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Abstract: The rac-GR24, an artificial analog of strigolactone, is known for its roles in inhibiting
branches, and previous studies have reported that it has a certain mechanism to relieve abiotic
stress, but the underlying metabolic mechanisms of mitigation for drought-induced remain unclear.
Therefore, the objectives of this study were to identify associated metabolic pathways that are
regulated by rac-GR24 in alfalfa (Medicago sativa L.) and to determine the metabolic mechanisms of
rac-GR24 that are involved in drought-induced root exudate. The alfalfa seedling WL-712 was treated
with 5% PEG to simulate drought, and rac-GR24 at a concentration of 0.1 µM was sprayed. After
three days of treatment, root secretions within 24 h were collected. Osmotic adjustment substances
and antioxidant enzyme activities were measured as physiological indicators, while LS/MS was
performed to identify metabolites regulated by rac-GR24 of root exudate under drought. The results
demonstrated that rac-GR24 treatment could alleviate the negative effects from drought-induced
on alfalfa root, as manifested by increased osmotic adjustment substance content, cell membrane
stability, and antioxidant enzyme activities. Among the 14 differential metabolites, five metabolites
were uniquely downregulated in plants in rac-GR24 treatment. In addition, rac-GR24 could relieve
drought-induced adverse effects on alfalfa through metabolic reprogramming in the pathways of the
TCA cycle, pentose phosphate, tyrosine metabolism, and the purine pathway. This study indicated
that rac-GR24 could improve the drought resistance of alfalfa by influencing the components of
root exudates.

Keywords: alfalfa; rac-GR24; metabolomic pathway; root exudate

1. Introduction

Drought is a global issue, with frequent occurrence of extreme weather around the
world [1]. Physiological mechanisms of plant responses to drought include effective
biomass allocation changes [2], strong osmotic regulation capacity [3], low membrane lipid
peroxidation, and low ROS accumulation levels [4]. In fact, the response of plants to drought
stress is a complex biological process involving many metabolic changes [5,6]. It is estimated
that there are about 200,000 to 1 million metabolites in all plants [7], including primary
metabolites, such as carbohydrates, lipids, amino acids, nucleic acids, and organic acids,
etc. The metabolites in plants also include secondary metabolites closely related to plant
stress defense, such as alkaloids, phenols, quinones, flavonoids, and terpenes [8]. Previous
research on the effects of drought stress on plant metabolomics has revealed that the general
metabolic changes in plants in response to drought are significantly increases in amino acids,
organic acids, sugars, and polyols [9,10]. These compounds can be regulated osmotically
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through scavenging ROS, protecting cellular components, or ensuring membrane lipid
stability [11].

The root system has abilities to improve the ecological environment and maintain
water in soil [12]. Newly created lateral roots can efficiently transport water to the main
root in the drought environment [13]. Compared with other crops, Medicago sativa is a kind
of best pasture for feed that is among the most widely cultivated forages in the world [14].
Alfalfa has a strong deep root system that can acquire and absorb deep soil moisture,
which is widely considered to be one of the main reasons for its high drought resistance.
Nonetheless, drought is a major environmental factor which can cause damage to the
growth and yield of alfalfa [15]. The root cells will lose water and shrink when the water
absorbed by the roots of alfalfa is limited.

The existing measures to improve plant stress resistance include breeding, adding
exogenous plant hormones, or genetic engineering. However, adding exogenous hormones
is one of the most widely used methods. Among plant hormones, strigolactone (SL) has
been identified as a type of plant hormone that can certainly improve stress resistance of
plants. Previous studies have also reported that one of the artificial analogs of SL, GR24, can
improve the heat tolerance of lupine [16] and the NaCl tolerance of maize [17]. However,
to our knowledge, understanding of the metabolite changes associated with the mitigation
effect of GR24 on alfalfa grown under drought stress remains fragmentary. In particular,
the effect of GR24 on the roots and exudates of alfalfa under drought stress is still unclear.

Root exudates from plants undergoing abiotic stress defense contain compounds
(amino acids, carbohydrates, peptides, and phenolic compounds) with osmotic regulation
and antioxidant capacity. More and more studies have found that root exudates are
important signal substances, among which ethylene, salicylic acid, and jasmonic acid are
effective signal substances in the rhizosphere, which can transmit information in plant–
plant interactions, stimulating intraspecific and interspecific subsurface responses [18]. In
our previous study, transcriptomics [19] and chlorophyll a (Chl a) OJIP fluorescence [20]
were used to analyze the mechanism of GR24 in alleviating the growth of alfalfa under
drought stress, but the study materials were leaves. In order to study the alleviating effect
of rac-GR24 on alfalfa growth under drought stress, we investigated the mechanism of
rac-GR24 alleviating alfalfa growth under drought stress in this study by analyzing the
effect of rac-GR24 on alfalfa root exudates.

2. Methods and Materials
2.1. Material Cultivation

At Yangzhou University, this experiment was carried out by utilizing WL-712
(Medicago sativa L.) as the plant material. The Zheng Dao Company in Beijing donated the
WL-712 seeds, which were chosen for their consistent size. WL-712 alfalfa seeds were grown
in germination boxes for 10 days and then transferred to plastic containers. All 16 plastic
containers (475 mm× 375 mm× 165 mm) were filled with 28 L full Hoagland solution, and
20 selected seedlings were sown in each container. The Hoagland solution was changed
every 10 days. All of the containers were kept in a greenhouse at a temperature of 25/18 ◦C
(day/night) with a 16-h photoperiod.

2.2. Treatments

Seedlings were given 4 different treatments for 3 days after 30 days of cultivation,
according to the following: (1) The untreated samples were Control; (2) SL was sprayed
with 0.1 µM rac-GR24; (3) D treatment was planted with 5% PEG; (4) DSL was based on D
treatment and sprayed with 0.1 µM rac-GR24. A 10 µM measure of stock solution was used
to prepare rac-GR24 solution, and 3 mg rac-GR24 (Chiralix, Nijmegen, The Netherlands)
was dissolved in 500 µL of acetone and diluted in 1 L of distilled water. At each time, 50 mL
of solution was used for foliar application of each plant. After 3 days of treatment, the roots
were washed with sterile water and put into a sterile centrifuge tube filled with 30 mL of
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sterile water as root exudates for 24 h later. Therefore, root samples were collected from
plants three days after osmotic stress exposure for further physiological analysis.

2.3. Determination of Triphenyltetrazolium Chloride (TTC), Soluble Sugar (SS), Soluble Protein
(SP), and Malondialdehyde (MDA)

According to Clemensson-Lindell [21], the TTC reduction strength was measured
by the TTF reaction method. The content of soluble sugar was determined according to
Buysse and Merckx [22]. The content of soluble protein was determined by the method
of Bradford [23]. According to Liu [24], the MDA content was determined using the
TBA reaction.

2.4. Determination of Strigolactone, O2
−, and Enzyme Activity

The content of strigolactone in roots was determined using a plant ELISA kit (Jiangsu
Meimian Industrial Co., Ltd., Yancheng, China) and the content of O2

− was measured by a
superoxide anion content detection kit (Beijing Solarbio Science & Technology Co., Ltd.,
Beijing, China, BC1290). The activity of catalase (CAT) was measured following the method
described by Blume and McClure [25], and the peroxidase (POD) activity was calculated
by the method of Ranieri [26].

2.5. Untargeted Metabolomics Analysis

The metabolites present in the samples of D and DSL treatment were determined using
LC–MS at BioNovoGene Co., Ltd. (Suzhou, China). The samples of root exudate solution
were thawed at 4 ◦C and mixed for 1 min after thawing. An appropriate amount of sample
was transferred accurately into a 2 mL centrifuge tube, 500 µL methanol (stored at −20 ◦C)
was added into the sample tube, and the contents were dried and vortexed for 1 min. A
150 µL measure of 2-Amino-3-(2-chloro-phenyl)-propionic acid (4 ppm) solution was added
to prepare with 80% methanol water (stored at −20 ◦C) to redissolve the sample. A 0.22
µm membrane was used to filter the supernatant and LC–MS detection was transferred
into the detection bottle.

For LC analysis, the Vanquish UHPLC system (Thermo Fisher Scientific, Waltham,
MA, USA) was used. ACQUITY UPLC ® HSS T3 (150 × 2.1 mm, 1.8 µm) (Waters, Milford,
MA, USA) was used to carry out chromatography. The flow rate was 0.25 mL/min and 2 µL
was set as the injection volume. Mass spectrometric detection of metabolites was performed
by using Q Exactive Focus (Thermo Fisher Scientific, Waltham, MA, USA) with an ESI ion
source. Robust LOESS signal correction (QC-RLSC) was applied for data normalization to
correct for any systematic bias. Normalization was based on the proportion conversion
of quantitative values of a single metabolite and the sum of quantitative values of all
metabolites in the sample. After normalization, only ion peaks with relative standard
deviations less than 30% in QC were kept, to ensure proper metabolite identification.

2.6. RNA Extraction and Gene Expression Analysis

After root exudates were collected, 0.05 g of D and DSL alfalfa roots were taken
for RNA extraction. Total RNA was extracted by FastPure Universal Plant Total RNA
Isolation Kit (catalogue No. RC411, Vazyme, Nanjing, China). In the following procedure,
the relative expression levels of differentially expressed genes (DEGs) were measured by
qRT-PCR. To summarize, cDNA was synthesized by a kit from Vazyme in Nanjing, China,
called HiScript III RT SuperMix. The QuantStudio3 Real-Time PCR system and 20 µL
volumes with SYBR as a quantitative dye (Vazyme, Nanjing, China) were used to perform
qRT-PCR. The β-actin gene was chosen as a reference gene. Twenty-six selected genes
with information are listed in Appendix A Table A1. Four biological replicates and three
technical replicates were used independently for the qRT-PCR analysis.
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2.7. Statistical Analysis

The R package ropls was used to analyze processed data after being normalized to
the total peak intensity. After scaling data, models were built on principal component
analysis (PCA). The metabolic profiles could be visualized as a score plot, where each
point represents a sample. To identify the contributable variable for classification, the
p-value, variable importance projection (VIP), and fold change (FC) were used. Metabolites
with p < 0.05 and VIP values > 1 were considered statistically significant. The identified
metabolites in metabolomics were then mapped to the KEGG pathway for biological
interpretation of higher-level systemic functions. The metabolites and corresponding
pathways were visualized using the KEGG Mapper tool. In the growth and physiological
analysis of alfalfa seedlings under drought stress, each test was performed in triplicate, and
data were expressed as the mean (with SD) of four independent replicates. In SPSS 23.0
software, one-way ANOVA (p < 0.05) was used to perform statistical analyses.

3. Results
3.1. Morphological Response to Drought Stress in Alfalfa Root

The length of alfalfa roots was significantly increased by 54.9% in DSL treatment,
comparing with D, while the weight of roots was decreased by 41.7%. In addition, the TTC
reaction strength was dramatically increased by 61.2% in DSL treatment, compared to D
(Figure 1C).
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Figure 1. Morphological changes in alfalfa root in response to different treatments include root
length (A), root weight (B), and TTC (C). Results are presented as the mean of four independent
experiments ± standard error. a–d Different superscripts mark significant differences between the
treatments (p < 0.05).

3.2. SL Response to Drought Stress in Alfalfa Root

The content of SL in alfalfa roots was sharply increased by 63.8% in SL treatment
compared to the control group, whereas the SL content was increased by 52.1% in DSL
treatment (Figure 2).
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3.3. Osmotic Substance Response to Drought Stress in Alfalfa Root

Compared to D, the content of soluble sugar in DSL treatment alfalfa roots was
significantly increased by 28.0%, while the content of soluble protein was increased by
7.6%, not significantly (Figure 3).
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3.4. Membrane Lipid Peroxidation Response to Drought Stress in Alfalfa Root

The content of MDA in SL treatment was decreased compared to Control, while that
in DSL treatment was significantly decreased by 36.1% (D vs. DSL) (Figure 4).
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3.5. Antioxidant Response to Drought Stress in Alfalfa Root

The content of O2
− was significantly decreased under the DSL treatment contrasted

to the D treatment. The content of O2
− was significantly decreased by 48.0%, whereas

the activity of POD was increased by 7.1% (D vs. DSL). The main antioxidants regulating
ROS to reduce cell damage were CAT and POD activities. Compared to the control group,
all rac-GR24 treatments showed an increase in antioxidant enzyme activities in both SL
and DSL treatment. The activities of POD and CAT were increased by 19.3% and 37.2%,
respectively, comparing SL and Control, and by 7.1% and 10.2%, respectively, comparing D
and DSL (Figure 5).
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3.6. Metabolic Profiling

The samples from different treatments showed distinct separation, suggesting sig-
nificant changes in metabolites in those samples. In total, 261 metabolites were detected
from the six alfalfa root exudate samples (D vs. DSL) by the LS/MS system. The de-
tected metabolite content data were normalized. The metabolite accumulation pathways
of different samples were clustered. Among all metabolites identified, 126 metabolites
were upregulated and 131 metabolites were downregulated (D vs. DSL). The accumulated
metabolites were considered differentially accumulated in a statistically significant way by
a VIP (variable importance on projection) value > 1 and p < 0.05. Among 261 metabolites,
14 differentially accumulated metabolites were identified (Figure 6A). The contents of ethyl
benzoate, phenylacetaldehyde, 4-Hydroxybenzoate, p-Octopamine, and L-Malic acid were
decreased in DSL treatment, but the contents of paclobutrazol, uric acid, 4-Hydroxy-2-
quinolone, and 3-Methoxytyramine were significantly increased (Figure 6B).
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3.7. KEGG Enrichment Analysis

To further analyze the differentially accumulated metabolites which were related to
improving alfalfa drought tolerance, KEGG pathway analysis was carried out for all differ-
entially accumulated metabolites in alfalfa. KEGG analysis assigned 14 differentially regu-
lated metabolites to 12 metabolic pathways (Figure 7). L-Malic acid, 3-Methoxytyramine,
and 4-Hydroxybenzoate were involved in the most KEGG pathways (four and two path-
ways, respectively). In particular, KEGG analysis indicated that two differentially accumu-
lated metabolites (rosmarinic acid and 3-Methosytyramine) were involved in the tyrosine
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metabolism pathway. In addition, DEMs mainly enriched in the citrate cycle and carbon
fixation in photosynthetic organism pathways. Generally, these main enriched metabolic
pathways can be divided into six classes: amino acid metabolism, biosynthesis of other sec-
ondary metabolites, carbohydrate metabolism, energy metabolism, metabolism of cofactors,
and vitamins and nucleotide metabolism.
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3.8. Genes Related to rac-GR24-Induced in Alfalfa Roots under Drought Stress

Based on KEGG analysis results, the relative expressions of 26 genes were selected to
measure by qRT-PCR (Figure 8A). Figure 8B shows metabolic pathways for the differential
metabolites in DSL treatment in comparison to those in D treatment of alfalfa root exu-
dates. Twelve associated genes, including Glucose-6-phosphate 1-dehydrogenase 2 (G6PD 2),
Probable 6-phosphogluconolactonase 1 (6PGL 1), Ribulose-phosphate 3-epimerase (RP3E), Fructose-
bisphosphate aldolase 1 (Fba 1), and Isocitrate dehydrogenase (IDH), were upregulated in the
TCA cycle and pentose phosphate pathway in DSL treatment. Only the relative expression
of Glucose-6-phosphate isomerase 1 (G6PI 1) was downregulated. The relative expressions
of Primary amine oxidase (PAO) and DHBP synthase were elevated, whereas GMP synthase
was downregulated in the tyrosine metabolism pathway. Additionally, seven genes were
upregulated and three genes were downregulated among the 10 selected genes that are
parts of the purine metabolism and folate production pathway. Since most of the structural
genes involved in the pathways were dramatically downregulated while G6PI 1 and GMP
synthase were significantly downregulated in DSL treatment, the TCA cycle, pentose phos-
phate metabolism, and tyrosine metabolism in alfalfa roots were all activated. Interestingly,
GDP synthesis is activated in the purine metabolic pathway, while genes involved in urate
synthesis at the end of pathway are inhibited. These results may suggest that pentose
phosphate and tyrosine metabolism in alfalfa under drought stress is a rac-GR24-induced
mitigation mechanism.
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Figure 8. Relative expressions of 26 selected genes (A) and metabolic pathways for the dif-
ferential metabolites in DSL treatment in comparison to those in D treatment of alfalfa root
exudates (B). The red boxes represent those upregulated and the green boxes represent those down-
regulated in DSL compared to those in D. Results are presented as the mean of four independent
experiments ± standard error. * p < 0.05 relative to drought treatment, ** p < 0.01 relative to drought
treatment, *** p < 0.001 relative to drought treatment.

4. Discussion

Serious browning occurred in the underground part of alfalfa exposed to drought
stress, and results revealed the biochemical changes (mainly including antioxidant enzyme
activity and osmotic adjustment substance) within WL-712 alfalfa roots in response to
drought stress in DSL treatment (Figure 1). The roots showed relatively significant changes
in the membrane, antioxidants, and osmolytes under drought stress. The TTC reaction
strength of alfalfa roots was significantly decreased under drought stress and increased
in DSL treatment, which indicated that rac-GR24 improved antioxidant enzyme activities
of alfalfa root (Figure 1C). Stress-treated rice and cucumber have shown a boost in the
content of MDA and O2

− [27,28]. In this study, the decreasing of MDA and O2
− contents

were also observed in comparison with D and DSL, which may suggest that osmolytes
could protect the membranes of plant cells, resulting in increased membrane stability and
balanced osmotic pressure (Figures 4 and 5). The contents of SP and SS were increased in
a boost, which indicated that rac-GR24 at a concentration of 0.1 µM could modulate the
response to drought stress by inducing the accumulation of osmotic substances to reduce
water potential in order to maintain the water absorption capacity of alfalfa (Figure 3). As a
defense strategy, the enzymatic antioxidant system was used to clear ROS and increase the
plant’s resilience to stress [29]. POD and CAT (Figure 5) may therefore be key players in
the detoxification of ROS produced as a result of drought stress in alfalfa roots. Addition-
ally, by oxidizing amino acids and proteins, ROS can harm cells and the photosynthetic
apparatus [30].

In this study, untargeted metabolomics studies showed that 12 key metabolic path-
ways involving 14 metabolites were the metabolic response mechanism of drought-stress
resistance of alfalfa in DSL treatment. These metabolites are involved in the TCA cycle,
pentose phosphate, tyrosine metabolism, betalain biosynthesis, purine metabolism, and
folate biosynthesis. The pentose phosphate pathway is a direct oxidative decomposition
pathway of glucose, which is closely related to aerobic respiration of cells [31]. As one
of the major upregulated differential metabolites (D vs. DSL), 6-phosphogluconic acid
is significantly enriched in pentose phosphate metabolism. According to the results of
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qRT-PCR analysis, the conversion pathway of β-D-Glucose-6P to α-D-Glucose-6P was
inhibited by rac-GR24, but DSL treatment catalyzed the conversion of β-D-Glucose-6P to
D-Glucono-1,5-lactone-6P, and finally enhanced the pentose phosphate pathway, which
enabled the plants to carry out normal aerobic respiration under drought stress, and the
TTC activities in roots indeed significantly increased (D vs. DSL). The TCA cycle is a series
of catabolic reactions that occurs in the mitochondria. It combines the carbon dioxide
produced by the oxidation of pyruvate and malate with the production of nicotinamide
adenine dinucleotide (NADH) to create energy for the respiratory chain to oxidize [32].
Differential metabolism analysis showed that the direct regulation of the TCA cycle in
plants was provided by L-malic acid, which might be due to DSL treatment can enhance
plant respiration and make plants obtain more energy, indicating that the TCA cycle rate
in the roots of alfalfa in DSL treatment was increased. In addition, carbohydrates are
the main energy storage substances and can be regulated reacting to drought stress, as
carbohydrate content has been regarded as an indicator of plant physiological state [33].
In this study, soluble sugar, as carbohydrate, was involved in the TCA cycle and signif-
icantly increased in roots under drought stress and rac-GR24 treatment, implying that,
by increasing carbohydrate content, roots could accelerate energy support and produce
more drought-stress-related proteins, and thus alleviate drought stress. At the same time,
the expressions of genes regulating carbohydrates were significantly upregulated, which
further supports this result.

Nucleotide biosynthesis and degradation are two of the metabolic processes in re-
sponding to drought of Arabidopsis [34] and rice [35]. Recent studies have indicated
that the purine metabolism pathway is a crucial way for Dendrobium sinense [36] and
Dendrobium wangliangii [37] to adapt to drought stress. Previous studies showed that
guanine deficiency causes xanthine and hypoxanthine to replace guanine in RNA and
DNA synthesis, leading to metabolic system disorders [38]. In this study, DSL treatment
promoted the conversion of GDP to GTP, which could speed up the energy conversion
process within cells. Consistent results at the gene level show that Pyruvate kinase (PK) and
Ribonucleoside-diphosphate reductase small chain A (RNR2) that control DNA replication were
upregulated in DSL treatment (Figure 8A). This indicates that rac-GR24 could enable plants
to resist the system disorder caused by drought by enhancing the DNA replication process
under stress. In addition, the way from GDP to XMP was inhibited, while the branch of
IDP was promoted, which caused that inosine was produced. The urate in root exudate
was significantly increased in DSL treatment. According to qRT-PCR result, the expression
of Hypoxanthine-guanine phosphoribosyltransferase (HGPRT) related to xanthine metabolite
was upregulated, while the expression of Hydroxyisourate hydrolase (HIU hydrolase) related
to urate was downregulated (Figure 8A). These results suggest that rac-GR24 can improve
the drought tolerance of alfalfa by promoting the synthesis of xanthine, inosine, and uric
acid, reducing allantoin and enhancing purine metabolism, while restoring the normal
metabolic system.

As upregulated metabolites, rosmarinate and 3-Methoxytyramine were mainly en-
riched in tyrosine metabolism and betaine metabolism pathways. Tyrosine is a biosynthetic
precursor of tocopherols, plastoquinone, and ubiquinone, all of which are required by
plants [39]. Together with tocotrienols, tocopherols make up the class of lipid-soluble an-
tioxidants known as tocochromanols, which have physiological functions for plants other
than antioxidation [40]. Under drought stress, the tyrosine metabolic pathway is activated,
and the production of rosmarinate effectively improves the antioxidant activity of plants.
In terms of physiological indicators, the activities of POD and CAT were enhanced, and the
content of O2

− was also significantly decreased. A significant increase in the content of
rosmarinate in alfalfa root exudate in DSL treatment indicates that the plant’s antioxidant
activity remains high, which indicates that rac-GR24 could effectively improve the activities
of antioxidant enzymes in plant cells to eliminate ROS.
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5. Conclusions

In conclusion, rac-GR24 could alleviate the damage caused by drought stress on al-
falfa roots by regulating a series of metabolic pathways (Figure 9). The mechanism of
rac-GR24 alleviating drought damage to alfalfa is related to respiration energy, antioxi-
dant substances and osmoregulatory substances in the TCA cycle, tyrosine metabolism,
and purine metabolism. rac-GR24 could improve plant respiration through the pentose
phosphate pathway and TCA cycle, promote purine metabolism, increase urate content,
and strengthen the DNA replication process to resist DNA damage caused by drought. In
addition, rac-GR24 could improve the content of rosmarinic acid to increase the activities of
antioxidant enzymes and remove ROS. This study indicated that rac-GR24 improves the
drought resistance of alfalfa by affecting the components of root exudates. The relationship
between root exudates and soil microorganisms will be investigated in a further study.
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Appendix A

Table A1. Primers of candidate genes in alfalfa.

Gene ID Name Short Name Primer Sequence

MsG0780036878.01 Glucose-6-phosphate 1-dehydrogenase 2 G6PD 2
F: AACCAACATGACACCACCGATACTG
R: AGACACGACACAACACACAGACAC

MsG0580028227.01 Glucose-6-phosphate isomerase 1 G6PI 1
F: ATTGCAGCCATTTCACTAGCCATTG
R: GGTTTAGGTCTTGGTGGTGGGTTAG

MsG0580027701.01 Probable 6-phosphogluconolactonase 1 6PGL 1
F: CGTGCTCTATGGCGGCGTTAC
R: TCGGCTCCATTTCCTTCACAAACTC

MsG0480019171.01 Transketolase TK
F: TGGAATGGGAGCAATCAGCAATGG
R: CCTAATGGCACCACGCATGTAGTC

MsG0880046469.01 Ribulose-phosphate 3-epimerase RP3E
F: TTGAGAAGATTGTGCGTGGAGAAGG
R: ACAGCAGAACCAGCAACCAGTG

MsG0480021331.01 Fructose-bisphosphate aldolase 1 Fba 1
F: TGCCATGAACCAATCTCCAAACCC
R: AGTGCTTCTTGTGCTGCCTGAAC

MsG0580025903.01
Pyruvate dehydrogenase E1 component
subunit alpha PDHE1A

F: GATGGGTGCTCTAAAGGGAAAGGTG
R: CCGCAACCAAGTGGAACCTGAG

MsG0580025144.01 Aconitate hydratase 1 Aco 1
F: GCTTCTCCTCCTCTCGTTGTTGC
R: TCTGCTATTTCTTCGCTGGATGGC

MsG0380017124.01
Isocitrate dehydrogenase [NAD]
catalytic subunit 5 IDHCS 5

F: TGTGTGCAGGCTGGAAAGTCAAG
R: CTCTCCAATCCGCAGGTTACCAAG

MsG0280009437.01 Isocitrate dehydrogenase [NADP] IDH
F: CCAGATGAAGGTCGTGTCAAGGAG
R: TTCGTCCAGCCTGAAACAAGTCG

MsG0780036931.01 2-oxoglutarate dehydrogenase 2-OGDC
F: AAATATGTCGGTCGTGCTCCATCTG
R: TTGAAGGGCTTTCTCGGCAATCTC

MsG0180005032.01 Succinate dehydrogenase [ubiquinone]
iron–sulfur subunit 2

SDH 2
F: GGACGGATTCGACTTCGACGATAAC
R: CCTCTTCAACCACGGCTCAATACTC

MsG0780041035.01 Malate dehydrogenase MDH
F: GAGTTACAGCCCTCGATGTTGTGAG
R: TCCTGCATGACCTCCTACCACTG

MsG0280006694.01 Polyphenol oxidase A1 PPO
F: TGCTTTGCCATTTTGGAACTACGAC
R: GTTGGAGGTTGATGACTAGCGGTTC

MsG0280010998.01
Monofunctional riboflavin biosynthesis
protein RIBA 3 DHBP synthase F: TGGGTTAGGTCACAAACTTCAAGCC

R: TGCCATACTCACGAGCATCAACAG

MsG0480022833.01 Isoflavone 2′-hydroxylase I2′H
F: CACTGGCGTAACCTTCGTCGTATC
R: TCAACCTCTGAGTCTCGTCCCTTC

MsG0480020253.01 Primary amine oxidase PAO
F: AGATGTTGCATGGCCTGGTTGTC
R: TTGCCGCTGGAAGTGAGAATAGATC

MsG0780040024.01 Nucleoside-triphosphatase NTPase
F: GGTGGAGGAGGAAGTGGACAGAG
R: CAGTCTCAAGATCCACAGGACGAAG

MsG0780040027.01 Apyrase 2 APY2
F: CGCCGTTCAATCCACTTCTCCTC
R: AACAAGAAGAGTGCCACGGAATCTG

MsG0480023648.01 GMP synthase [glutamine-hydrolyzing] GMP synthase F: AGCAGGGTGGAAGATGGAGGATG
R: TGGTAGCAGCAACAGTGGAATCAAC

MsG0180004865.01 Hydroxyisourate hydrolase HIU hydrolase F: GGAAGGAGCTGCTGATGAAGATGG
R: TTCGGGTTGACGGGTCCTCTAC

MsG0480022643.01
Bifunctional riboflavin biosynthesis
protein RIBA 1 RIBA 1

F: CGTGGCTCAGATTTGGCATTTGTTC
R: TCCAGAGGTCAACGCAGCTTTAAC

MsG0780040519.01 Guanylate kinase 2 GK2
F: GGAGTAAGGGTGTGATAGGCAATGC
R: CTCGGAGCACGGGTTGTATGAC

MsG0180005342.01
Hypoxanthine-guanine
phosphoribosyltransferase HGPRT

F: TCATCTTCCTTGCTGACCTTGTTCG
R: TGGAGACAGTAGCAGAACCGTAGG

MsG0880046930.01 Ribonucleoside-diphosphate reductase
small chain A

RNR2
F: AAGGAAGGCTGAATGGGCATTGAG
R: GCAAGCAAAATCGCAGTGAAGACC

MsG0180005028.01 Pyruvate kinase 1 PK
F: GAGCCGATGAGCCACATGGAATC
R: CAGGCATGGTTGGTCTGTACTTAGC
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