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Abstract: Plant growth-promoting rhizobacteria (PGPR) such as the root colonizers Bacillus spp.
may be ideal alternatives to chemical crop treatments. This work sought to extend the application
of the broadly active PGPR UD1022 to Medicago sativa (alfalfa). Alfalfa is susceptible to many
phytopathogens resulting in losses of crop yield and nutrient value. UD1022 was cocultured with
four alfalfa pathogen strains to test antagonism. We found UD1022 to be directly antagonistic
toward Collectotrichum trifolii, Ascochyta medicaginicola (formerly Phoma medicaginis), and Phytophthora
medicaginis, and not toward Fusarium oxysporum f. sp. medicaginis. Using mutant UD1022 strains
lacking genes in the nonribosomal peptide (NRP) and biofilm pathways, we tested antagonism
against A. medicaginicola StC 306-5 and P. medicaginis A2A1. The NRP surfactin may have a role in
the antagonism toward the ascomycete StC 306-5. Antagonism toward A2A1 may be influenced
by B. subtilis biofilm pathway components. The B. subtilis central regulator of both surfactin and
biofilm pathways Spo0A was required for the antagonism of both phytopathogens. The results of this
study indicate that the PGPR UD1022 would be a good candidate for further investigations into its
antagonistic activities against C. trifolii, A. medicaginicola, and P. medicaginis in plant and field studies.

Keywords: PGPR; alfalfa; antagonism; Bacillus subtilis; Phytophthora medicaginis; Ascochyta medicagini-
cola; Phoma medicaginis; surfactin; biofilm

1. Introduction

The perennial forage legume alfalfa (Medicago sativa) is an important crop grown
globally and serves as a critical source of animal feed, as well as contributing significantly
to nitrogen replenishment of the soil in crop rotations [1]. Soil-resident pathogens such as
fungi and oomycetes can significantly impact alfalfa germination, establishment, biomass,
and nutritional value of this economically important field crop [2]. Alfalfa yield losses
due to foliar pathogens such as spring black stem and leaf spot caused by Ascochyta
medicaginicola were conservatively averaged to be 13.2% in a study of over 48 harvests across
four U.S. states over four years [3]. Great progress has been made in the breeding of alfalfa
cultivars resistant to common pathogens [4], however, the challenge remains to develop
cultivars optimally resistant to multiple different established and novel pathogens [5,6].
Implementation of alternative strategies such as the use of plant-associated microorganisms
and their natural products (‘biologicals’) is a viable tool for the management of these
pathogens in conjunction with more traditional methods [7].

A subset of soil and plant root-associated bacteria have long been recognized as having
plant beneficial activities including improving plant growth and disease suppression and
are known as plant growth promoting rhizobacteria, or ‘PGPR’ [8]. The activities of PGPRs
have been intensely researched for use against a myriad of common and devastating soil-
borne pathogens. Bacillus spp. specifically have been studied for several decades due
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to their multifaceted modes of plant-beneficial activities [9,10], one of the most robust of
which are the direct inhibitory or antagonistic interactions with bacterial and fungal plant
pathogens [11]. Bacillus cereus (UW85) was found to be significantly suppressive toward
Phytophthora megasperma f. sp. medicaginis in alfalfa tube bioassays, reducing seedling
mortality to 0% [12].

Many of the powerful metabolites and antibiotics produced by Bacillus spp. have
been found to directly suppress microbial pathogens [13]. The largest class of Bacillus spp.
antibiotics includes nonribosomal peptides (NRP) [14]. The antifungal properties of NRPs
are well documented; with their amphiphilic structure, NRPs such as surfactin, iturin, and
fengycin/plipastatin can disrupt cell membranes and cause cell death [15].

The srfAC operon encodes four different enzyme subunits of the nonribosomal peptide
synthase (NRPS) surfactin synthetase complex [16]. NRPs, including plipastatin, require the
sfp gene product, 4′-phosphopantetheinyl transferase (Sfp), for assembly by the machinery
of these complexes [17]. The gene ppsB encodes one of five subunits of the NRPS which
synthesizes the cyclic NRP plipastatin [18].

The gene spo0A encodes a master transcriptional regulator for biofilm [19] and sur-
factin [20]. SinI derepresses SinR repression of epsA-O and tasA, triggering matrix produc-
tion in conjunction with Spo0A [21]. Eps, part of the epsA-O operon, encodes for biofilm
exopolysaccharide production and the tasA gene, part of the tapA-sipW-tasA operon, en-
codes protein fiber components of biofilms; the double mutant eps−-tasA− is completely
defective in biofilm formation [22,23].

Another important PGPR characteristic of Bacillus spp. is their ability to produce
polysaccharide-rich biofilms. Bacillus spp. biofilm formation is a hallmark of their mul-
ticellular lifestyle, allowing them to adhere to surfaces and respond to environmental
conditions through a heterogeneity of cell types within the matrices produced [24]. The
ability to form robust biofilms by Bacillus spp. is necessary for close association with the
plant root [25,26]. Bacillus spp. biofilm and NRP synthetic pathways overlap through the
activities of various common global regulators [27,28]. On plant roots, the upregulation of
biofilm formation appears to be induced by plant root-exuded polysaccharides [29] and
surfactin is not required for this biofilm production [30]. However, possible mechanisms
and/or specific coordination of genetic pathways have not yet been disentangled for the
role of biofilms in Bacillus spp. antagonistic activities.

The growth promotional and plant protective activities of the University of Delaware
patented PGPR B. subtilis UD1022 are well established for a variety of horticulturally and
agriculturally relevant plants [31]. The complete genome of UD1022 has been described [32]
and the ability of this strain to produce secondary metabolites, antibiotics, and plant-
associated biofilms contributes to its PGPR function [25,33]. The aim of this study was
to evaluate whether the PGPR B. subtilis UD1022 is antagonistic toward common alfalfa
fungal and oomycete pathogens and to investigate possible modes of action for observed
antagonisms. Here, we demonstrate the strong antagonistic activity of UD1022 against
several alfalfa phytopathogens and compare the likely differences in how these antagonisms
are achieved by the PGPR.

2. Results

UD1022 antagonism in direct challenge assays ranged from strongly antagonistic to
no antagonism toward the different genera of phytopathogens (Figure 1). Indirect culture
with UD1022 did not inhibit any of the pathogens in split plate assays (data not shown).
C. trifolii AN1 and SM were moderately antagonized (40% reduction in colony area) by
UD1022 (Figure 1A,B).
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Figure 1. Results of UD1022 direct antagonism assays. Control (left) and treatment plate (right) pairs 
for each pathogen challenged. (A), Colletotrichum trifolii AN1. (B), Colletotrichum trifolii SM. (C), F. 
oxysporum f. sp. medicaginis Fom3. (D), F. oxysporum f. sp. medicaginis Fom255. (E), Ascochyta medi-
caginicola StC 306-5. (F), Ascochyta medicaginicola StC 306-10. (G), Phytophthora medicaginis A2A1. 

UD1022 had no antagonism toward either strain of F. oxysporum f. sp. medicaginis 
(FOM 255 and Fo 3). The greatest antagonism was toward A. medicaginicola and P. medi-
caginis. UD1022 antagonism was significant toward both A. medicaginicola strains, 63% to-
ward StC 306-5 and 55% towards StC 306-10 (Figure 1E,F). The strain StC 306-5 was se-
lected for further analysis of UD1022 antagonistic mechanisms through the use of select 
UD1022 functional deletion mutants in NRP and biofilm pathways. UD1022 antagonism 
against P. medicaginis A2A1 was the strongest, reducing colony area by 67% (Figure 1G) 
and A2A1 was subjected to further analysis to identify a mechanism for the observed ac-
tivity. 

UD1022 NRP mutant srfAC− had a moderate but significantly less antagonistic effect 
(35% inhibition) on A. medicaginicola StC 306-5 colony area than UD1022, at nearly 48% 
inhibition (p = 0.044). Colony areas of StC 306-5 responding to ppsB− had 44% inhibition 
and the double-mutant ppsB−-srfAC− treatment was intermediately inhibited at 39%. Both 
were statistically similar to the UD1022 treatment (p = 0.853 and 0.265, respectively) and 
to srfAC− (p = 0.27 and 0.859, respectively). The fungal colony area response to mutant sfp− 
was not different from the fungal colony in response to UD1022 with 53 % inhibition (p = 
0.766) (Figure 2). The direct challenge with surfactin at concentrations of 25 and 100 µg/mL 
resulted in observable but not significant antagonism of StC 306-5 (Supplementary Figure 
S1).  

Figure 1. Results of UD1022 direct antagonism assays. Control (left) and treatment plate (right)
pairs for each pathogen challenged. (A), Colletotrichum trifolii AN1. (B), Colletotrichum trifolii SM.
(C), F. oxysporum f. sp. medicaginis Fom3. (D), F. oxysporum f. sp. medicaginis Fom255. (E), Ascochyta
medicaginicola StC 306-5. (F), Ascochyta medicaginicola StC 306-10. (G), Phytophthora medicaginis A2A1.

UD1022 had no antagonism toward either strain of F. oxysporum f. sp. medicaginis (FOM
255 and Fo 3). The greatest antagonism was toward A. medicaginicola and P. medicaginis.
UD1022 antagonism was significant toward both A. medicaginicola strains, 63% toward
StC 306-5 and 55% towards StC 306-10 (Figure 1E,F). The strain StC 306-5 was selected
for further analysis of UD1022 antagonistic mechanisms through the use of select UD1022
functional deletion mutants in NRP and biofilm pathways. UD1022 antagonism against P.
medicaginis A2A1 was the strongest, reducing colony area by 67% (Figure 1G) and A2A1
was subjected to further analysis to identify a mechanism for the observed activity.

UD1022 NRP mutant srfAC− had a moderate but significantly less antagonistic effect
(35% inhibition) on A. medicaginicola StC 306-5 colony area than UD1022, at nearly 48%
inhibition (p = 0.044). Colony areas of StC 306-5 responding to ppsB− had 44% inhibi-
tion and the double-mutant ppsB−-srfAC− treatment was intermediately inhibited at 39%.
Both were statistically similar to the UD1022 treatment (p = 0.853 and 0.265, respectively)
and to srfAC− (p = 0.27 and 0.859, respectively). The fungal colony area response to
mutant sfp− was not different from the fungal colony in response to UD1022 with 53 %
inhibition (p = 0.766) (Figure 2). The direct challenge with surfactin at concentrations of
25 and 100 µg/mL resulted in observable but not significant antagonism of StC 306-5
(Supplementary Figure S1).
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Figure 2. Results of antagonism assays with UD1022 mutants in key nonribosomal peptide (NRP) 
pathway genes against A. medicaginicola StC 306-5. Bars are the mean colony area (n = 3) and stand-
ard error (SE) of the mean from one representative experiment of three experiments performed. 
UD1022 mutant treatment srfAC− was significantly less antagonistic than UD1022 (p = 0.044). The 
antagonistic effects of mutants sfp−, ppsB−, ppsB−-srfAC− were no different from UD1022. 

Colony areas of StC 306-5 challenged by UD1022 biofilm mutants sinI− or eps−-tasA− 
were no different from the UD1022 control treatment, remaining antagonistic. Antago-
nism of the StC 306-5 colony area was reduced to 5% when challenged by the spo0A− mu-
tant and the colony area was not statistically different from the water control treatment (p 
= 0.881) (Figure 3).  
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caginicola StC 306-5. Bars are the mean colony area (n = 3) and standard error (SE) of the mean from 
one representative experiment of three experiments performed. The colony area of the spo0A− treat-
ment was not significantly different from the control (p = 0.881), and biofilm mutant treatments sinI− 
and eps−-tasA− colony areas were not different from UD1022. 

For the oomycete, P. medicaginis A2A1, the NRP mutants ppsB−-srfAC−, srfAC−, and 
sfp− caused less inhibition (52%, 51%, and 52%, respectively) than UD1022 (62%) and the 
A2A1 colony areas were significantly different from those in the UD1022 treatment (p = 
0.002, 0.006, and 0.006, respectively). The colony area of A2A1 challenged with the mutant 
of ppsB− was not significantly different from UD1022 (55% inhibition, p = 0.073) (Figure 4). 

Figure 2. Results of antagonism assays with UD1022 mutants in key nonribosomal peptide (NRP)
pathway genes against A. medicaginicola StC 306-5. Bars are the mean colony area (n = 3) and standard
error (SE) of the mean from one representative experiment of three experiments performed. UD1022
mutant treatment srfAC− was significantly less antagonistic than UD1022 (p = 0.044). The antagonistic
effects of mutants sfp−, ppsB−, ppsB−-srfAC− were no different from UD1022.

Colony areas of StC 306-5 challenged by UD1022 biofilm mutants sinI− or eps−-tasA−

were no different from the UD1022 control treatment, remaining antagonistic. Antago-
nism of the StC 306-5 colony area was reduced to 5% when challenged by the spo0A−

mutant and the colony area was not statistically different from the water control treatment
(p = 0.881) (Figure 3).
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Figure 3. Results of antagonism assays with UD1022 mutants in key biofilm genes against A.
medicaginicola StC 306-5. Bars are the mean colony area (n = 3) and standard error (SE) of the mean
from one representative experiment of three experiments performed. The colony area of the spo0A−

treatment was not significantly different from the control (p = 0.881), and biofilm mutant treatments
sinI− and eps−-tasA− colony areas were not different from UD1022.

For the oomycete, P. medicaginis A2A1, the NRP mutants ppsB−-srfAC−, srfAC−, and
sfp− caused less inhibition (52%, 51%, and 52%, respectively) than UD1022 (62%) and
the A2A1 colony areas were significantly different from those in the UD1022 treatment
(p = 0.002, 0.006, and 0.006, respectively). The colony area of A2A1 challenged with the mu-
tant of ppsB− was not significantly different from UD1022 (55% inhibition,
p = 0.073) (Figure 4). The NRP plipastatin does not seem to contribute to the antagonism
of P. medicaginis A2A1 to any extent, however, srfAC−, the double mutant ppsB−-srfAC−,
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and sfp− resulted in the mild alleviation of the antagonism (Figure 4). However, the direct
application of 100 µg/mL (2 µg total) surfactin had no effect on the colony area (Supple-
mentary Figure S2). Surfactin and other possible sfp-dependent NRPs may have some
partial activity in the observed inhibition of the oomycete, however, surfactin alone does
not seem to contribute to the activity of UD1022 toward P. medicaginis A2A1.
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Figure 4. Results of antagonism assays with UD1022 mutants in key nonribosomal peptide (NRP)
pathway genes against P. medicaginis A2A1. Bars are the mean colony area (n = 3) and standard error
of the mean (SE) of the mean from one representative experiment of three experiments performed.
The colony areas of the NRP mutant treatments, ppsB−-srfAC−, srfAC−, and sfp− were significantly
different from the UD1022 treatment (p = 0.002, 0.006, and 0.006, respectively). The ppsB− treatment
colony area was not significantly different from UD1022 (p = 0.073).

The P. medicaginis A2A1 colony area was statistically less antagonized in treatments of
UD1022 biofilm mutants sinI− and eps−-tasA− (51% and 43% inhibition) compared with
UD1022 inhibition of 62% (p = 0.011 and 0.0002, respectively), and antagonism was reduced
to only 24% in treatment with the spo0A− mutant (p < 0.0001) (Figure 5). The antagonism is
strongly spo0A dependent and there appears to be a significant influence of the eps, tasA,
and sinI genes in the antagonism of UD1022 against A2A1.
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3. Discussion

Antibiosis of root microflora has long been implicated as one of the many modes of PGPR
activity [34]. UD1022 is a PGPR that produces the NRP surfactin (unpublished data) which
was proposed to directly inhibit the pathogen Pseudomonas syringae pv. tomato DC3000 [25].
Further, UD1022 was also shown to have extensive biofilm production and adhesion to plant
roots [25,31]. The work presented here demonstrates UD1022’s direct inhibition of common
alfalfa pathogens, likely through a mixture of NRP and biofilm interactions.

Collectotrichum spp. are the causal agent of anthracnose and C. trifolii causes damage to
plant stems and petioles leading to significant yield losses in alfalfa [4]. UD1022 antagonism
of 40% toward both C. trifolii was moderate compared to its effect on A. medicaginicola and
P. medicaginis. Using B. amyloliquefaciens LYZ69, Hu et al. [35] observed inhibition of
Collectotrichum truncatum mycelial growth by 84.3%. LYZ69 crude extract also inhibited
mycelial growth and LC-MS analysis revealed the presence of the lipopeptides fengycin
(plipastatin) and bacillomycin D. UD1022 has been shown to produce lipopeptides such as
surfactin (unpublished data) and UD1022 antagonism of C. trifolii could be due to these
antimicrobial metabolites.

Fusarium spp. are widespread plant pathogens causing root rot and vascular wilt
diseases, especially in young plants, and also quickly infect wounded plants. The complete
lack of antagonism toward both strains of F. oxysporum f. sp. medicaginis was notable
(Figure 1C,D). A variety of Bacillus spp. Have been shown to inhibit a range of different
Fusarium spp., including B. subtilis subsp. Spizizenii MB29, which suppresses the alfalfa
pathogen Fusarium semitectum [36]. Bacillus spp. antagonism seems to have specificity in
relation to both the Bacillus strain and the species and host specialty of the Fusarium [37].

The ascomycete A. medicaginicola is the causal agent of alfalfa spring black stem and
leaf spot [38]. Leaf spot disease significantly impacts alfalfa production through defoliation
and reduction of dry matter yields, resulting in reduced protein content and poor forage
quality [39]. The strong antagonism of UD1022 toward A. medicaginicola, especially strain
StC 306-5, motivated further investigation of potential mechanisms.

The oomycete P. medicaginis causes root rot in Medicago spp. and other legume crops
such as chickpea and soybean [40,41]. This phytopathogen is most destructive to the
establishment of seedlings and can severely reduce yield [42]. UD1022 antagonism was
the greatest against P. medicaginis A2A1 with a 67% reduction in colony area; a promising
result that prompted further investigation into the mechanisms of activity.

Many Bacillus spp. are reported to carry outantifungal activity through the production
of NRPs [43]. The genome of UD1022 contains many antimicrobial/antibiotic genes [32],
some of which increase production in the presence of soil bacteria (unpublished data).
Taken altogether, the results of UD1022 NRP and biofilm mutant antagonism assays with A.
medicaginicola StC 306-5 suggest that further investigation of UD1022 secondary metabolites
is needed, especially sfp-independent products. Considering that the sinI− and eps−-tasA−

mutants have no significant differences in antagonism, spo0A is likely crucial through
pathways unrelated to biofilm production.

The significant alleviation of antagonism by the spo0A− mutant is especially interest-
ing. In addition to its role in sporulation and biofilm formation, spo0A is also known to
be required for surfactin biosynthesis [20] and has been implicated as necessary to pro-
duce other Bacillus spp. antibiotics including sfp-dependent and ribosomally synthesized
peptides [20]. Supporting the association between spo0A and surfactin, several recent
studies have documented the loss of surfactin production in spo0A− mutants. Sun et al. [44]
found that the surfactin yield in a spo0A− mutant of B. amyloliquefaciens fmbJ was reduced
to ~1.7 mg/liter from that of a wild-type strain of ~5.8 mg/liter. In industrial fermenta-
tion experiments, Wang et al. [45] found complete inhibition of surfactin production in
an enhanced surfactin construct (B. subtilis TS1726 having a strong Pg3 promoter) when
spo0A was knocked out. Though neither group used the spo0A mutants in antagonistic
challenge assays, Shao et al. [46] demonstrated relief of antagonism between two strains of
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B. velezensis if spo0A was mutated in strain SQR9, resulting in improved biofilm formation
and plant benefits by the cocultured wild-type strain FZB42.

UD1022 sfp− and srfAC− may have some role in the antagonism toward A2A1
(Figure 4), though direct surfactin application showed no antagonism toward the pathogen
(Supplementary Figure S2) suggesting a role for other sfp-dependant antibiotics. The sfp-
dependent NRP iturin A was reported as the mechanism of B. subtilis WL-2 biocontrol
activity against P. infestans, directly inhibiting mycelial growth by 84.9%. Iturin A damaged
P. infestans mycelia by disrupting cell structure and inducing oxidative stress [47]. Interest-
ingly, this study also found that surfactin had no direct inhibitory effect on mycelia growth,
corresponding with the observations with P. medicaginis in the current study.

The key genes for biofilm formation found to be associated with the antagonism of
UD1022 toward A2A1 could be acting through motility and colonization activities. The
ability to spread and move outward or even toward the A2A1 colony may be crucial for
full UD1022 antagonistic activity. Colony characteristics of the biofilm mutants, especially
sinI− and eps−-tasA− cocultured with A2A1 (Figure 5), are strikingly more contained than
the amorphous appearance of the wildtype strain UD1022.

The components of the biofilm pathway are known to be involved in the control of
sliding and form of Bacillus spp. motility [48]. Sliding motility is a flagellum-independent
form of Bacillus spp. motility which advances colonies through a synergistic interaction
between biofilm-producing and surfactin-producing cells within a population. Gestel
et al. [49] found that eps and srfA are required for effective sliding, proposing that the role
of surfactin is to reduce surface friction and the production of exopolysaccharides facilitates
the physical alignment of cell bundles along the growing colony front. Considering the
role of surfactin in conjunction with the polysaccharide components of biofilms, a double
mutant of eps and srfA would be of interest in future assays.

To elucidate the regulatory components involved in sliding motility, Grau et al. (2015)
utilized the ‘sliding only’ B. subtilis strain RG4365 and the ‘sliding and swarming profi-
cient’ B. subtilis strain NCIB3610 in a series of expression and motility assays [50]. Like
Gestel et al. [49], they found that the eps gene was required for sliding and, moreover, they
showed that sliding motility is induced by low levels of phosphorylated Spo0A, likely
through the kinase KinB response to high intracellular potassium concentrations. Mutation
of the UD1022 biofilm pathway genes spo0A and eps, crucial for nonflagellar sliding motility,
resulted in significantly less antagonism toward A2A1. Thus, it is possible that UD1022
antagonism toward A2A1 could be reliant on the ability of the cells to be actively engaged
in biofilm production and/or sliding.

4. Materials and Methods
4.1. Strains and Culture Conditions

Four species of alfalfa pathogens were used to test the disease-suppressive activities of
UD1022: the ascomycetes Collectotrichum trifolii (causing anthracnose) strains AN1 and SM,
Fusarium oxysporum f. sp. medicaginis (causing Fusarium wilt) strains FOM 255 and Fo 3,
Ascochyta medicaginicola (synonym Phoma medicaginis causing spring black stem and leaf
spot) strains StC 306-5 and StC 306-10, and the oomycete Phytophthora medicaginis (causing
Phytophthora root rot) strain A2A1. Strain A2A1 was cultured from plugs on V8 agar, the
other strains were cultured on potato dextrose agar (PDA), and all were grown in dark
conditions at room temperature (RT). All strains were provided by Deborah Samac of the
USDA-ARS, St. Paul, MN, USA.

B. subtilis strain UD1022 was cultured from glycerol stocks onto Luria Bertani (LB)
agar plates. Cultures were grown overnight at 37 ◦C. Fresh colonies were selected and
grown in 5 mL LB broth shaking at 37 ◦C to an OD600 of ~1.0.

4.2. Antagonistic Plate Assays

The suppressive activity of UD1022 against the pathogen strains was evaluated by the
mycelial growth rate method [51] with minor modifications. In sterile conditions, 7 mm
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diameter plugs were taken from the fresh mycelial growth at the edge of the pathogen
colony and placed in the center of standard 100 mm petri plates of the appropriate growth
medium. Twenty microliter drops of UD1022 fresh culture (OD600 ~ 1.0) were pipetted
2 cm from the pathogen plug edge. Sterile water was used to control against the pathogen.

The antagonistic activity of surfactin against P. medicaginis A2A1 and A. medicaginicola
StC 306-5 was evaluated similarly. Surfactin from B. subtilis (Sigma Aldrich, St. Louis, MI,
USA) was resuspended in ethanol (10 mg/mL) and diluted in ethanol to 100, 75, 50, and
25 µg/mL. Concentrations were selected to be biologically relevant [52]. Twenty microliters
of each dilution were pipetted to 5 mm sterile Whatman paper disks and allowed to dry
(equivalent to a total of 2, 1.5, 1, and 0.5 µg surfactin/disk). Disks, including an ethanol
control, were placed 2 cm from the edge of the plug on V8 or PDA plates and incubated in
the dark at RT for 7 days. Three replicates of all treatments were included per experiment.
Each experiment was repeated a total of three times and each experiment was evaluated
independently. Uniform photographs were taken of plates daily for 7 days. Data are shown
for day seven. The inhibition rate of the pathogen by UD1022 or surfactin was calculated
with the formula:

I (%) = [(C − T)/(C − 0.7)] × 100

where I is the inhibition rate, C is the area (cm2) of the colony in the control, and T is
the colony area (cm2) of the UD1022 treatment. Colony areas for the calculation were
measured using ImageJ software [53]. ‘Indirect’ UD1022 antagonistic activity due to
bacterial volatiles (BVCs) was tested similarly, except the plug and UD1022 were placed
into separate compartments of split petri plates.

4.3. UD1022 Mutant Assays

Based on the initial results, two pathogens were selected for further analysis to in-
terrogate mechanisms of UD1022 antagonism: the ascomycete A. medicaginicola StC 306-5
(Figure 1E) and the oomycete P. medicaginis A2A1 (Figure 1G). Mutant strains of UD1022
were utilized to interrogate whether the major characteristics shared by B. subtilis. are
responsible for the antagonisms observed. Mutant strains of UD1022 with deletions in
the key nonribosomal peptide (NRP) pathway genes srfAC−, sfp−, ppsB−, double mutant
ppsB−-srfA−, biofilm genes spo0A−, sinI −, and a double mutant in eps− and tasA− were
used in direct antagonism assays against the two pathogen strains selected.

Mutations were first introduced in a B. subtilis strain (either NCIB 3610, 168, or PY79),
and were then introduced in UD1022 using SPP1 phage transduction. [54]. All the mu-
tants except ppsB− were an allelic replacement of the orf by the cassette encoding the
antibiotic-resistant gene. For ppsB−, the mutation is a Tn10 transposon insertion (Supple-
mentary Table S1). All mutations resulted in functional impairment of the gene through
sequence disruption. Mutants were constructed and generously provided by Dr. Pascale
Beauregard’s lab (Universite de Sherbrooke, Sherbrooke, QC, Canada). Mutant strains were
grown in LB with the appropriate antibiotics (Supplementary Table S1). Bacterial cultures
were grown to OD600 ~1.5 to 2.5, washed once in sterile water, and resuspended to OD600
~1.0 prior to use in the plate antagonism assay as described above.

4.4. Statistical Analysis

Statistical analyses were performed using JMP®, Version 16. SAS Institute Inc., Cary,
NC, USA, 1989–2021. Data normality (Goodness of Fit using the Shapiro–Wilk test) and
homogeneity (Levene test) were reviewed on the residuals prior to analysis of variance
(ANOVA). No data transformations were required. Tukey’s HSD One Way Analysis of
Variance by treatment was performed for statistical analysis and the p-values stated are from
the ordered difference report. Statistics were performed on the three treatment replicates
(n = 3) within each of the three separate experiment repetitions and the results of the most
representative experiment are presented.
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5. Conclusions

UD1022 effectively suppresses the hyphal growth of both the ascomycete A. medicagini-
cola StC 306-5 and the oomycete P. medicaginis A2A1 through direct antagonism. UD1022
activity toward StC 306-5 is not attributable to specific components of Bacillus spp. biofilm
formation. The NRP surfactin appears to contribute to the antagonism, however, this is
clearly not the primary cause. Surfactin likely had a greater role in the antagonism of the
ascomycete A. medicaginicola than in the oomycete P. medicaginis. UD1022 biofilm genes
sinI, eps, and tasA seem to have a role in the antagonism of the oomycete A2A1, possibly
through biofilm motility/matrix activities.

There are several possibilities as to the elements responsible for UD1022 antagonism
toward A2A1. There could be alternative sfp-dependent lipopeptide or other peptide
antibiotics contributing, or the antagonism could be due to some element of the Bacillus
spp. biofilm-matrix pathways, either through structural or motility interactions, such as
spo0A-dependent sliding motility.

Interestingly, but somewhat unsurprisingly, spo0A is required for UD1022 antagonism
against both alfalfa pathogens evaluated. In addition to antibiotic and biofilm activities,
Spo0A also regulates B. subtilis sporulation [55]. Some research on the effectiveness of
sporulating Bacillus spp. cultures indicates that there is an increase in antibiotic produc-
tion and increased biocontrol activity during sporulation [12,56]. Sun et al. [44] found a
significant decrease in the production of bacillomycin D, fengycin, and surfactin in spo0A
knockout mutants of B. amyloliquefaciens fmbJ.

Beyond NRP production, Bacillus spp. has an extensive range of identified antimi-
crobial factors, including ribosomally synthesized peptides and enzymes including chiti-
nases [57] and proteases [58]. Relevant to this work, Spo0A is identified as having a role
in regulating some of these factors such as exoprotease production [59], the antibiotic-like
Skf peptides [20], and the protease subtilisin [60], which could also be contributing to the
overall antagonism activity of UD1022 toward the alfalfa phytopathogens.

These results contribute to the body of literature concluding that Bacillus spp. have a
multitude of direct antagonistic mechanisms against phytopathogens. Different species
of plant-beneficial bacteria have differential modalities toward different genera, species,
and biovars of phytopathogens [43,61]. When evaluating Bacillus spp. for use as a direct
biological or biosynthesis-based product based on their secondary metabolite profile, it
is essential to understand that no single metabolite or mechanism will likely work as a
broad-spectrum pathogen control agent. Future investigations which interrogate B. subtilis
UD1022 mechanisms of antagonism molecular, biochemical, and in planta activity will be
essential in furthering the applications of PGPRs to crops such as alfalfa.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12051007/s1, Figure S1. Surfactin disk challenge of A.
medicaginicola StC 306-5. Surfactin mildly but not significantly antagonized StC 306-5 colonies at
25 and 100 µg/mL. Figure S2. Surfactin disk challenge of Phythophthora medicaginis A2A1. Direct
application of surfactin had no effect on A2A1 growth at 25 µg/mL to 100 µg/mL. Table S1. B. subtilis
UD1022 Mutants. Bacterial strains were used in this study.
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