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S1. Data acquisition 

For each growth chamber, a pair of RGB-infrared cameras (IP 2.1 Mpx outdoor varifocal IR 

1080P) were placed 110 cm above the ground, spaced at 45 cm to record stereo images of the 

plant. The cameras were connected via Ethernet cables to a 10-port wireless router (D-link Dsr-

250n) connected via Wi-Fi to a PC. The frame acquisition and saving process were controlled by 

a CamRecorder software (Ab.Acus s.r.l., Milan, Italy). Each camera's intrinsic, extrinsic, and 

lens distortion parameters were estimated using a Matlab Camera Calibrator App. Depth 

extraction from the single images was carried out by taking 20 pictures of a chessboard (squares' 

size 18 × 18 mm, 10 columns × 7 rows) from multiple angles and distances in natural non-direct 

light conditions. For stereo calibration, the same chessboard used for the single-camera 

calibration process was placed in the middle of the growth chamber.  

 

S2. Data processing 

The two cameras synchronously acquired the frame every 180 seconds (frequency 0.0056 Hz). 

The anatomical landmarks of interest were the "tendrils" and the "junction" (i.e., the point where 

the tendrils tie together), developing from the considered leaf. We considered the initial frame as 

the one corresponding to the appearance of the tendrils and the junction of the considered leaf. 

The end frame was defined as the frame in which the tendrils start to coil the support for the 

"support" condition, or the frame just before the plant fell on the ground for the "no support" 

condition. An ad hoc software (Ab.Acus s.r.l., Milan, Italy) developed in Matlab was used to 

position post-hoc virtual markers on the tendrils and the junction to track their position frame-by-

frame on the images acquired by the two cameras to reconstruct the 3D trajectory for each 

marker. The tracking procedures were first performed automatically throughout the time course 



of the movement sequence using the Kanade-Lucas-Tomasi (KLT) algorithm on the frames 

acquired by each camera after distortion removal. Then, the tracking was manually verified by 

the experimenter, who checked the position of the tendrils and the junction frame-by-frame.  

 

S3. Feature extraction 

Features are extracted by:  

• Junction trajectory (a) and tendril trajectory (b): 3D trajectories for the junction and the 

tendrils were acquired in Cartesian coordinates (x, y, z), where x and y axis form the 

vertical dimension, and x and z form the horizontal dimension. The coordinates for the 

tendrils are termed as (xt, yt, zt), and those for the junction as (xn, yn, zn).  

• Junction velocity (c); tendril velocity (d): the velocity of the junction was calculated by 

computing the absolute value between the difference with ni frames and ni+1 frames (i: 1, 

2, 3, …, n). The velocity of the tendrils and the junction for each axis (vx, vy, vz) and for 

each frame were acquired. 

• Junction acceleration (e) and tendril acceleration (f): acceleration for the junction and the 

tendrils was calculated as a velocity derivative. 

• Tendril aperture (g): relative vectors from the junction to the tip of the tendrils were 

extracted by calculating the mean of the tendrils (𝑋t, 𝑌t, 𝑍t), minus the coordinates of the 

junction (xn, yn, zn). Depending on the number of tendrils that one plant possesses, the 

tendril number could be either two or three. The standard deviation of the tendrils (σx, σy, 

σz), indicates the variability of the tendrils’ aperture. 

• Overall movement duration (h). 

• Movement duration for single circumnutations (i). 



On the basis of this the features considered for model classifications were: (a) junction trajectory; 

(b) tendril trajectory; (c) junction velocity; (d) tendril velocity; (e) junction acceleration; (f) 

tendril acceleration; (g) tendrils aperture; (h) overall movement duration; (i) movement duration 

for single each circumnutation; (j) all features (i.e., the full kinematic picture). 

 

S4. Classifiers 

Random Forests classifier (RF) is a method of conjoint learning for classification and regression 

which operates by building many decision trees during training and generating the class of 

individual trees [1]. The decision forests correct the trend of the trees in adjusting to their training 

dataset. A random forest is a meta estimator that fits several decision tree classifiers on various 

sub-samples of the dataset and uses averaging to improve the predictive accuracy and is robust 

against over-fitting [1,2]. 

Logistic Regression (RF) is a machine learning classification algorithm that calculates the class 

membership probability for one of the two categories in the data set [3]. It assumes binary logistic 

regression and requires the dependent variable to be a binary category. 

The Support Vector Classification (SVC) derives from the SVM (Support Vector Machine) and 

is a model of supervised associated learning, used for classification and regression analysis. An 

SVM training algorithm builds a model that attributes new examples to one or another category, 

making it a linear non-probabilistic binary classifier [4]. 



Figure S1. Specific contribution of the considered features across classifiers for the overall 
movement classification. 



Figure S2. Specific contribution of the considered features when considering single 
circumnutation. 
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