the sections of the genus and their subdivisons with special reference to leaf anatomy. J. Arnold Arbor. 1948, 29, 49–63. [Google Scholar] [CrossRef]
  101. Buchholz, J.T.; Gray, N.E. A taxonomic revision of Podocarpus: Ii. The American species of Podocarpus: Section Stachycarpus. J. Arnold Arbor. 1948, 29, 64–76. [Google Scholar] [CrossRef]
  102. Keng, H. On the family Phyllocladaceae. Taiwania 1973, 18, 142–145. [Google Scholar]
  103. Gaussen, H. Les gymnospermes actuelles et fossiles Podocarpaces. Fasc. 12. Trav. Lab. Toulouse 1974, 12, 1–143. [Google Scholar]
  104. De Laubenfels, D.J. A taxonomic revision of the genus Podocarpus. Blumea 1985, 30, 251–278. [Google Scholar]
  105. Quinn, C.J. The phyllocladaceae Keng—A critique. Taxon 1987, 36, 559–565. [Google Scholar] [CrossRef]
  106. Page, C. New and maintained genera in the conifer families Podocarpaceae and Pinaceae. Notes R. Bot. Gard. Edinb. 1988, 45, 377–395. [Google Scholar]
  107. Page, C. Gymnosperms: Coniferophytina (conifers and ginkgoids). Fam. Genera Vasc. Plants 1990, 1, 279–361. [Google Scholar]
  108. Dezhi, F. Nageia into a new family Nageiaceae F. Nageiaceae—A new Gymnosperm family. Acta Phytotaxon. Sin. 1992, 30, 515–528. [Google Scholar]
  109. Contreras, D.; Duijnstee, I.; Ranks, S.; Marshall, C.; Looy, C. Evolution of dispersal strategies in conifers: Functional divergence and convergence in the morphology of diaspores. Perspect. Plant Ecol. Evol. Syst. 2017, 4, 93–117. [Google Scholar] [CrossRef] [Green Version]
  110. Sudianto, E.; Wu, C.S.; Leonhard, L.; Martin, W.F.; Chaw, S.M. Enlarged and highly repetitive plastome of Lagarostrobos and plastid phylogenomics of Podocarpaceae. Mol. Phylogenetics Evol. 2019, 133, 24–32. [Google Scholar] [CrossRef]
  111. Gordon, G. The Pinetum: Being a Synopsis of All the Coniferous Plants at Present Known with Descriptions, History and Synonymes, and Comprising Nearly One Hundred New Kinds; Bohn: Vancouver, BC, Canada, 1858. [Google Scholar]
  112. Philippi, R. Zwei neue Gattungen der Taxineen aus Chile. Linnaea 1861, 30, 730–735. [Google Scholar]
  113. De Laubenfels, D.J. A revision of the Malesian and Pacific rainforest conifers, I. Podocarpaceae, in part. J. Arnold Arbor. 1969, 50, 315–369. [Google Scholar] [CrossRef]
  114. Quinn, C. Generic boundaries in the Podocarpaceae. Proc. Linn. Soc. NSW 1970, 94, 166–172. [Google Scholar]
  115. De Laubenfels, D. Gymnosperms. Flore de la Nouvelle Calédonie et Dépendances; Muséum National D’Histoire Naturelle: Paris, France, 1972; p. 4. [Google Scholar]
  116. Leistner, O.; Smith, G.; Glen, H. Podocarpaceae. Bothalia 1995, 25, 233–236. [Google Scholar] [CrossRef]
  117. Glen, H. Podocarpaceae. In Seed Plants of Southern Africa: Families and Genera; Leistner, S., Ed.; National Botanical Institute: Pretoria, South Africa, 2000; Volume 10, pp. 30–31. [Google Scholar]
  118. Barker, N.P.; Muller, E.; Mill, R. A yellowwood by any other name: Molecular systematics and the taxonomy of Podocarpus and the Podocarpaceae in southern Africa. S. Afr. J. Sci. 2004, 100, 629–632. [Google Scholar]
  119. Bobrov, A.V.C.; Melikian, A.P.; Yembaturova, E.Y. Seed morphology, anatomy and ultrastructure of Phyllocladus LC & A. Rich. ex Mirb. (Phyllocladaceae (Pilg.) Bessey) in connection with the generic system and phylogeny. Ann. Bot. 1999, 83, 601–618. [Google Scholar]
  120. Keng, H. The genus Phyllocladus (Phyllocladaceae). J. Arnold Arbor. 1978, 59, 249–273. [Google Scholar] [CrossRef]
  121. Chaw, S.M.; Sung, H.M.; Long, H.; Zharkikh, A.; Lie, W.-H. The phylogenetic positions of the conifer genera Amentotaxus, Phyllocladus, and Nageia inferred from 18S rRNA sequences. J. Mol. Evol. 1995, 41, 224–230. [Google Scholar] [CrossRef]
  122. Tomlinson, P.B.; Braggins, J.E.; Rattenbury, J.A. Contrasted pollen capture mechanisms in Phyllocladaceae and certain Podocarpaceae (Coniferales). Am. J. Bot. 1997, 84, 214–223. [Google Scholar] [CrossRef] [PubMed]
  123. Quinn, C.; Price, R.; Gadek, P. Familial concepts and relationships in the conifer based on rbcL and matK sequence comparisons. Kew Bull. 2002, 57, 513–531. [Google Scholar] [CrossRef] [Green Version]
  124. Rai, H.S.; Reeves, P.A.; Peakall, R.; Olmstead, R.G.; Graham, S.W. Inference of higher-order conifer relationships from a multi-locus plastid data set. Botany 2008, 86, 658–669. [Google Scholar] [CrossRef] [Green Version]
  125. Enright, N.J.; Jaffré, T. Ecology and distribution of the Malesian podocarps. In Ecology of the Podocarpaceae in Tropical Forests; Turner, B.L., Cernusak, L.A., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 57–77. [Google Scholar]
  126. Hill, R.S. Conifer origin, evolution and diversification in the Southern Hemisphere. In Ecology of the Southern Conifers; Melbourne University Press: Melbourne, Australia, 1995; pp. 10–29. [Google Scholar]
  127. Enright, N.J.; Hill, R.S. Ecology of the Southern Conifers; Melbourne University Press: Melbourne, Australia, 1995; p. 342. [Google Scholar]
  128. Coomes, D.A.; Bellingham, P.J. Temperate and Tropical Podocarps: How Ecologically Alike Are They? In Ecology of the Podocarpaceae in Tropical Forests; Turner, B.L.C., Lucas, A., Eds.; Smithsonian Contributions to Botany: Washington, DC, USA, 2011; pp. 119–140. [Google Scholar]
  129. Adie, H.; Lawes, M.J. Podocarps in Africa: Temperate zone relicts or rainforest survivors? Smithson. Contrib. Bot. 2011, 95, 79–100. [Google Scholar] [CrossRef] [Green Version]
  130. Hill, R.S.; Khan, R. Southern (Austral) Ecosystems in Encyclopedia of Reference Module in Life Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
  131. Nieto-Blázquez, M.E.; Peña-Castillo, L.; Roncal, J. Historical biogeography of Caribbean Podocarpus does not support the progression rule. J. Biogeogr. 2021, 48, 690–702. [Google Scholar] [CrossRef]
  132. Khan, R.; Hill, R.S. Reproductive and leaf morpho-anatomy of the Australian alpine podocarp and comparison with the Australis subclade. Bot. Lett. 2022, 169, 237–249. [Google Scholar] [CrossRef]
  133. Leslie, A.B. How many ways can you build a conifer cone? A commentary on ‘Origin and evolution of Podocarpaceae seed cones’. Ann. Bot. 2022, 130, i–iii. [Google Scholar] [CrossRef]
  134. Khan, R.; Hill, R.S. Morpho-anatomical affinities and evolutionary relationships of three paleoendemic podocarp genera based on seed cone traits. Ann. Bot. 2021, 128, 887–902. [Google Scholar] [CrossRef]
  135. Hill, R.S.; Brodribb, T. Turner Review No. 2-Southern conifers in time and space. Aust. J. Bot. 1999, 47, 639–696. [Google Scholar] [CrossRef]
  136. Khan, R. Towards the Systematics and Evolution of the Conifer Family Podocarpaceae; New Insights into the Key Aspects. Ph.D. Thesis, School of Biological Sciences, University of Adelaide, Adelaide, Australia, 2022; pp. 210–365. [Google Scholar]
  137. Tomlinson, P. Functional morphology of saccate pollen in conifers with special reference to Podocarpaceae. Int. J. Plant Sci. 1994, 155, 699–715. [Google Scholar] [CrossRef]
  138. Erdtman, G. Pollen and Spore Morphology-Plant Taxonomy: Gymnospermae, Bryophyta (Text): (An Introduction to Palynology. III); Almquist & Wiksell: New York, NY, USA, 1965. [Google Scholar]
  139. Pocknall, D.T. Pollen morphology of Phyllocladus LC et A. Rich. N. Z. J. Bot. 1981, 19, 259–266. [Google Scholar] [CrossRef]
  140. Woltz, P. Place des gymnospermes endémiques des Adnes méridionales dans la végétation du Chili. Lazaroa 1985, 8, 293–314. [Google Scholar]
  141. Nanami, S.; Kawaguchi, H.; Yamakura, T. Dioecy-induced spatial patterns of two codominant tree species, Podocarpus nagi and Neolitsea aciculata. J. Ecol. 1999, 87, 678–687. [Google Scholar] [CrossRef]
  142. Geldenhuys, C. Reproductive biology and population structures of Podocarpus falcatus and P. latifolius in southern Cape forests. Bot. J. Linn. Soc. 1993, 112, 59–74. [Google Scholar] [CrossRef]
  143. Davies, S.J.; Bamford, M. Ratites and Tinamous; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
  144. Brodribb, T.J. A functional analysis of podocarp ecology. Smithson. Contrib. Bot. 2011, 95, 165–173. [Google Scholar] [CrossRef]
  145. Kitayama, K.; Aiba, S.-i.; Ushio, M.; Seino, T.; Fujiki, Y. The ecology of podocarps in tropical montane forests of Borneo: Distribution, population dynamics, and soil nutrient acquisition. Smithson. Contrib. Bot. 2011, 95, 101–117. [Google Scholar] [CrossRef]
  146. Bond, W. The tortoise and the hare: Ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 1989, 36, 227–249. [Google Scholar] [CrossRef]
  147. Midgley, J.J.; Bond, W.J. Ecological aspects of the rise of angiosperms: A challenge to the reproductive superiority hypotheses. Biol. J. Linn. Soc. 1991, 44, 81–92. [Google Scholar] [CrossRef]
  148. Bentley, W. Influences of Soil Nutrients, Waterlogging, and Disturbance Factors on Forest Processes along a New Zealand Soil Chronosequence. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 2008. [Google Scholar]
  149. Wardle, P. Growth habits of New Zealand subalpine shrubs and trees. N. Z. J. Bot. 1963, 1, 18–47. [Google Scholar] [CrossRef] [Green Version]
  150. Gaxiola, A.; Burrows, L.E.; Coomes, D.A. Tree fern trunks facilitate seedling regeneration in a productive lowland temperate rain forest. Oecologia 2008, 155, 325–335. [Google Scholar] [CrossRef]
  151. Coomes, D.A.; Kunstler, G.; Canham, C.D.; Wright, E. A greater range of shade-tolerance niches in nutrient-rich forests: An explanation for positive richness—Productivity relationships? J. Ecol. 2009, 97, 705–717. [Google Scholar] [CrossRef]
  152. Kershaw, A.; Martin, H.; Mason, J.M. The Neogene: A period of transition. Hist. Aust. Veg. Cretac. Recent 1994, 1, 299–327. [Google Scholar]
  153. Hill, R.S.; Lewis, T.; Carpenter, R.J.; Whang, S.S. Agathis (Araucariaceae) macrofossils from Cainozoic sediments in south-eastern Australia. Aust. Syst. Bot. 2008, 21, 162–177. [Google Scholar] [CrossRef]
  154. Pittermann, J.; Sperry, J.S.; Hacke, U.G.; Wheeler, J.K.; Sikkema, E.H. Inter-tracheid pitting and the hydraulic efficiency of conifer wood: The role of tracheid allometry and cavitation protection. Am. J. Bot. 2006, 93, 1265–1273. [Google Scholar] [CrossRef] [Green Version]
  155. Lusk, C.H.; Kelly, C.K. Interspecific variation in seed size and safe sites in a temperate rain forest. New Phytol. 2003, 158, 535–541. [Google Scholar] [CrossRef] [Green Version]
  156. Pittermann, J.; Sperry, J.S.; Wheeler, J.K.; Hacke, U.G.; Sikkema, E.H. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell Environ. 2006, 29, 1618–1628. [Google Scholar] [CrossRef] [Green Version]
  157. Brodribb, T.J.; Pittermann, J.; Coomes, D.A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 2012, 173, 673–694. [Google Scholar] [CrossRef] [Green Version]
  158. Cernusak, L.A.; Adie, H.; Bellingham, P.J.; Biffin, E.; Brodribb, T.J.; Coomes, D.A.; Dalling, J.W.; Dickie, I.A.; Enright, N.J.; Kitayama, K. Podocarpaceae in tropical forests: A synthesis. Smithson. Contrib. Bot. 2011, 95, 189–195. [Google Scholar] [CrossRef] [Green Version]
  159. Jump, A.S.; Mátyás, C.; Peñuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 2009, 24, 694–701. [Google Scholar] [CrossRef] [Green Version]
  160. Gill, A.M. How Fires Affect Biodiversity. Biodiversity Series, 8, Footscray, Melbourne. 1996. Available online: https://www.cpbr.gov.au/fire_ecology/fire-and-biodiversity.html (accessed on 22 July 2021).
  161. Lawes, M.J.; Griffiths, M.E.; Boudreau, S. Colonial logging and recent subsistence harvesting affect the composition and physiognomy of a podocarp dominated Afrotemperate forest. For. Ecol. Manag. 2007, 247, 48–60. [Google Scholar] [CrossRef]
  162. Mill, R. A monographic revision of the genus Podocarpus (Podocarpaceae): I. Historical review. Edinb. J. Bot. 2014, 71, 309. [Google Scholar] [CrossRef]
  163. Holloway, J.T. An ecological classification of the forest types of the Westland podocarp region. N. Z. J. For. 1954, 7, 24–33. [Google Scholar]
  164. Wardle, P. The regeneration gap of New Zealand gymnosperms. N. Z. J. Bot. 1963, 1, 301–315. [Google Scholar] [CrossRef]
  165. Bodnar, J.; Escapa, I.H. Towards a whole plant reconstruction for Austrohamia (Cupressaceae): New fossil wood from the Lower Jurassic of Argentina. Rev. Palaeobot. Palynol. 2016, 234, 186–197. [Google Scholar]
  166. Axsmith, B.J.; Escapa, I.H.; Huber, P. An araucarian conifer bract-scale complex from the lower Jurassic of Massachusetts: Implications for estimating phylogenetic and stratigraphic congruence in the Araucariaceae. Palaeontol. Electron. 2008, 11, 9. [Google Scholar]
Figure 1. The phylogenetic relationships and divergence time of the 20 extant podocarp genera within Podocarpaceae. Blue node bars indicate the 95% highest posterior density divergence time estimates for the corresponding node. Branch lengths are proportional to time (Ma, millions of years).
Figure 1. The phylogenetic relationships and divergence time of the 20 extant podocarp genera within Podocarpaceae. Blue node bars indicate the 95% highest posterior density divergence time estimates for the corresponding node. Branch lengths are proportional to time (Ma, millions of years).
Plants 12 01171 g001
Figure 2. Diagram of two-way cluster analysis. The vertical matrix axis consists of more than 200 podocarp species coded by scientific name and the horizontal axis is the distributed countries (74 countries). The matrix was constructed depending on the presence (black) and absence (white). The species were grouped into five main clusters, I. New Caledonian group, II. New Zealand group and III. Malesian group, IV. Southeast Asian group and V. Podocarpian group.
Figure 2. Diagram of two-way cluster analysis. The vertical matrix axis consists of more than 200 podocarp species coded by scientific name and the horizontal axis is the distributed countries (74 countries). The matrix was constructed depending on the presence (black) and absence (white). The species were grouped into five main clusters, I. New Caledonian group, II. New Zealand group and III. Malesian group, IV. Southeast Asian group and V. Podocarpian group.
Plants 12 01171 g002
Figure 3. (A) Dacrycarpus dacrydioides (White pine, Kahikatea) tree in the rainforest of Wellington Kaitoke Regional Park, New Zealand. (B) Microcachrys tetragona (Strawberry pine) is a creeping shrub in the alpine region of cradle mountain summit, Tasmania.
Figure 3. (A) Dacrycarpus dacrydioides (White pine, Kahikatea) tree in the rainforest of Wellington Kaitoke Regional Park, New Zealand. (B) Microcachrys tetragona (Strawberry pine) is a creeping shrub in the alpine region of cradle mountain summit, Tasmania.
Plants 12 01171 g003
Figure 4. (A) Podocarpus lawrencei in the alpine region, Mount McKay Falls Creek, Australia. (B) Pherosphaera hookeriana and Microcachrys tetragona populations in the alpine region of Cradle Mountain summit, Tasmania.
Figure 4. (A) Podocarpus lawrencei in the alpine region, Mount McKay Falls Creek, Australia. (B) Pherosphaera hookeriana and Microcachrys tetragona populations in the alpine region of Cradle Mountain summit, Tasmania.
Plants 12 01171 g004
Figure 5. The proportion of current IUCN conservation status of Podocarpaceae species. The conservation status is evaluated according to IUCN Red List categories and criteria, version 3.1 (IUCN Council, Geneva, Switzerland).
Figure 5. The proportion of current IUCN conservation status of Podocarpaceae species. The conservation status is evaluated according to IUCN Red List categories and criteria, version 3.1 (IUCN Council, Geneva, Switzerland).
Plants 12 01171 g005
Figure 6. A wildfire in 2020 burnt the Tahune rainforest, Tasmania. This photo is of a burnt Celery-top Pine (Phyllocladus aspleniifolius) tree.
Figure 6. A wildfire in 2020 burnt the Tahune rainforest, Tasmania. This photo is of a burnt Celery-top Pine (Phyllocladus aspleniifolius) tree.
Plants 12 01171 g006
Table 1. An updated checklist of living podocarp taxa.
Table 1. An updated checklist of living podocarp taxa.
S#Name SynonymsCommon NameDistribution in WorldIUCN Status
1Acmopyle pancheri (Brongn. and Gris) Pilg.Acmopyle alba, Dacrydium pancheri, Nageia pancheri, Podocarpus pectinatusNew Caledonian acmopyle, Pancher’s acmopyleNew CaledoniaNT
2Acmopyle sahniana Buchholz and N.E. Gray Parasitaxus vodonaivaluiFijian acmopyle Fiji (Namosi and near Mt Tomanivi.)CR
3Afrocarpus dawei (Stapf) C.N.PageAfrocarpus mannii subsp. dawei, Nageia mannii var. dawei, Podocarpus dawei, Podocarpus usambarensis var. dawei-Congo, Tanzania (Kagara and Mara provinces), UgandaNT
4Afrocarpus falcatus (Thunb.) C.N.PageAfrocarpus falcatus subsp. gaussenii, Afrocarpus gaussenii, Decussocarpus falcatus, Nageia falcata, Nageia falcata var. gaussenii, Nageia meyeriana, Podocarpus falcatus, Podocarpus falcatus, Podocarpus gaussenii, Podocarpus gracillimus, Podocarpus meyerianus, Taxus falcataOuteniqua yellowwood, Bastard Yellow woodMalawi, Mozambique, South Africa (Eastern Cape Province, KwaZulu-Natal, Limpopo Province, Mpumalanga, Western Cape), Swaziland, MadagascarLC
5Afrocarpus gracilior (Pilg.) C.N.PageAfrocarpus falcatus subsp. gracilior, Decussocarpus gracilior, Nageia falcata var. gracilior, Podocarpus graciliorEast African Yellow woodEthiopia, Kenya, Tanzania, Congo, Rwanda, South Sudan, UgandaLC
6Afrocarpus mannii (Hook.f.) C.N.PageDecussocarpus mannii, Nageia mannii, Podocarpus mannii-Sao Tomé and Principe VU
7Afrocarpus usambarensis (Pilg.) C.N.PageAfrocarpus mannii subsp. usambarensis, Nageia mannii var. usambarensis, Podocarpus usambarensisAfrican YellowwoodTanzania, Kenya (Kyulu Hills, Taita Taveta District)EN
8Dacrycarpus cinctus (Pilg.) de Laub.Bracteocarpus cinctus, Bracteocarpus dacrydiifolius, Dacrycarpus dacrydiifolius, Podocarpus cinctus, Podocarpus dacrydiifolius-Indonesia (Maluku, Papua, Sulawesi), Malaysia (Sarawak), Papua New GuineaLC
9Dacrycarpus compactus (Wasscher) de Laub.Bracteocarpus compactus, Podocarpus compactusBinban Kadzinam, Kaibigl, Kaipik, Pau, Pawa, Uba, Umba, UmbwaIndonesia and Papua New GuineaLC
10Dacrycarpus cumingii (Parl.) de Laub.Bracteocarpus cumingii, Nageia cumingii, Podocarpus cumingii, Podocarpus imbricata var. cumingii, Podocarpus imbricatus var. cumingii-Indonesia (Sumatera), Malaysia (Sarawak), PhilippinesLC
11Dacrycarpus dacrydioides (A.Rich.) de Laub.Dacrydium ferrugineum, Nageia dacrydioides, Nageia excesla, Podocarpus dacrydioides, Podocarpus thujoidesKahikatea (Maori), White PineNew ZealandLC
12Dacrycarpus expansus de Laub.Bracteocarpus expansus-Indonesia (Papua), Papua New GuineaLC
13Dacrycarpus imbricatus (Blume) de Laub.Bracteocarpus imbricatus, Bracteocarpus kawaii, Dacrycarpus imbricatus var. imbricatus, Dacrycarpus imbricatus var. patulus, Nageia cupressina, Podocarpus cupressinus, Podocarpus imbricatus, Podocarpus javanicus, Podocarpus kawaii, Thuja javanica-Cambodia, China (Guangxi, Hainan, Yunnan), Fiji, Indonesia (Jawa, Lesser Sunda Is., Papua, Sulawesi, Sumatera), Lao People’s Democratic Republic, Malaysia, Papua New Guinea (Bismarck Archipelago), Philippines, Thailand, Vanuatu, VietnamLC
14Dacrycarpus imbricatus var. curvulus (Miq.) de Laub.Podocarpus cupressina var. curvula, Podocarpus imbricatus var. curvulaTjamarahIndonesia (Sumatra and Java)LC
15Dacrycarpus imbricatus var. robustus de Laub.Podocarpus papuanus, Podocarpus javanica, Podocarpus cupressina, Dacrycarpus papuanaPierur, tupi, daru and umbaPapua New Guinea, Indonesia (Moluccas), Malaysia (Sarawak) and Philippines (Luzon, Mindanao)LC
16Dacrycarpus kinabaluensis (Wasscher) de Laub.Bracteocarpus kinabaluensis, Podocarpus imbricatus var. kinabaluensis-Endemic to Mt. Kinabalu in Sabah (Borneo), MalaysiaLC
17Dacrycarpus steupii (Wasscher) de Laub.Bracteocarpus steupii, Podocarpus steupii-Indonesia (Kalimantan, Papua, Sulawesi), Papua New Guinea, PhilippinesNT
18Dacrycarpus vieillardii (Parl.) de Laub.Dacrydium elatum var. compactum, Dacrydium elatum var. tenuifolium, Nageia tenuifolia, Nageia vieillardii, Podocarpus taxodioides var. tenuifolius, Podocarpus tenuifolius, Podocarpus vieillardii-New CaledoniaLC
19Dacrydium araucarioides Brongn. and GrisAthrotaxis araucarioides, Dacrydium arthrotaxoides, Metadacrydium araucarioides, Podocarpus araucarioides-New CaledoniaLC
20Dacrydium balansae Brongn. and GrisMetadacrydium balansae-New CaledoniaLC
21Dacrydium beccarii Parl.Nageia beccarii-Indonesia (Maluku, Papua, Sulawesi, Sumatera), Malaysia (Peninsular Malaysia, Sarawak), Papua New Guinea (Bismarck Archipelago), Philippines, Solomon IslandsLC
22Dacrydium comosum CornerCorneria comosa-Malaysia (Genting Highlands, Gunung Hulu Kali, Negeri Pahang)EN
23Dacrydium cornwallianum de Laub.Corneria cornwalliana, Dacrydium nidulum var. araucarioides-Indonesia (Papua), Papua New GuineaLC
24Dacrydium cupressinum Sol. ex G.Forst.Dacrydium cupressiforme, Thalamia cupressinaRimu, Red pineNew ZealandLC
25Dacrydium elatum (Roxb.) Wall. ex Hook.Corneria elata, Corneria pierrei, Dacrydium beccarii var. subelatum, Dacrydium junghuhnii, Dacrydium pierrei, Juniperus elata, Juniperus elatus, Juniperus philippsianaSempilorCambodia, Indonesia (Sumatera), Lao People’s Democratic Republic, Malaysia (Peninsular Malaysia, Sabah, Sarawak), Philippines, Thailand, Viet NamLC
26Dacrydium ericoides de Laub.Corneria ericoidesSempilor, BintuluMalaysia (Borneo)NA (IUCN) VU
27Dacrydium gibbsiae StapfCorneria gibbsiae, Dacrydium beccarii var. kinabaluense-Malaysia (Mount Kinabalu in Sabah) LC
28Dacrydium gracile de Laub.Corneria gracilis-Malaysia (Sabah, Sarawak)NT
29Dacrydium guillauminii J.BuchholzGaussenia guillauminii-New Caledonia (river Madeleine (Riviére des Lacs) and along the riverbanks of Lac en Huit)CR
30Dacrydium leptophyllum (Wasscher) de Laub.Bracteocarpus leptophyllus, Corneria lepto. phylla, Dacrycarpus leptophyllus, Dacrydium leptophyllum, Podocarpus leptophylla, Podocarpus leptophyllus-Indonesia (Mt. Goliath, Papua)VU
31Dacrydium lycopodioides Brongn. and GrisGaussenia lycopodioidesMouNew Caledonia (southern massif, from Mont Nekandi to Mont Dzumac and Mont Mou)NT
32Dacrydium magnum de Laub.Corneria magna, Dacrydium beccarii var. rudens-Indonesia (Maluku), Papua New Guinea (Tagula Island, Normanby Island)NT
33Dacrydium medium de Laub.Corneria mediaSangu, GajoIndonesia (Sumatera), Malaysia (Peninsular Malaysia)VU
34Dacrydium nausoriense de Laub.Corneria nausoriensis-Fiji (Nausori Highlands, Sarava)EN
35Dacrydium nidulum de Laub.Corneria nidula, Dacrydium nidulum var. vitiensis-Fiji, Indonesia (Lesser Sunda Is., Maluku, Papua, Sulawesi), Papua New GuineaLC
36Dacrydium novoguineense GibbsCorneria novoguineensis-Indonesia (Papua, Sulawesi), Papua New GuineaLC
37Dacrydium pectinatum de Laub.Corneria pectinata, Dacrydium pectinatum var. robustum-Brunei Darussalam, China (Hainan), Indonesia (Kalimantan, Sumatera), Malaysia (Sabah, Sarawak), PhilippinesEN
38Dacrydium spathoides de Laub.Corneria spathoides-Papua New Guinea (Irian Jaya), IndonesiaNT
39Dacrydium × suprinii Nimsch--New CaledoniaNA
40Dacrydium xanthandrum Pilg.Corneria xanthandraKerapuiIndonesia (Kalimantan, Maluku, Papua, Sulawesi, Sumatera), Malaysia (Sabah, Sarawak), Papua New Guinea (Bismarck Archipelago, North Solomons), PhilippinesLC
41Falcatifolium angustum de Laub.--Malaysia (Sarawak)EN
42Falcatifolium falciforme (Parl.) de Laub.Podocarpus falciformis, Nageia falciformis, Falcatifolium usan-apuensis, Falcatifolium falciforme var. usan-apuensis, Falcatifolium falciforme var. kinabaluensis, Falcatifolium falciforme var. kinabaluensis-Brunei Darussalam; Indonesia (Kalimantan); Malaysia (Peninsular Malaysia, Sabah, Sarawak)NT
43Falcatifolium gruezoi de Laub.--Indonesia (Maluku, Sulawesi), PhilippinesNT
44Falcatifolium papuanum de Laub.Dacrydium papuanum-Papua New Guinea (Morobe)LC
45Falcatifolium sleumeri de Laub. and Silba--Indonesia (Papua)NT
46Falcatifolium taxoides (Brongn. and Gris) de Laub.Dacrydium taxoides, Nageia taxoides, Pinus falciformis, Podocarpus taxodioides, Podocarpus taxodioides var. gracilis-New CaledoniaLC
47Halocarpus bidwillii (Hook. f. ex Kirk) C.J.QuinnDacrydium bidwillii, Dacrydium bidwillii var. erectum, Dacrydium bidwillii var. relinatum-New Zealand (North Island, South Island, Stewart Island)LC
48Halocarpus biformis (Hook.) C.J.QuinnDacrydium biforme, Podocarpus biformisYellow pine, Pink pine, Bog Pine, Mountain Pine, TarwoodNew Zealand (North Island, South Island and Stewart Island)LC
49Halocarpus kirkii (F.Muell. ex Parl.) C.J.QuinnDacrydium kirkiiMonoaoNew Zealand (Hokianga, Manukau Harbor and Coromandel Peninsula)NT
50Lagarostrobos franklinii (Hook.f.) QuinnDacrydium franklinii, Lepidothamnus frankliniiHuon PineAustralia (Tasmania,)LC
51Lepidothamnus fonkii Phil.Dacrydium fonckii, Dacrydium fonckiiChilean RimuArgentina (Chubut, Santa Cruz); Chile (Aisén, Los Lagos, Magellanes)LC
52Lepidothamnus intermedius (Kirk) QuinnDacrydium intermediumYellow silver pine, Mountain pineNew Zealand (South Island, Stewart Island and North Island)LC
53Lepidothamnus laxifolius (Hook.f.) QuinnDacrydium laxifolium, Dacrydium laxifolium var. compactum, Dacrydium laxifolium var. debileMountain rimu, Pigmy pine, Pygmy pineNew Zealand (Tongariro National Park in the North Island southwards to Stewart Island)LC
54Manoao colensoi (Hook.) MolloyDacrydium colensoi, Dacrydium westlandicum, Lagarostrobos colensoiManoao, Silver pine, Westland pine, White silver pineNew Zealand (Lake Te Anau, Central Volcanic Plateau and Auckland)LC
55Microcachrys tetragona (Hook.) Hook.f.Dacrydium tetragonu, Athrotaxis tetragonaStrawberry pine, Creeping Pine,Australia (Tasmania)LC
56Nageia fleuryi (Hickel) de Laub.Decussocarpus fleuryi, Podocarpus fleuryiKim giaoChina (Guangdong, Guangxi, Yunnan), Laos, VietnamNT
57Nageia formosensis (Dummer) C.N.PageDecussocarpus nagi var. formosensis, Nageia nagi var. formosensis, Nageia nagi var. koshuensis, Nageia nankoensis, Podocarpus formosensis, Podocarpus formosensis var. koshuensis, Podocarpus koshunensis, Podocarpus nagi var. koshuensis-TaiwanNA
58Nageia maxima (de Laub.) de Laub.Decussocarpus maximus, Podocarpus maxima, Podocarpus maximusLandin payaMalaysia (Sarawak)EN
59Nageia motleyi (Parl.) de Laub.Agathis motleyi, Dammara motleyi, Decussocarpus motleyi, Nageia baccarii, Podocarpus beccarii, Podocarpus motleyiPodo kebal musang, Kayu bawa, Setebal, Medang bulohBrunei Darussalam, Indonesia (Kalimantan, Sumatera), Malaysia (Peninsular Malaysia, Sabah, Sarawak), ThailandVU
60Nageia nagi (Thunb.) KuntzeMyrica nagi, Agathis veitchii, Dammara veitchii, Decussocarpus nagi, Nageia caesia, Nageia cuspidata, Nageia grandifolia, Nageia ovata, Podocarpus caesius, Podocarpus cuspidatus, Podocarpus grandifolius, Podocarpus nageia, Podocarpus nageia var. angustifolius, Podocarpus nageia var. rotundifolius, Podocarpus nagi, Podocarpus nagi var. angustifolius, Podocarpus nagi var. caesius, Podocarpus nagi var. ovatus, Podocarpus nagi var. rotundifolius, Podocarpus ovata, Podocarpus ovatusBroad-leaved podocarpIntroduced China (Fujian, Guangdong, Guangxi, Hainan, Hunan, Jiangxi, Sichuan, Zhejiang), Japan (Honshu, Kyushu, Nansei-shoto, Shikoku), Taiwan (introduced), Vietnam (Lang Son)NT
61Nageia wallichiana (C.Presl) Kuntze Decussocarpus wallichianus, Nageia blumei, Podocarpus blumei, Podocarpus wallichianusMala almacigaBrunei Darussalam, Cambodia, China (Yunnan), India (Assam, Kerala, Nicobar Island), Indonesia (Jawa, Kalimantan, Maluku, Papua, Sulawesi, Sumatera), Laos, Malaysia (Peninsular Malaysia, Sabah, Sarawak), Myanmar, Papua New Guinea, Philippines, Thailand, VietnamLC
62Parasitaxus usta (Vieill.) de Laub.Dacrydium ustum, Nageia usta, Parasitaxus usta, Podocarpus ustusCorail, Cèdre rabougriNew Caledonia [Grand Terre in the mountains of the far south (Dzumac, Montagne des Sources), central west (Paéoua and Tchingou) and far northeast (Colnett/Panie)]VU
63Pherosphaera fitzgeraldii (F.Muell.) Hook.f.Dacrydium fitzgeraldii, Microstrobos fitzgeraldiiDwarf mountain pine, Blue Mountain dwarf pineAustralia (New South Wales)CR
64Pherosphaera hookeriana W.Archer bisDacrydium hookerianum (W.Archer bis) Eichler, Microstrobos niphophilus J.Garden and L.A.S.Johnson, Pherosphaera niphophila (J.Garden and L.A.S.Johnson) FlorinDrooping pine, Mount Mawson PineAustralia (Tasmania)NT
65Phyllocladus aspleniifolius (Labill.) Hook.f.Brownetera aspleniifolia (Labill.) Tratt., Phyllocladus glaucus Carrière, Phyllocladus rhomboidalis Rich., Phyllocladus serratifolius Nois. ex Henkel and Hochst., Phyllocladus trichomanoides var. glaucus (Carrière) Parl., Podocarpus aspleniifolius Labill., Thalamia asplenifolia (Labill.) Spreng.Celery top pineAustralia (Tasmania)LC
66Phyllocladus hypophyllus Hook.f.Phyllocladus hypophyllus var. protractus Warb., Phyllocladus major Pilg., Phyllocladus protractus (Warb.) Pilg., Podocarpus hypophyllus (Hook.f.) KuntzeCelery top pinePhilippines, Brunei, Malaysia (Celebes, Moluccas, Sulawesi), Papua New Guinea, Indonesia (Maluku) LC
67Phyllocladus toatoa Molloy Phyllocladus glaucus KirkToatoa (Maori), Blue celery pineNew Zealand (North Island)LC
68Phyllocladus trichomanoides D.Don Phyllocladus cunninghamii, Podocarpus trichomanoidesTanekaha (Maori), Celery pineNew Zealand (North Island and South Island)LC
69Phyllocladus trichomanoides var. alpinus (Hook.f.) Parl.Phyllocladus alpinus, Phyllocladus aspleniifolius var. alpinusMountain toatoaNew ZealandLC
70Podocarpus acuminatus de Laub.--Brazil (Serra da Neblina in the state of Amazonas), Venezuela (Bolívar)NT
71Podocarpus acutifolius KirkNageia acutifoliaNeedle-leaved totara, Westland totaraNew Zealand (South Island from Marlborough Sounds to S Westland)LC
72Podocarpus affinis Seem.Nageia affinisKuasiFiji (Higher ridges on Viti Levu)NT
73Podocarpus angustifolius Griseb.Podocarpus victorinianus, Podocarpus leonii, Podocarpus aristulatusSabina cimarronaCuba Cienfuegos (Sierra de Trinidad), Guantánamo (Sierra Maestra), Sancti Spíritus (Sierra de Sancti Spíritu), Holguín and Santiago de Cuba (Sierra de Nipe, Sierra del Cristal, and the Baracoa Ranges).VU
74Podocarpus annamiensis N.E.Gray--Myanmar, Vietnam, ChinaTH
75Podocarpus aracensis de Laub. and Silba--Brazil [Amazonas (Serra Araca, Cerro Neblina] and Venezuela [Amazonas (Cerro Yaví)]LC
76Podocarpus archboldii N.E. GrayMargbensonia archboldi, Podocarpus crassigemmaBaula, Jamekang, juba, Kaibigltuga, Morumba, Puling, Yamekange, Mu, Soa, SarauIndonesia (Papua), Papua New Guinea (Morobe District0VU
77Podocarpus aristulatus Parl.Nageia aristulata, Podocarpus angustifolius var. wrightii Cuba, Dominican Republic, TH
78Podocarpus atjehensis (Wasscher) de Laub.Podocarpus neriifolius var. atjehensis, Margbensonia atjehensis, Margbensonia atjehense, Podocarpus neriifolius var. membranaceaus AtjehMalesia [Sumatera (Aceh, Gajo Lands, Kemiri and Bandahara), New Guinea (Papua, Wissel Lakes).NT
79Podocarpus barretoi de Laub. and Silba--Brazil (Minas Gerais)NT
80Podocarpus beecherae de Laub.--New CaledoniaTH
81Podocarpus borneensis de Laub.Podocarpus polystachyus var. rigidus Bisit, Bubung, BulohIndonesia (Kalimantan), Malaysia (Sabah, Sarawak)LC
82Podocarpus bracteatus BlumeNageia bracteata, Podocarpus bracteatus var. brevipes, Podocarpus neriifolius var. bracteatus, Podocarpus neriifolius var. brevipesKayu unung unung, Toba Batak, Bima, Kimarak, Kipantjar, Ki putriIndonesia (Jawa, Lesser Sunda Is., Sumatera)LC
83Podocarpus brasiliensis de Laub.Podocarpus barretoi-Brazil (Bahia, Brasília Distrito Federal, Goiás, Mato Grosso, Minas Gerais, Roraima), VenezuelaLC
84Podocarpus brassii Pilg.-Baugwa, Baula, Chuga, Kaibigltuga, Kaipil, Karbuku, Maja, Mbagua, TsulaIndonesia (Papua), Papua New GuineaLC
85Podocarpus brassii var. humilis de Laub.Podocarpus brassii subsp. humilis -Papua New GuineaLC
86Podocarpus brevifolius (Stapf) Foxw. Podocarpus neriifolius-Malaysia (Sabah)NT
87Podocarpus buchholzii de Laub.Podocarpus buchholzii var. neblinensis Silba, Podocarpus buchholzii subsp. neblinensis (Silba) Silba -Venezuela (Guyana Highlands)LC
88Podocarpus buchii Urb.Podocarpus aristulatus var. buchii, Podocarpus angustifolius Griseb. ssp. buchii Tachuela, Chicharrón, Palo de CruzDominican Republic (Southeast Haiti)EN
89Podocarpus capuronii de Laub.Podocarpus capuronii var. capuronii, Podocarpus woltzii -Madagascar (Itremo Massif, Manandona)EN
90Podocarpus celatus de Laub.-Cinqui-maseBolivia (Potosi), Brazil (Goiás, Mato Grosso), Colombia, Ecuador, Peru (Junin, Loreto, Montana, Puno), Venezuela (Amazonas, Bolivar, Tachira)LC
91Podocarpus chinensis Wall. ex J.ForbesPodocarpus macrophyllus var. maki, Podocarpus japonicus, Podocarpus makoyi, Podocarpus appressus, Podocarpus macrophyllus subsp. maki, Podocarpus maki, Nageia appressa, Nageia japonica, Nageia chinensis, Nageia macrophylla var. maki, Myrica esquirolii-China (Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Shaanxi, Sichuan, Yunnan, and Zhejiang), Myanmar, JapanLC
92Podocarpus chinensis var. wardii de Laub. and Silba Podocarpus chinensis subsp. wardii-Myanmar (N’mai Hka Valley)LC
93Podocarpus chingianus S.Y.HuPodocarpus macrophyllus var. chingiiI, Margbensonia chingianaZhu guan luo han songChina (Jiangsu, Zhejiang, Sichuan)DD
94Podocarpus confertus de Laub.Podocarpus neriifolius var. penibukanensis-Malaysia (Sabah, Sarawak)EN
95Podocarpus coriaceus Rich. and A.Rich.Nageia coriacea, Taxus lancifolia, Podocarpus coriaceus var. sulcatusYucca plum pine, Resinier moutaigue, Caoba del paísDominican Republic, Guadeloupe, Martinique, Montserrat, Puerto Rico, Saint Kitts and Nevis, Saint Lucia, Trinidad, and TobagoLC
96Podocarpus costalis C.PreslNageia costalis, Podocarpus costalis var. taiwanensisLan yu luo han song, AriusPhilippines, Taiwan, ChinaEN
97Podocarpus costaricensis de Laub.-CipresilloCosta Rica (San José)CR (VU)
98Podocarpus crassigemma de Laub.Podocarpus crassigemmisA-pul, Kaboga, Morumba, Baula, Iamuka, Jamekang, Juba, Kamga, Puling, Kabor, Kabiltugl, Kaibelparu, Kkaibig, Kaip, Nonofan, Ronohanini, SulaIndonesia (Papua), Papua New Guinea (Bismarck Archipelago, Central highlands)LC
99Podocarpus decipiens N.E.Gray--Fiji (Viti Levu)NA
100Podocarpus decumbens N.E.Gray--New Caledonia (Grande Terre, Southern mountains)CR
101Podocarpus deflexus Ridl.--Indonesia (Sumatera), Malaysia (Peninsular Malaysia)EN
102Podocarpus degeneri (N.E.Gray) de Laub.Margbensonia degeneri, Podocarpus neriifolius var. degeneri -FijiLC
103Podocarpus dispermus C.T.WhiteMargbensonia dispermaBroad-leaved brown pine Australia (Queensland)LC
104Podocarpus drouynianus F.Muell.Nageia drouyniana, Margbensonia drouyniana, Podocarpus browniiEmu BerryAustralia (Western Australia)LC
105Podocarpus ekmanii Urb.- Sabina CimarronaCuba (Sierra del Cristal, Sierra de Moa and Sierra de Nipe)LC
106Podocarpus elatus R.Br. ex EndlMargbensonia elata, Nageia elataIllawarra plum, Brown pine, Plum pine, Turpentine pine, Yellow pine, Australian plum, White plum, Goongum, Native deal, Pencil cedarAustralia (New South Wales, Queensland)LC
107Podocarpus elongatus (Aiton) L’Hér. ex Pers.Taxus elongatus, Taxus elongata, Taxus capensis, Nageia elongata, Podocarpus thunbergii var. angustifoliaBreede river yellowwoodMalawi, South Africa (Northern Cape Province, Western Cape), Zambia, ZimbabweLC
108Podocarpus fasciculus de Laub.Podocarpus macrophyllus var. liukiuensis, Podocarpus macrophyllus f. grandifolia-Japan (Nansei-shoto), TaiwanVU
109Podocarpus forrestii Craib and W.W.Sm.Margbensonia forrestii, Podocarpus macrophyllus subsp. forrestii-ChinaVU
110Podocarpus gibbsiae N.E.Gray--Malaysia (Endemic to Mt. Kinabalu in Sabah)VU
111Podocarpus glaucus Foxw.-NipaIndonesia (Maluku, Papua, Sulawesi), Papua New Guinea (Bismarck Archipelago), Philippines, Solomon IslandsLC
112Podocarpus globulus de Laub.-SapiroMalaysia (Sabah, Sarawak)EN
113Podocarpus glomeratus D.DonNageia glomerata, Podocarpus rigidus, Podocarpus cardenasiiPino de Monte, Intimpa, HuampoBolivia, Ecuador, PeruNT
114Podocarpus gnidioides CarrièreNageia gnidioides, Podocarpus alpinus var. arborescens, Podocarpus alpinus var. caespitosus, Podocarpus caespitosus, Podocarpus gnidioides subsp. caespitosus-New CaledoniaNT
115Podocarpus grayae de Laub.-Brown pine, Northern brown pine; Brown pine; Weeping brown pineAustralia (Northern Territory, Queensland)LC
116Podocarpus guatemalensis Standl.Podocarpus allenii, Podocarpus guatemalensis var. allenii, Podocarpus guatemalensis subsp. allenii, Podocarpus guatemalensis subsp. pinetorum, Podocarpus guatemalensis var. pinetorum, Podocarpus pinetorumOcotillo de Llano, Alfajillo, Ciprecillo Amarillo, Ciprecillo Blanco, Cipresillo, Cypress de Montaña, Palo de Oro, Pinillo, Piño de MontañaBelize, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico (Oaxaca, Veracruz), Nicaragua, PanamaLC
117Podocarpus henkelii Stapf ex Dallim. and B.D.Jacks.Podocarpus ensiculus, Podocarpus henkelii subsp. Ensiculus, Podocarpus thunbergii var. falcataHenkel’s yellowwood, Falcate yellowwood, East griqualand yellowwood, Natal yellowwood, bastergeelhout, NanjulaMalawi, South Africa (Eastern Cape Province, KwaZulu-Natal), Tanzania, ZimbabweCR
118Podocarpus hispaniolensis de Laub.--Dominican Republic (Cordillera Central, San José de Ocoa, Cordillera Septentriona, Province Puerto Plata)EN
119Podocarpus hookeri de Laub.Podocarpus neriifolius var. linearis, Podocarpus neriifolius var. staintonii-India (Sikkim), Indonesia (Sumatra, Java, Borneo), PhilippinesLC
120Podocarpus humbertii de Laub.--Madagascar (Mont Anjanaharibe, Mont Tsaratanana and Mont Marojezy)EN
121Podocarpus insularis de Laub.-Dala, tunum, ida-ayeboPapua New Guinea (Bismarck Archipelago), Solomon Islands, VanuatuLC
122Podocarpus idenburgensis N.E.Gray--Papua New Guinea, FijiNE
123Podocarpus laetus Hooibr. ex Endl.Podocarpus cunninghamii, Podocarpus hallii, Nageia hallii, Podocarpus totara var. halliiMontane totara, Thin-bark totara, Hall’s totaraNew Zealand (North Island, Tongariro National Park, South Island and Stewart Island)LC
124Podocarpus lambertii Klotzsch ex Endl.Nageia lambertii, Podocarpus lambertii subsp. horsmanii, Podocarpus lambertii var. horsmanii, Podocarpus lambertii subsp. tigreensis, Podocarpus lambertii var. tigreensisPinheiro bravoArgentina (Misiones), Brazil (Minas Gerais, Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, São Paulo)NT
125Podocarpus laminaris de Laub.Podocarpus rubens subsp. pabinamaensis, Podocarpus rubens var. pabinamaensis-Papua New GuineaNA
126Podocarpus latifolius (Thunb.) R.Br. ex Mirb.Nageia latifolia, Nageia thunbergii, Podocarpus latifolius var. latior, Podocarpus latifolius subsp. latior, Podocarpus latior, Podocarpus nobilis, Podocarpus pinnata, Podocarpus thunbergii, Taxus latifoliaBroad-leaved yellowwood, Real yellowwood, True yellowwood, Upright yellowwoodEswatini, South Africa (Eastern Cape Province, Free State, KwaZulu-Natal, Limpopo Province, Mpumalanga, Northern Cape Province, Western Cape)LC
127Podocarpus laubenfelsii Tiong--Indonesia (Kalimantan), Malaysia (Sabah, Sarawak)EN
128Podocarpus lawrencei Hook.f.Podocarpus alpinus var. lawrencei, Podocarpus lawrencei subsp. errinundraensis Mountain plum pine, Plum pineAustralia (Australian Capital Territory, New South Wales, Tasmania, Victoria)LC
129Podocarpus ledermannii Pilg.Podocarpus idenburgensis-Indonesia (Papua), Papua New Guinea (Bismarck Archipelago)LC
130Podocarpus ledermannii Pilg. var. expansus de Laub.--IndonesiaLC
131Podocarpus lenticularis de Laub.--Assam (India), LaosNA
132Podocarpus linearis de Laub.--Papua New GuineaDD
133Podocarpus levis de Laub.-Marisa, Sanru, Kayu tjina, WasiwarareIndonesia (Kalimantan, Maluku, Papua, Sulawesi)LC
134Podocarpus × loderi Cockayne--New ZealandNA
135Podocarpus longifoliolatus Pilg.Podocarpus longifoliolatus-New Caledonia (Grande Terre)EN
136Podocarpus lophatus de Laub.--Philippines (Mt. Tapulao in Luzon and Mt. Halcon in Mindoro)VU
137Podocarpus lucienii de Laub.--New Caledonia (Massif du Colnett and the Massif du Tchingou)LC
138Podocarpus macrocarpus de Laub.-MalakawayanPhilippines (Luzon)EN
139Podocarpus macrophyllus (Thunb.) SweetMargbensonia forrestii, Margbensonia macrophylla, Nageia macrophylla, Nageia macrophylla, Podocarpus forrestii, Podocarpus macrophyllus var.
angustifolius, Podocarpus macrophyllus subsp.
angustifolius, Podocarpus macrophyllus f. angustifolius, Podocarpus macrophyllus subsp. forrestii,
Podocarpus macrophyllus var. macrophyllus,
Podocarpus macrophyllus var. rubra, Podocarpus verticillatus, Taxus macrophylla, Taxus makoya
Southern yew, Yew podocarp, Long-leaved podocarp, Buddhist pine, Kusamaki, Inumaki, luo han songChina (Anhui, Chongqing, Fujian, Guangxi, Guizhou, Hubei, Hunan, Jiangsu, Jiangxi, Sichuan, Yunnan, Zhejiang), Hong Kong, Japan (Honshu, Kyushu, Shikoku), Taiwan, Malaysia, SingaporeLC
140Podocarpus macrophyllus var. piliramulus Zhi X. Chen and Zhen Q. Li--China (Anhui, Chongqing, Fujian, Guangdong, Guangxi, Guizhou, Hunan, Jiangxi, Yunnan, Zhejiang); Hong Kong; Japan (Honshu, Kyushu, Shikoku); Myanmar; TaiwanNT
141Podocarpus madagascariensis BakerNageia madagascariensis, Podocarpus madagascariensis var. madagascariensis-MadagascarNT
142Podocarpus madagascariensis var. procerus de Laub.Podocarpus madagascariensis subsp. procerus-Madagascar (Tolanaro [Fort Dauphin] and Massif de Bekolosy).EN
143Podocarpus madagascariensis var. rotundus L.LaurentPodocarpus madagascariensis subsp. rotundus (L. Laurent) Silba-Madagascar (Massif de Bekolosy and the Massif du Manongarivo)DD
144Podocarpus magnifolius J.Buchholz and N.E. Gray-Cinqui-maséBolivia (La Paz), Colombia, Panama, Peru (Pasco, Oxapampa), Venezuela (States of Bolívar, Amazonas, Aragua, Yaracuy)LC
145Podocarpus marginalis de Laub.--Papua New GuineaDD
146Podocarpus matudae LundellPodocarpus reichei, Podocarpus matudae var. reichei, Podocarpus matudae var. macrocarpus, Podocarpus matudae var. jaliscanus, Podocarpus matudae subsp. jaliscanus, Podocarpus matudae subsp. macrocarpus, Podocarpus matudae subsp. reicheiSabinoMexico (Chiapas, Jalisco, Michoacán, Nayarit, Oaxaca, Puebla, Querétaro, San Luis Potosí, Tamaulipas, Veracruz), El Salvador, Guatemala (Huehuetenango), HondurasCR
147Podocarpus matudae subsp. jaliscanus (de Laub. and Silba) SilbaPodocarpus matudae Lundell var. jaliscanus-Mexico (Jalisco)VU
148Podocarpus micropedunculatus de Laub.-Kayu china, kayu tjinaBrunei Darussalam, Indonesia, Malaysia (Sabah, Sarawak)NT
149Podocarpus milanjianus RendlePodocarpus ulugurensisLusaminaAngola, Burundi, Cameroon, Congo, Congo, Kenya, Malawi, Mozambique, Nigeria, Rwanda, Sudan, Tanzania, Uganda, Zambia, Zaire, ZimbabweLC
150Podocarpus nakaii HayataPodocarpus macrophyllus var. nakaiiNakai podocarp, Nakai yellowwoodTaiwan (Chianghua Co., Nantou Co., Taichung Co.)EN
151Podocarpus neriifolius D.DonNageia discolor, Nageia leptostachya, Nageia neriifolia, Nageia neglecta, Nageia decipiens, Nageia polyantha, Nageia annamiensis, Podocarpus discolor, Podocarpus leptostachya, Podocarpus annamiensis, Podocarpus epiphyticus, Podocarpus neglecta, Podocarpus junghuhniana, Podocarpus thailandensis, Podocarpus neriifolius var. polyanthusBrown pine, Podo bukit, Ambai Ayam, Hatang, Hai nan luo han song, Thông tre, Thông lông gàBrunei Darussalam, Cambodia, China (Guangxi, Yunnan), Fiji, India (Assam, West Bengal), Bangladesh, Indonesia (Bali, Jawa, Kalimantan, Lesser Sunda Is., Maluku, Papua, Sulawesi, Sumatera), Lao People’s Democratic Republic, Malaysia (Peninsular Malaysia, Sabah, Sarawak); Myanmar, Nepal, Papua New Guinea (Bismarck Archipelago), Philippines, Solomon Islands, Thailand, VietnamLC
152Podocarpus neriifolius D.Don var. degeneri N.E.Gray--Fiji (Vanua Leva, Viti Levu)LC
153Podocarpus nivalis Hook.Nageia nivalis, Podocarpus nivalis var. erectus, Podocarpus montanusAlpine totara, Snow totaraNew Zealand (North Island, South Island)LC
154Podocarpus novae-caledoniae Vieill. ex Brongn. and GrisNageia novae-caledoniae, Podocarpus beecherae, Podocarpus rivularis-New Caledonia (Grande Terre, Iledes Pins)LC
155Podocarpus neglectus BlumePodocarpus discolor, Podocarpus leptostachyus, Podocarpus thailandensis, Nageia neglecta, Podocarpus discolor, Podocarpus junghuhnianus-Thailand, Indonesia, China (Hainan), Indonesia (Borneo, Java, Sumatra), MalaysiaNA
156Podocarpus novoguineensis de Laub.--Papua New GuineaNA
157Podocarpus nubigenus Lindl.Nageia nubigena, Saxegothaea gracilisHuililahuani, Mañio, Mañío de Hojas Punzantes, Mañio Hembra, Mañio Macho, Mañiu de la Costa, Pino AmarilloArgentina (Neuquén, Santa Cruz), Chile (Aisén, La Araucania, Los Lagos, Magellanes)NT
158Podocarpus oblongus de Laub.Podocarpus rumphii subsp. Aruensis, Podocarpus rumphii var. aruensis-Papua New Guinea (Vogelkop)DD
159Podocarpus oleifolius D.DonNageia macrostachya, Nageia oleifolia, Podocarpus ballivianensis, Podocarpus ingensis, Podocarpus macrostachys, Podocarpus oleifolius subsp. equadorensis, Podocarpus oleifolius var. equadorensis, Podocarpus oleifolius var. macrostachys, Podocarpus oleifolius var. trujillensis, Podocarpus oleifolius subsp. trujillensisPino de pasto, PineteBolivia, Colombia, Costa Rica, Ecuador, El Salvador, Guatemala, Honduras, Mexico (Chiapas, Guerrero, Michoacán, Oaxaca, Puebla, Veracruz), Panama, Peru, VenezuelaLC
160Podocarpus oleifolius subsp. costaricensis (J.Buchholz and N.E.Gray) Silba--Costa Rica, El Salvador, Guatemala, Honduras, Mexico Gulf, Mexico Southeast, Mexico Southwest, Nicaragua, PanamáLC
161Podocarpus orarius R.R.Mill and M.WhitingPodocarpus spathoides subsp. solomonensis, Podocarpus spathoides var. solomonensis-Papua New Guinea (Solomon Island), VanuatuNT
162Podocarpus palawanensis de Laub. and Silba--Philippines (Palawan)CR
163Podocarpus pallidus N.E.Gray-UhiuhiTonga (island of Eua and islands of Vava’u)VU
164Podocarpus parlatorei Pilg.Podocarpus angustifolius, Nageia angustifoliaPino Blanco, Pino del CerroArgentina (Catamarca, Corrientes, Jujuy, Salta, Tucumán), Bolivia (Chuquisaca, Cochabamba, Potosí, Santa Cruz, Tarija, La Paz), Peru (Sierra de Chaglla)NT
165Podocarpus pendulifolius J.Buchholz and N.E.Gray-Pino Carbón, Pino HayucoVenezuela (Andes, Cordillera do Merida, Edo Lara, Merida, Tachira and Trujillo)EN
166Podocarpus perrieri Gaussen and WoltzPodocarpus rostratus var. perrieri, Podocarpus rostratus subsp. perrieri-Madagascar (Andringitra Massif, Toamasina, Forêt d’Andasibé)CR
167Podocarpus pilgeri Foxw.Podocarpus celebicus, Podocarpus pilgeri var. thailandensis, Podocarpus pilgeri subsp. wangii, Podocarpus schlechteri, Podocarpus wangii, Podocarpus tixieri -Cambodia (Kampuchea), China (Guangdong, Guangxi, Hainan, Yunnan), Indonesia (Maluku, Papua, Sulawesi), Laos, Malaysia (Sarawak), Papua New Guinea (Bismarck Archipelago); Philippines, Thailand, VietnamLC
168Podocarpus polyspermus de Laub.-Mé Maoya podocarpNew Caledonia (Grande Terre)EN
169Podocarpus polystachyus R.Br. ex Endl.Margbensonia polystachya, Nageia polystachyaJati bukit, Kayu karamat, Podo laut, Mayu serai, Landin, Kandabang, kayu china, SaumahBrunei Darussalam, Indonesia (Kalimantan, Maluku, Papua, Sumatera), Malaysia (Peninsular Malaysia, Sabah, Sarawak), Papua New Guinea, Philippines, Singapore, ThailandVU
170Podocarpus pseudobracteatus de Laub.Podocarpus archboldii var. crassiramosusKaip, Kebu, PulingIndonesia (Papua), Papua New GuineaLC
171Podocarpus pseudobracteatus de Laub. var. sicaris de Laub.--Papua New GuineaLC
172Podocarpus purdieanus Hook.Nageia purdieanaYacca, St. Ann YaccaJamaica (Claredon, St. Catherine, St. Ann, Trelawny, Sanders Hill, Mt. Diablo)EN
173Podocarpus ramosii R.R.MillPodocarpus rotundus-Indonesia (Kalimantan Timur), Philippines (Mt. Banahao in Luzon)DD
174Podocarpus ridleyi (Wasscher) N.E. GrayMargbensonia ridleyi, Podocarpus neriifolius var. ridleyi -Malaysia (Peninsular Malaysia)VU
175Podocarpus roraimae Pilg.Podocarpus buchholzii, Podocarpus buchholzii var. neblinensis, Podocarpus buchholzii subsp. neblinensisAi-yekGuyana (Region of Cuyuni-Mazaruni on Mt. Roraima), Venezuela (Amazonas, Bolívar)LC
176Podocarpus rostratus J.Laurent--Madagascar (Antsiranana, Fianarantsoa, Mahajanga and Toamasina Provinces)EN
177Podocarpus rubens de Laub.Podocarpus indonesiensis, Podocarpus rubens subsp. sumatranus, Podocarpus rubens var. sumatranu, Podocarpus rubens var. pabinamaensis, Podocarpus neriifolius var. timorensisBebi-è, Ungpop, Bin, Kaip, Nelil, SukouIndonesia (Maluku, Flores, Borneo, Sulawesi, Sumatera), Malaysia (Sabah), Papua New Guinea (Bismarck Archipelago, Papuasia, New Britain), Timor-LesteLC
178Podocarpus rumphii BlumeCerbera nereifolia, Margbensonia koordersii, Margbensonia philippinensis, Margbensonia rumphii, Nageia rumphii, Podocarpus koordersii, Podocarpus philippinensis, Podocarpus rumphii subsp. arbainii, Podocarpus rumphii var. arbainii, Podocarpus sprengelii, Podocarpus rumphii var. aruensis NimsalChina (Hainan), Indonesia (Jawa, Lesser Sunda Island, Maluku, Papua, Sulawesi), Malaysia (Peninsular Malaysia, Sabah), Papua New Guinea (Bismarck Archipelago), Philippines (Luzon)NT
179Podocarpus rusbyi J.Buchholz and N.E.Gray-Pino Blanco, Pino del MonteBolivia (Cochabamba, La Paz, Santa Cruz), Peru (Cusco and near Machu Pichu)VU
180Podocarpus salicifolius Klotzsch and H.Karst. ex Endl.Nageia salicifolia, Podocarpus pittieriPinabeteVenezuela, Brazil, Bolivia, Colombia, PeruLC
181Podocarpus salignus D. DonNageia chilina, Podocarpus chilinus, Podocarpus chilinus var. glaucusWillow-leaf podocarp, Mañio, Mañío de Hojas Largas, Mañio de Hojas Punzantes, Mañio Hembra, Mañio Macho, Manique, Pino AmarilloChile (Biobío, La Araucania, Los Lagos, Maule)VU
182Podocarpus salomoniensis Wasscher-Dengali toloSolomon Islands (San Cristobal Island and San Jorge Island)EN
183Podocarpus sellowii Klotzsch ex Endl.Nageia sellowii-Brazil (Paraná, Rio de Janeiro, Rio Grande do Sul, Santa Catarina, São Paulo)EN
184Podocarpus sellowii Klotzch ex Endl. var. angustifolius--Brazil (Rio de Janeiro)CR
185Podocarpus smithii de Laub.-Smith’s pine, Brown pineAustralia (Queensland)LC
186Podocarpus spathoides de Laub.Podocarpus spathoides de Laub. var. solomonensis -Malaysia (Peninsular Malaysia, Sarawak, Maluku), Papua New Guinea (Solomon Islands)DD
187Podocarpus spinulosus (Sm.) R.Br. ex Mirb.Margbensonia spinulosa, Nageia ensifolia, Nageia laeta, Nageia spinulosa, Podocarpus bidwillii, Podocarpus ensifolius, Podocarpus laetus, Podocarpus pungens, Taxus spinulosa-Australia (New South Wales, Queensland)LC
188Podocarpus sprucei Parl.Nageia spruceiGuabisay, RomerilloEcuador, Peru (Piura)EN
189Podocarpus steyermarkii J.Buchholz and N.E.Gray--Guyana (Pakaraima Mountains), Venezuela [Bolivar (Carrao-tepui, Uaipan-tepui, Cerro Jaua), Amazonas (Neblina Massif)]LC
190Podocarpus subtropicalis de Laub.Podocarpus subtropicalis var. medogensis, Podocarpus subtropicalis subsp. medogensis-China (Sichuan, Yunnan)DD
191Podocarpus sylvestris J.BuchholzPodocarpus colliculatus, Podocarpus novae-caledoniae var. colliculatus-New Caledonia (Grande Terre, Ile des Pins)LC
192Podocarpus tepuiensis J.Buchholz and N.E.Gray--Ecuador (Cordillera del Condo), Venezuela (Bolivar, Amazonas)LC
193Podocarpus teysmannii Miq. Nageia teysmannii, Podocarpus epiphyticus, Podocarpus neriifolius var. polyanthusKalek rotan, SikujuMyanmar, Indonesia (Sumatera), Malaysia (Peninsular Malaysia, Sabah), Brunei DarussalamNT
194Podocarpus thevetiifolius Zipp. ex BlumeMargbensonia thevetiifolia, Nageia thevetiifolia, Podocarpus polystachyus subsp. thevetiifolius, Podocarpus polystachyus var. thevetiifolius-Papua New GuineaNA
195Podocarpus totara G.Benn. ex D.DonNageia totara, Podocarpus totara var. waihoensis, Podocarpus totara subsp. waihoensisTotaraNew Zealand (North Island and South Island)LC
196Podocarpus totara var. waihoensis Wardle-Totara, Westland totaraNew Zealand (West Coast of the South Island)NT
197Podocarpus transiens (Pilg.) de Laub.Podocarpus lambertii var. transiens, Podocarpus transiens var. harleyi, Podocarpus transiens subsp. harleyi-Brazil (Bahia, Goiás, Minas Gerais, Paraná, Santa Catarina)EN
198Podocarpus trinitensis J.Buchholz and N.E.Gray--Trinidad and Tobago (El Tucuche)LC
199Podocarpus urbanii Pilg.-Blue mountain yacca, YaccaJamaica (St. Andrew, Portland and St. Thomas within the Blue and John Crow Mountains)CR
200Podocarpus vanuatuensis de Laub.--VanuatuDD
201Podocarpus victorinianus CarabiaPodocarpus leonii-CubaNE
202Prumnopitys andina (Poepp. ex Endl.) de Laub.Nageia andina, Nageia valdiviana, Podocarpus andinus, Podocarpus spicatus, Podocarpus valdivianus, Prumnopitys andina subsp. blijdensteinii, Prumnopitys elegans, Prumnopitys spicata, Stachycarpus andinus Lleuque, Llleuqui, Uva de la CordilleraChile (Biobío, La Araucania, Maule), Argentina (Neuquen)VU
203Prumnopitys taxifolia (Sol. ex D.Don) de Laub.Dacrydium mai, Dacrydium taxifolium, Nageia spicata, Podocarpus spicatus, Stachycarpus spicatusMatai, Black pineNew Zealand (North Island and South Island)VU
204Prumnopitys montana (Humb. and Bonpl. ex Willd.) de Laub.Botryopitys densifolia, Botryopitys meridensis, Botryopitys montana, Dacrydium distichum, Nageia montana, Podocarpus curvifolius, Podocarpus humboldtii, Podocarpus montanus var. densifolius, Podocarpus montanus var. diversifolius, Podocarpus montanus var. meridensis, Podocarpus taxifolius, Podocarpus taxifolius var. communis, Podocarpus taxifolius var. densifolius, Stachycarpus meridensis, Stachycarpus taxifolius, Taxus montana, Torreya montana-Bolivia (Cochabamba), Colombia (Belmira, San Andres, Arabuca, Villa de Leiva, Pensilvania, Cauca, Cesar, La Guajira, Magdalena, Quindío, Risarald, Tolima), Ecuado (Azuay, Cañar, Loja, Morona-Santiago, Zamora-Chinchipe), Peru (Cajamarca, Junín, Pasco, San Martín), Venezuela (Lara, Tachira, Zulia)VU
205Pectinopitys exigua (De Laub.) C.N.Page-Pino colorado, Jatun pino, Pino castilla, Pino negro Bolivia (Cochabamba, Chuquisaca, Santa Cruz)NT
206Pectinopitys ferruginea (G.Benn. ex D.Don in Lamb.) C.N.PageNageia ferruginea, Podocarpus ferrugineus, Stachycarpus ferrugineus, Stachypitys ferrugineaMiro, Brown pineNew Zealand (North Island, South Island and Stewart Island)LC
207Pectinopitys ferruginoides (R.H.Compton) C.N.PagePodocarpus distichus, Podocarpus distichus var. maialis, Podocarpus ferruginoides, Stachycarpus distichus, Stachycarpus ferruginoides, Stachypitys disticha, Stachypitys ferruginoides-New CaledoniaLC
208Pectinopitys harmsiana (Pilg.) C.N.PagePodocarpus harmsianus, Podocarpus utilior, Prumnopitys utiliorUncumanu, Yellow miroBolivia (Abel Iturralde, Franz Tamayo, Sud Yungas), Colombia (Cauca, Quindío, Risaralda, Tolima, Sierra Nevada de Santa Marta), Ecuador (Loja), Peru (Ayacucho, Cajamarca, Cusco, Junín, Pasco, Piura, San Martín), Venezuela (Vargas, Miranda, Aragua, Yaracuy)NT
209Pectinopitys ladei (F.M.Bailey) C.N.PageStachypitys ladei, Podocarpus ladei, Stachycarpus ladeiMount spurgeon black pine or Mount spurgeon brown pineAustralia (Queensland)NT
210Pectinopitys standleyi (J. Buchholz and N.E.Gray) C.N.PagePodocarpus standleyi, Stachycarpus standleyiCipresillo, Ciprecillo, Ciprés loritoCosta Rica (Alajuela, Cartago, Heredia, San José)EN
211Retrophyllum comptonii (J.Buchholz) C.N.PageDecussocarpus comptonii, Nageia comptonii, Podocarpus comptonii-New Caledonia (Port Boise to Mt Ignambi)LC
212Retrophyllum filicifolium (N.E.Gray) R.R.MillPodocarpus filicifoliusLehil, moegòIndonesia (Maluku), Papua New Guinea (Bismarck Archipelago)LC
213Retrophyllum minus (Carrière) C.N.PageNageia minor, Podocarpus minor, Podocarpus palustris, Decussocarpus minor, Retrophyllum minorBois bouchonNew Caledonia (Grande Terre, Province Sud: Prony, Baie du Sud, Lac en Huit, Rivière des Lacs, Plaine des Lacs)EN
214Retrophyllum piresii (Silba) C.N.PageDecussocarpus piresii, Nageia piresii-Brazil (Rondônia), Bolivia, PeruDD
215Retrophyllum rospigliosii (Pilg.) C.N.PageDecussocarpus rospigliosii, Nageia rospigliosii, Podocarpus rospigliosii, Torreya bogotensisPino hayuelo, Diablo fuerte, Pino de monte, Pino real, Pino romero, Romerillo fino, Romerillo rojo, SaucecilloBolivia (Lap Paz), Colombia (Antioquia, Cundinamarca, Magdalena, Norte de Santander, Santander del Sur), Ecuador (Sucumbíos, Zamora-Chinchip), Peru (Junín, Pasco), Venezuela (Táchira, Mérida, Trujillo)VU
216Retrophyllum vitiense (Seem.) C.N.PageDecussocarpus vitiensis, Nageia vitiensis, Podocarpus vitiensisAilumu, Dakua salusalu, Kau solo, MungoFiji, Indonesia (Maluku, Papua), Papua New Guinea (Bismarck Archipelago), Solomon Islands (Santa Cruz Island), Vanuatu (Torba)LC
217Saxegothaea conspicua Lindl.Squamataxus albertianaPrince albert’s yew, Mañío, Mañío de hojas cortas, Mañío hembra, Mañío macho, ManiúArgentina (Chubut, Neuquén, Rio Negro), Chile (Aisén, Biobío, La Araucania, Los Lagos, Maule)NT
218Sundacarpus amarus (Blume) C.N.PageNageia amara, Nageia eurhyncha, Podocarpus amara, Podocarpus dulcamara, Podocarpus eurhyncha, Podocarpus pedunculatus, Prumnopitys amaraBlack pine, ChoopoolaAustralia (Queensland), Indonesia (Jawa, Maluku, Papua, Sulawesi, Sumatera), Malaysia (Sabah), Papua New Guinea (Bismarck Archipelago), Philippines, Timor-LesteLC
Table 2. An updated checklist of podocarps fossil sp.ecies of extant genera.
Table 2. An updated checklist of podocarps fossil sp.ecies of extant genera.
S#Fossil TaxaReported byPartEra/PeriodAge Range MaType SpecimenDistribution
1Acmopyle antarcticaFlorin, 1940 [27]Leaf axisEocene 99.7 to 55.8 S132020-Swedish Museum of Natural HistorySeymour Island (Antarctic Peninsula)
2Acmopyle compactusPole, 1992 [28]Leaf (Cuticle) Middle–Late Eocene48.6 to 33.9 S049-University of Tasmania Hasties (Tasmania, Australia)
3Acmopyle engelhardtiFlorin, 1940 [27]Leaf axisEocene–Miocene55.8 to 48.6 PBDB 8673(9 records) Rio Negro, Argentina
4Acmopyle floriniiHill and Carpenter, 1991 [29]Sterile axis (Cuticle)Late Paleocene58.7 to 55.8LB-063-University of TasmaniaLake Bungarby (New South Wales, Australia)
5Acmopyle glabraHill and Carpenter, 1991 [29]Sterile axis (Cuticle)Oligocene–Eocene55.8 to 28.4 RPE-006-University of Tasmania(9 records) Cethana—Oligocene, Regatta Point—Eocene (Tasmania, Australia)
6Acmopyle masoniiPole, 1997 [30]Sterile axis (Cuticle)Miocene- SB 1149-University of Tasmania.Manuherikia Group, Central Otago, New Zealand
7Acmopyle setigerHill and Carpenter, 1991; Carpenter and Pole, 1995; Townrow, 1965 [29,31,32]Leaf (Cuticle)Early Eocene48.6 to 33.9 B-001-University of TasmaniaLake Lefroy, Buckland and Monitor Bores (Tasmania and Western Australia)
8Acmopyle tasmanicaHill and Carpenter, 1991 [29]Leaf (Cuticle)Eocene48.6 to 33.9 LA-060-University of TasmaniaLoch Aber (Tasmania, Australia)
9Dacrycarpus acutifoliusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene to Early Miocene28.4 to 15.97 M-235- University of TasmaniaMonpeelyata (Tasmania, Australia)
10Dacrycarpus arcuatusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene to Early Miocene28.4 to 15.97LRR1-243-University of TasmaniaLittle Rapid River (Tasmania, Australia)
11Dacrycarpus carpenteriiJordan, 1995 [34]LeafEarly Pleistocene2.588 to 0.126 RPU 525-University of TasmaniaRegatta Point (Tasmania, Australia)
12Dacrycarpus chilensisWilf, 2012 [35]Leaf (Cuticle)Eocene MMG PB SATChile
13Dacrycarpus crenulatusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene to Miocene28.4 to 15.97 P-221-University of TasmaniaPioneer—tin mine (Tasmania, Australia)
14Dacrycarpus cupressiformisWells and Hill, 1989 [33]Sterile axis (Cuticle)Early Oligocene33.9 to 23.0 LRR2-023-University of TasmaniaLittle Rapid River 2 (Tasmania, Australia)
15Dacrycarpus dacrydoidesPole, 1992; 1997 [28,30]Leaf (Cuticle)Miocene- SB 1149-University of Tasmania.Manuherikia Group, Central Otago, New Zealand
16Dacrycarpus geminusPole, 1992 [28]Leaf (Cuticle) Eocene56 to 33.9S115-University of TasmaniaHasties (Tasmania, Australia)
17Dacrycarpus guipingensisWu et al., 2021 [36]Seed cone+ Sterile axis Miocene -GP109-Museum of Biology, Sun Yat-sen UniversityGuangxi, South China
18Dacrycarpus involutusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene to Miocene28.4 to 15.97 M2023-University of TasmaniaMonpeelyata (Tasmania, Australia)
19Dacrycarpus elandensisHill and Whang, 2000 [37]Pollen cone, leafMiocene -ELD-005-University of AdelaideElands, New South Wales
20Dacrycarpus falcatusCarpenter, 1991 [38]Sterile axis (Cuticle)Oligocene35C-052, 203, 619-University of TasmaniaCethana (Tasmania, Australia)
21Dacrycarpus lanceolatusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene to Miocene28.4 to 15.97 M-1186-University of TasmaniaMonpeelyata (Tasmania, Australia)
22Dacrycarpus latrobensisHill and Carpenter, 1991 [29]Sterile axis (Cuticle)Oligocene to Miocene28.4 to 23.03 P 15714- Museum of Victoria, MelbourneSoutheastern Australia (Yallourn and Bacchus-3 locations)
23Dacrycarpus linearisWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene28.4 to 23.03 LRR2-051-University of TasmaniaLittle Rapid River 2 (Tasmania, Australia)
24Dacrycarpus linifoliusWells and Hill, 1989 [33]Sterile axis (Cuticle)Eocene to Oligocene55.8 to 28.4 LRR1-851-University of TasmaniaLittle Rapid River 1 (Tasmania, Australia) and Regatta Point (Tasmania, Australia)
25Dacrycarpus microfoliusJordan et al., 2011 [39]CuticleOligocene–Miocene28.4 to 15.97 OU33024-Geology Museum (OU), University of OtagoF45/f0394, middle Gore Lignite Measure (Newvale Mine, New Zealand)
26Dacrycarpus mucronatusWells and Hill, 1989; Carpenter, 1991; Lewis and Drinnan, 2013 [33,38,40]Seed cone+ Sterile axis (Cuticle)Eocene–Oligocene–Miocene48.6 to 15.97 LRR2-044-University of Tasmania, (RPE-060-62, and RPE-4620Little Rapid River 2 (Tasmania); Regatta Point (Tasmania) Cethana (Tasmania); Lochaber (Naracoorte, South Australia)
27Dacrycarpus patulusHill and Merrifield, 1993 [41]Leaf Eocene–Oligocene48.6 to 23.03 WAM P.84.34-Western Australian MuseumWest Dale (Western Australia, Australia)
28Dacrycarpus praecupressinusGreenwood, 1987; Mill and Hill, 2004 [42,43]Sterile axis (Leaves)Eocene37.2 to 33.9 F 51245-Geological Survey of New South WalesVegetable Creek—Witherdens Tunnel (NSW, Australia)
29Dacrycarpus puertaeWilf, 2012 [35]Seed cone+ Sterile axis Eocene52–77.9 MPEF-Pb 4983-Patagonia, Argentina
30Dacrycarpus sp.Pole et al., 1993 [44]Leaf (Cuticle)Late Oligocene–Early Miocene -SB282Berwick Quarry, Victoria (Australia)
31Dacrycarpus sp.Carpenter and Pole, 1995 [32]Leaf (Cuticle)Middle Eocene -CD2999-University of TasmaniaLefroy and Cowan Paleodrainages, Western Australia (Australia)
32Dacrycarpus sp.Carpenter, 1991 [38]Foliage (Cuticle)Oligocene35- Cethana (Tasmania, Australia)
33Dacrycarpus sp.Carpenter et al., 1994 [45]Foliage (Cuticle)Oligocene–Early Miocene -R. J. Carpenter and R. S. Hill (unpublished data)Lea River (Tasmania, Australia)
34Dacrydium aciculareWells and Hill, 1989 [33]Leaf (Cuticle)Oligocene33.9 to 28.4 LRR1-441-University of TasmaniaLittle Rapid River 1 (Tasmania, Australia)
35Dacrydium fimbriatusHill and Christophel, 2001 [46]Sterile axis (Cuticle)Middle Eocene48.6 to 37.2 NC-004-University of AdelaideNelly Creek (South Australia, Australia)
36Dacrydium microphyllumJordan et al., 2011 [39]CuticleOligocene–Miocene28.4 to 15.97 OU33026-Geology Museum (OU), University of OtagoNew Vale Mine, Waimumu (Coalfield, Southland, New Zealand)
37Dacrydium mucronatusHill and Christophel, 2001 [46]Fertile axis (Cuticle)Eocene48.6 to 37.2 NC-002- University of AdelaideNelly Creek (South Australia, Australia)
38Dacrydium rhomboideumCookson and Pike, 1953; Blackburn, 1985 [47,48]Foliage + SeedsOligocene–Miocene28.4 to 15.97 P 209942Morwell and Yallourm, Victoria (Australia)
39Dacrydium sinuosumWells and Hill, 1989 [33]Leaf (Cuticle)Oligocene–Miocene28.4 to 15.97 P-631-University of TasmaniaPioneer- tin mine (Tasmania, Australia)
40Dacrydium tasmanicumWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene33.9 to 28.4 LRR1-1031-University of TasmaniaLittle Rapid River 1 (Tasmania, Australia)
41Dacrydium waimumuensisJordan et al., 2011 [39]CuticleOligocene–Miocene28.4 to 15.97 OU33025-Geology Museum (OU), University of OtagoF45/f0394, middle Gore Lignite Measure (Newvale Mine, New Zealand)
42Dacrydium Sp1Carpenter, 1991 [38]FoliageEarly Oligocene35C-202, 471-University of TasmaniaCethana (Tasmania, Australia)
43Dacrydium Sp2Carpenter, 1991 [38]FoliageEarly Oligocene35C-517, 519-University of TasmaniaCethana (Tasmania, Australia)
44Dacrydium Sp1Carpenter and Pole, 1995 [32]Foliage (disp.ersed cuticles)Middle Eocene -CD2999 and DWT495-University of TasmaniaLefroy and cowan paleodrainage, Western Australia
45Dacrydium Sp2Carpenter and Pole, 1995 [32]Foliage (disp.ersed cuticles)Middle Eocene -CD2999-University of TasmaniaLefroy and cowan paleodrainage, Western Australia
46Dacrydium SpBlackburn, 1985 [48]FoliageOligocene–Miocene -- Morwell, Victoria (Australia)
47Dacrydium SpBlackburn, 1985 [48]FoliageOligocene–Miocene -- Morwell, Victoria (Australia)
48Falcatifolium eocenicaHill and Scriven, 1999 [49]Sterile axis (Cuticle)Middle Eocene37.2 to 33.9 2351 and 2350-State Herbarium of South Australia.ALCOA Anglesea Site II coal mine (Victoria, Australia)
49Halocarpus highstediiJordan et al., 2011 [39]CuticleOligocene–Miocene28.4 to 15.97 OU32899-Geology Museum (OU), University of OtagoF45/f0394, middle Gore Lignite Measure (Newvale Mine, New Zealand)
50Lagarostrobos frankliniiWells and Hill, 1989; Hill and Macphail, 1985; Carpenter et al., 1994; Jordan, 1995; Jordan et al., 2011 [33,34,39,45,50]Seed cones and foliageLate Pliocene–Early Pleistocene2.588 to 0.126 RPU-190-University of TasmaniaRegatta Point (Tasmania, Australia)
51Lagarostrobos marginatusWells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene33.9 to 28.4 LRR1-701-University of TasmaniaLittle Rapid River 1 (Tasmania, Australia)
52Lagarostrobos Sp Peter, 1985 [51]Sterile axis Middle Cretaceous145-100.5 - Winton, Queensland
53Lagarostrobos colensoi (correct name—Manoao colensoi)Carpenter, 1991 [38]Leaf (Cuticle)Oligocene35- Cethana (Tasmania, Australia)
54Lepidothamnus intermediusPole, 1997 [30]Sterile axis (Cuticle)Miocene -S-632-University of Tasmania.Manuherikia Group, Central Otago, New Zealand
55Lepidothamnus diemenensisPole, 1992 [28]Sterile axis (Cuticle)Eocene48.6 to 33.9 S014-University of TasmaniaHasties (Tasmania, Australia)
56LepidothamnusPeter, 1985 [51]Seed cones and foliage Middle Cretaceous145-100.5 - Winton, Queensland
57Microcachrys tetragonaJordan, 1995 [34]Seed and sterile axes Early Pleistocene RPU2-University of TasmaniaRegatta Point (Tasmania, Australia)
58Microcachrys novaezelandiaeCarpenter et al., 2011 [52]Leaf (Cuticle)Oligocene–Miocene28.4 to 15.97 OU32896-Geology Museum (OU), University of OtagoF45/f0394, middle Gore Lignite Measure (Newvale Mine, New Zealand)
59Nageia hainanensisJin et al., 2010 [53]Leaf (Cuticle)Eocene -CC-1200 a, b-The Museum of Biology of Sun Yat-sen University, Guangzhou, ChinaChangchang Basin, Hainan Island, south China
60Nageia maomingensisLiu et al., 2015 [54]Leaf (Cuticle)Late Eocene -MMJ1-001-The Museum of Biology, Sun Yat-sen University, Guangzhou, China.Maoming Basin, Jintang, Maoming, Guangdong Province, South China.
61(Podocarpus) Nageia ryosekiensisKimura et al., 1988 [55]Leafy branches, connected seed, detached leavesLower Cretaceous -Makino Botanical Garden, KochiSouthwest Japan
62(Podocarpus) Nageia sujfunensisKrassilov, 1965 [56]Leaf (Cuticle)Early Cretaceous -27/71-Far East Geological Institute, USSR Academy of SciencesFar East Russia
63Pherosp.haera sommervillae (Name correction Microstrobos sommervillae) Townrow, 1965 [31] Early Eocene -- Buckland sediments in southeastern Tasmania
64Pherosp.haera microfolius (Name correction Microstrobos microfolius)Wells and Hill, 1989 [33]Sterile axis (Cuticle)Oligocene–Miocene28.4 to 23.03 M-1155-University of TasmaniaMudstone lens cutting Monpeelyata canal (Tasmania, Australia)
65Phyllocladus aberensisHill, 1989 [57]LeafOligocene (Middle–Late Eocene)28.4 to 23.03 LRR1-951-University of TasmaniaLittle Rapid River 2 (Tasmania, Australia)
66Phyllocladus annulatusHill, 1989 [57]Leaf (Cuticle)Oligocene33.9 to 23.03 P-742-University of TasmaniaPioneer (Tasmania, Australia)
67Phyllocladus aspleniifoliusEttingshausen, 1887, 1888; Cookson and Pike, 1954; Hill and Macphail, 1985; Hill, 1989, 1988; Pole, 1992 [28,50,57,58,59,60]Leaf (Cuticle)Late Eocene (Quaternary, Eocene and Cretaceous)56-33.9 (84.9 to 0.012)S 106-University of TasmaniaDeep leads NSW; Regatta point; Hasties, Tasmania (Australia) and Antarctica
68Phyllocladus elongatusJordan et al., 2011 [39]LeafOligocene–Miocene28.4 to 15.97 OU32901-Geology Museum (OU), University of OtagoF45/f0394, middle Gore Lignite Measure (Newvale Mine, New Zealand)
69Phyllocladus lobatusHill, 1989 [57]CuticleOligocene28.4 to 23.03 LRR1-1649- University of TasmaniaLittle Rapid River 2 (Tasmania, Australia)
70Phyllocladus morwellensisDeane, 1925; Cookson and Pike, 1954; Hill, 1989 [57,60,61]LeafOligocene28.4 to 15.97 P-15873-Museum of VictoriaNear Morwell, (Victoria, Australia)
71Phyllocladus palmeriPole and Moore, 2011 [62]Leaf (Cuticle)Late Miocene6 to 6.5 AU P340a and b-School of geography, geology and environmental science, University of AucklandNear Matuora, (Coromandel Peninsula, New Zealand)
72Phyllocladus Sp (P. lobatus)Carpenter, 1991 [38]Leaf (Cuticle)Oligocene - -Cethana, (Tasmania, Australia)
73Phyllocladus Sp2 (P. hypophyllus)Carpenter, 1991 [38]Leaf (Cuticle)Oligocene - -Cethana, (Tasmania, Australia)
74Phyllocladus SpMc Loughlin and Hill, 1996; Mc Loughlin et al., 2001 [63,64]Leaf (Cuticle)Late Eocene - -Kojonup, Western Australia
75Phyllocladus SpPole, 1992 [28]Leaf (Cuticle)Late Miocene - -Near Cromwell, (South Island, New Zealand)
76Phyllocladus SpPole, 1992 [28]Leaf (Cuticle)Miocene -OU30068-Department of Geology, University of Otago.Manuherikia Group, Central Otago, New Zealand
77Phyllocladus SpLiz Kennedy, 2020 (unpublished)Seed cones (Phyllocladus toatoa)Miocene23 to 5.3 -Coromandel, North Island, New Zealand
78Podocarpus andiniformis (Subgenus Foliatus)Wilf et al., 2017/Berry, 1922 [65,66]Leaf (Cuticle)Late Triassic and Early Eocene - -Patagonia, Argentina
79Podocarpus alwyniae (Subgenus Podocarpus)Pole, 1992 [28]Sterile axis (Cuticle)Miocene -OU29708, H411fD45-Department of Geology, University of Otago.Manuherikia Group, Central Otago, New Zealand
80Podocarpus oligocenicusAwasthi et al., 1992 [67]Leaf (Cuticle)Oligocene - -Mizoram, India; Manipur, India
81Podocarpus araucoensis (as Decussocarpus araucoensis)Berry, 1922; Mill and Hill, 2004 [43,66]Foliage (Cuticle)Eocene55.8 to 33.9 -Chile
82Podocarpus brownei (probably Retrophyllum or Falcatifolium)Greenwood, 1987 (Decussocarpus brownei); Mill and Hill, 2004 [42,43]Foliage (Cuticle)Eocene37.2 to 33.9 2345-State Herbarium of South AustraliaALCOA Anglesea Site II coal mine (Victoria, Australia)
83Podocarpus fildesensisZhou and Li, 1994 [68]Foliage Cretaceous84.9 to 66.043 -Half Three Point assemblage (Antarctica)
84Podocarpus inopinatusFlorin, 1940 [27]Foliage Paleogene, Eocene–Miocene55.8 to 33.9 -Chile
85Podocarpus platyphyllumGreenwood, 1987 [42]Leaf (Cuticle)Middle to Late Eocene37.2 to 33.9 1816-State Herbarium of South AustraliaALCOA Anglesea Site II coal mine (Victoria, Australia)
86Podocarpus sinuatusPole, 1992 [28]Leaf (Cuticle)Eocene48.6 to 33.9 S112-University of TasmaniaHasties (Tasmania, Australia)
87Podocarpus pliomacrophyllus (Subgenus Foliatus)Chen et al., 2019; Wu et al., 2021 [69,70]Leaf (Cuticle)Lower Pliocene -MBU-16395- Institute of Palaeontology
and Stratigraphy, Lanzhou University, Gansu Province, China.
Mannong Village (western Yunnan, China); Tuantian Town, Yunnan Province, southwestern China
88Podocarpus travisiae (Subgenus Podocarpus)Pole, 1993 [71]LeafMiocene23.03 to 15.97 0U30780- Department of Geology, University of OtagoFoulden Hills (New Zealand)
89Podocarpus yunnanensis (Subgenus Foliatus)Wu et al., 2021 [70]Leaf (Cuticle)Early Pliocene -MBU-19122301-Institute of Palaeontology and Stratigraphy, Lanzhou UniversityTuantian Town, Yunnan Province, southwestern China
90Podocarpus forrestii (Subgenus Foliatus)Wu et al., 2021 [70]Leaf (Cuticle)Early Pliocene -MBU-20191221-Institute of Palaeontology and Stratigraphy, Lanzhou University Tuantian Town, Yunnan Province, southwestern China
91Podocarpus tasmanicus (Subgenus Podocarpus)Townrow, 1965 [31]Leaf (Cuticle)Eocene-81905-University of TasmaniaBed of Tea Tree Rivulet, Buckland, Tasmania, Australia
92Podocarpus strzeleckianus (Subgenus Podocarpus)Townrow, 1965 [31]Leaf (Cuticle)Eocene -81917-University of TasmaniaBed of Tea Tree Rivulet, Buckland, Tasmania, Australia
93Podocarpus witherdenensis (Subgenus Podocarpus)Hill and Carpenter, 1991 [29]Fertile axis+ seed cones (Cuticle)Eocene37.2 to 33.9 MMF 1201-Geological Survey of New South Wales, SydneyVegetable Creek—Witherdens Tunnel (NSW, Australia)
94Podocarpus SpCarpenter et al., 1994 [45]Foliage (Cuticle)Oligocene–Early Miocene -R. J. Carpenter and R. S. Hill (unpublished data)Lea River (Tasmania, Australia)
95Podocarpus Sp1Carpenter, 1991 [38]Foliage (Cuticle)Oligocene - University of TasmaniaCethana, (Tasmania, Australia)
96Podocarpus Sp2Carpenter, 1991 [38]Foliage (Cuticle)Oligocene -C-251, 274, 275, 342, 492- University of TasmaniaCethana, (Tasmania, Australia)
97Podocarpus SpCarpenter et al., 1994 [45]Foliage (Cuticle)Oligocene–Early Miocene - R. S. Hill (unpublished data)Little Rapid River (Tasmania, Australia)
98Podocarpus SpHill and Macphail, 1985 [50]Foliage (Cuticle)Late Pliocene–Early Pleistocene -University of TasmaniaRegatta Point (Tasmania, Australia)
99Podocarpus Sp (Subgenus Podocarpus)Jordan et al., 2011 [39]Foliage (Cuticle) Late Oligocene–Early Miocene -OU33027- Geology Museum, University of OtagoNewvale site, (South Island, New Zealand)
100Podocarpus SpPole, 1997 [72]Foliage (Cuticle) Miocene -H41/f74, S788-University of Tasmania.Manuherikia Group, Central Otago, New Zealand
101Podocarpus SpHe and Wang, 2021 [73]Leaf (Cuticle)Miocene17 to 14-Guangchang County, Jiangxi Province, southeastern China
102Retrophyllum australeHill and Merrifield, 1993 [41]Sterile axisEocene–Oligocene48.6 to 23.03 WAM P.88.96-Western Australian MuseumWest Dale (Western Australia, Australia)
103Retrophyllum superstesWilf et al., 2017 [65]Sterile axis (Leafy twig)Cretaceous–Paleocene70.6 to 61.7 MPEF-Pb 8910- Patagonia, ArgentinaLefE (Chubut, Argentina)
104Retrophyllum oxyphyllum (Retrophyllum sp.iralifolium)Wilf, 2020 [74]Sterile axis, cuticle, leaves, fertile axisEocene52MLP-4234 and MPEF–Pb 8915a Museo Paleontológico Egidio Feruglio Trelew, Argentina
105Retrophyllum vulcanensePole, 1992 [28]Sterile axis (Cuticle)Miocene -OU29857-Department of Geology, University of Otago.Manuherikia Group, Central Otago, New Zealand
106Prumnopitys tasmanicaMill and Hill, 2004; Greenwood, 1987 [42,43]Sterile axis (Cuticle)Eocene-81905-University of TasmaniaAlcoa Anglesea, Victoria, Australia
107Prumnopitys montanaPole, 1992 [28]CuticleEocene48.6 to 33.9 S 110.-University of TasmaniaHasties (Tasmania, Australia)
108Prumnopitys opihiensisPole, 1997 [72]CuticleCretaceous/Eocene99.7 to 48.6 OU30932- University of OtagoTaratu Formation (New Zealand)
109Prumnopitys portensisPole, 1992 [28]LeafEocene48.6 to 33.9 S056-University of TasmaniaHasties (Tasmania, Australia)
110Prumnopitys taxifolia (Leaf morphology is similar to that of Sundacarpus)Pole, 1997 [30]LeafMiocene -SB 1154--Department of Geology, University of Otago.Manuherikia Group, Central Otago, New Zealand
111Sundacarpus anglicaPage, 2019 [75]Leaf (Cuticle)Eocene48.6 to 33.9 V.46883- Natural History Museum, BMBandulska (Bournemouth, England)
112Sundacarpus tzagajanicusPage, 2019 [75]Leaf (Cuticle)Uppermost Cretaceous (Earliest Paleocene—65.5–61.7 Ma)65.5–61.7 575-126-Far Eastern Scientific Centre, VladivostokBureya River (Russia)
Table 3. A brief historical overview of major taxonomic classifications of Podocarpaceae (Type genus Podocarpus elongatus).
Table 3. A brief historical overview of major taxonomic classifications of Podocarpaceae (Type genus Podocarpus elongatus).
TaxonomistTaxonomic Treatment
Endlicher, 1847 [98]He classified Podocarpaceae into three genera i. Podocarpus (with four sections i. Eupodocarpus, ii. Stachycarpus, iii. Nageia and iv. Dacrycarpus), 2. Dacrydium Sol. ex G. Forst, 3. Microcachrys Hook. f.
Pilger, 1926 [99]He considered Podocarpaceae as subfamilies Podocarpoideae with Subgenus I. Protopodocarpus (with section i. Eupodocarpus, ii. Dacrycarpus), II. Stachycarpus with section B. i. Nageia ii. Saxegothaea iii. Microcachrys iv. Pherosphaera v. Acmopyle vi. Dacrydium, vii. section A, viii. Microcarpus and Phyllocladoideae with i. Phyllocladus
Buchholz and Gray, 1948 [100,101]Classified Podocarpus into nine sections (P. sect. Eupodocarpus, P. sect. Nageia, P. sect. Afrocarpus, P. sect. Polypodiopsis, P. sect. Microcarpus, P. sect. Dacrycarpus, P. sect. Sundacarpus, P. sect. Stachycarpus)
Keng, 1973 [102]Divided into two families, i.e., Podocarpaceae and Phyllocladaceae
Gaussen, 1974 [103]Raised this group into suborder Podocarpineae and divided into three families, i.e., Podocarpaceae, Phyllocladaceae and Saxegothaeaceae.
de Laubenfels, 1985 [104]Classified Podocarpus into two subgenera and 18 sections (subgenus Podocarpus: sect. Podocarpus, sect. Scytopodium, sect. capitulatis, sect. Australis, sect. Crassiforms, sect. Pratensis, sect. Lanceolatis, sect. Pumilis, sect. Nemoralis, subgenus Foliolatus: sect. Globulus, sect. Foliolatus, sect. Acuminatis, sect. Longifoliolatus, sect. Gracilis, sect. Macrostachyus, sect. Spinulosus, sect. Rumphius, sect. Polystachyus.)
Quinn, 1987 [105]Placed back Phyllocladus in Podocarpaceae
Hart, 1987 [90]Recognized 15 genera Lagarostrobos, Microstrobos (Pherosphaera), Microcachrys, Lepidothamnus, Halocarpus, Parasitaxus, Dacrycarpus, Falcatifolium, Dacrydium, Acmopyle, Nageia, Saxegothaea, Phyllocladus, Prumnopitys and Podocarpus
Page, 1988 [106]Recognized eight genera in s.l. Podocarpus and five in Dacrydium
Page, 1990 [107]Classified Podocarpaceae into Acmopyle, Falcatifolium, Dacrydium, Halocarpus, Lagarostrobos, Lepidothamnus, Microcachrys, Microstrobos (Pherosphaera), Phyllocladus and Podocarpus (P. subg. Podocarpus and P. subg. Foliolatus) Nageia (N. sect. Nageia, N. sect. Afrocarpus, N. sect. Polypodiopsis), Dacrycarpus, Parasitaxus, Prumnopitys, Sundacarpus, Saxegothaea
Dezhi, 1992 [108]Placed Nageia into a new family Nageiaceae
Kelch, 1998 [7]Produced the phylogeny of Podocarpaceae-based molecular markers (18S RNA) of 10 genera in the following sequences: Podocarpus, Dacrycarpus, Pherosphaera, Microcachrys, Afrocarpus, Saxegothaea, Dacrydium, Parasitaxus, Lagarostrobos and Phyllocladus.
Conran et al., 2000 [93]Produced the phylogeny of Podocarpaceae-based molecular markers (rbcL) of 16 genera in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Acmopyle, Pherosphaera, Microcachrys, Lagarostrobos, Manoao, Prumnopitys, Halocarpus, Phyllocladus, Lepidothamnus and Saxegothaea.
Kelch, 2002 [14]Produced the phylogeny of Podocarpaceae-based molecular markers (18S RNA) of 16 genera in the following sequences: Dacrydium, Falcatifolium, Dacrycarpus, Pherosphaera, Microcachrys, Saxegothaea, Acmopyle, Nageia, Afrocarpus, Podocarpus, Lagarostrobos, Halocarpus, Parasitaxus, Phyllocladus, Lepidothamnus and Prumnopitys.
Sinclair et al., 2002 [94]Constructed the phylogeny of 18 genera-based molecular markers (trnL-trnF+ITS2) in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Acmopyle, Pherosphaera, Microcachrys, Saxegothaea, Lagarostrobos, Manoao, Parasitaxus, Halocarpus, Prumnopitys, Lepidothamnus and Phyllocladus.
Wagstaff, 2004 [83]Constructed the phylogeny of 9 genera-based molecular markers (rbcL+matK) in the following sequences: Afrocarpus, Podocarpus, Dacrydium, Saxegothaea, Halocarpus, Lepidothamnus, Prumnopitys and Phyllocladus.
Biffin et al., 2012 [8]Constructed the phylogeny of 18 genera based molecular markers (matK+ trnL-trnF+ITS2) in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Acmopyle, Pherosphaera, Microcachrys, Saxegothaea, Lagarostrobos, Manoao, Parasitaxus, Halocarpus, Prumnopitys, Lepidothamnus and Phyllocladus.
Knopf et al., 2012 [92]Constructed the phylogeny of 18 genera-based molecular markers (ITS1+NEEDLY intron 2+ anatomy and morphology) in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Pherosphaera, Microcachrys, Halocarpus, Lepidothamnus, Lagarostrobos, Manoao, Phyllocladus, Prumnopitys and Saxegothaea.
Little et al., 2013 [95]Used DNA barcoding (matK, rbcL and nrITS2 DNA barcodes) for the identification of Podocarpaceae (18 genera and 145 species) and to construct the phylogenetic tree
Lu et al., 2014 [11]Constructed the phylogeny of 18 genera-based molecular markers (LEAFY+NEEDLY CDS+ introns) in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Acmopyle, Pherosphaera, Saxegothaea, Microcachrys, Lagarostrobos, Manoao, Parasitaxus, Phyllocladus, Lepidothamnus, Halocarpus and Prumnopitys.
Contreras et al., 2017 [109]Constructed the phylogeny of 18 genera-based molecular markers in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrydium, Falcatifolium, Dacrycarpus, Acmopyle, Pherosphaera, Microcachrys, Saxegothaea, Halocarpus, Phyllocladus, Lepidothamnus, Prumnopitys, Lagarostrobos, Manoao and Parasitaxus.
Leslie et al., 2018 [12]Recently constructed the phylogeny of 19 genera-based molecular markers (18S, rbcL and matK) in the following sequences: Podocarpus, Afrocarpus, Nageia, Retrophyllum, Falcatifolium, Dacrydium, Dacrycarpus, Acmopyle, Pherosphaera, Microcachrys, Saxegothaea, Prumnopitys, Sundacarpus, Manoao, Lagarostrobos, Parasitaxus, Halocarpus, Phyllocladus and Lepidothamnus.
Sudianto et al., 2019 [110]Constructed the phylogeny tree of 12 genera based on Plastome in the following sequences: Afrocarpus, Nageia, Retrophyllum, Podocarpus, Dacrycarpus, Dacrydium, Pherosphaera, Saxegothaea, Phyllocladus, Lagarostrobos, Lepidothamnus and Prumnopitys.
Page, 2019 [75]Recently divided the genus Prumnopitys into two genera, Prumnopitys (Subgenus Prumnopitys and Subgenus Botryopitys) and Pectinopitys.
Khan et al., 2023 [current classification] Dacrycarpus, Halocarpus, Lepidothamnus, Manoao, Dacrydium, Lagarostrobos, Microcachrys, Pherosphaera, Parasitaxus, Acmopyle, Falcatifolium, Phyllocladus, Retrophyllum, Prumnopitys, Pectinopitys, Afrocarpus, Nageia, Podocarpus, Sundacarpus and Saxegothaea.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Khan, R.; Hill, R.S.; Liu, J.; Biffin, E. Diversity, Distribution, Systematics and Conservation Status of Podocarpaceae. Plants 2023, 12, 1171. https://doi.org/10.3390/plants12051171

AMA Style

Khan R, Hill RS, Liu J, Biffin E. Diversity, Distribution, Systematics and Conservation Status of Podocarpaceae. Plants. 2023; 12(5):1171. https://doi.org/10.3390/plants12051171

Chicago/Turabian Style

Khan, Raees, Robert S. Hill, Jie Liu, and Ed Biffin. 2023. "Diversity, Distribution, Systematics and Conservation Status of Podocarpaceae" Plants 12, no. 5: 1171. https://doi.org/10.3390/plants12051171

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop