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Abstract: Understanding the water use efficiency (WUE) and adaptation strategies of plants in
high-temperature and rainy areas is essential under global climate change. The leaf carbon content
(LCC) and intrinsic WUE of 424 plant samples (from 312 plant species) on Hainan Island were
measured to examine their relationship with geographical and climatic factors in herbs, trees, vines
and ferns. The LCC ranged from 306.30 to 559.20 mg g−1, with an average of 418.85 mg g−1, and
decreased with increasing mean annual temperature (MAT). The range of intrinsic WUE was 8.61 to
123.39 µmol mol−1 with an average value of 60.66 µmol mol−1. The intrinsic WUE decreased with
increasing altitude and relative humidity (RH) and wind speed (WS), but increased with increasing
latitude, MAT and rainy season temperature (RST), indicating that geographical and climatic factors
affect the intrinsic WUE. Stepwise regression suggested that in tropical regions with high temperature
and humidity, the change in plant intrinsic WUE was mainly driven by WS. In addition, the main
factors affecting the intrinsic WUE of different plant functional types of plants are unique, implying
that plants of different plant functional types have distinctive adaptive strategies to environmental
change. The present study may provide an insight in water management in tropical rainforest.

Keywords: water use efficiency; carbon isotope composition; leaf carbon content; climate change

1. Introduction

Plant water use efficiency (WUE) reflects the balance between carbon assimilation
by photosynthesis and water lost by stomata [1]; it is an important indicator for studying
plant water use strategies. The world is experiencing rapid climate change. The average
temperature in the second half of this century increased by approximately 3 ◦C compared
with the temperature in 1850–1900, and the frequency of extreme climate events caused
by climate warming obviously increased [2]. The precipitation in high-latitude areas has
increased, while the precipitation in tropical areas has decreased [3], and the global rainfall
pattern has changed dramatically [4]. Moreover, the atmospheric CO2 concentration (ca)
increased from 277 ppm in 1750 to 413 ppm in 2020, and the annual average rate of increase
of atmospheric CO2 concentration in the past decade was 2.40 ppm [2]. Climate changes
have already caused variations in the living conditions of vegetation [5]. As a result, plants
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have to form some physiological adaptation mechanisms in response to climate change.
The change in WUE by adjusting plant stomatal conductance (gs) and CO2 assimilation rate
(A) [5] is one of the adaptation mechanisms by which plants can better cope with climate
change [6]. Therefore, investigating the variations in plant WUE under climate change will
serve to deepen the understanding of the response of vegetation to global climate change.

There have been several indexes used to evaluate WUE, including the WUE at
yield level (= yield/water consumption), the instantaneous WUE (= CO2 assimilation
rate/transpiration rate, A/E) and the intrinsic WUE (= CO2 assimilation rate/stomatal
conductance, A/gs). Plant carbon isotopes have been widely used to indicate the intrinsic
WUE [7–11]. The carbon isotope discrimination (∆13C) in plant leaves depends on the ratio
of intercellular and environmental CO2 concentrations (ci/ca), and this ratio is regulated by
gs and A [4,12]. The intrinsic WUE of plants is defined by the ratio of A to gs, which is also
associated with ci/ca [6]. Therefore, foliar ∆13C is a useful proxy of plant intrinsic WUE, and
there is a negative correlation between leaf ∆13C and intrinsic WUE [13–15]. In addition,
leaf ∆13C represents the time-integrated plant intrinsic WUE during leaf formation [16],
and thus it can better represent the long-term plant water use status.

Climatic factors, such as temperature, humidity and light intensity affect the in-
tercellular CO2 concentration by affecting leaf stomatal conductance and photosynthetic
carboxylase, thus influencing plant WUE [16–18]. Camarero et al. (2021) [6] and
Driscoll et al. (2020) [19] found that the intrinsic WUE of plants was positively correlated
with temperature. Kørup et al. (2017) [20] and Mathias and Thomas (2021) [21] illustrated
that there was a significantly negative correlation between plant intrinsic WUE and rainfall.
Olson et al. (2020) [22] and Guo et al. (2018) [23] proposed that relative humidity affected
plant intrinsic WUE. Zhang et al. (2020) [24] found that wind speed affected the boundary
layer of the air on the leaf surface, which decreased the resistance for gas exchange and
the exchange of CO2 and H2O between the leaf interior and ambient atmosphere, thereby
influencing the leaf WUE. In addition, since climatic factors change with geographical
factors, intrinsic WUE changes with geographical factors [25,26]. Although many previous
works have focused on the relationships between plant WUE and climatic factors [15],
most of these studies were concentrated mainly on arid and semiarid climate regions, or
the research objects were mostly one or several plants [19,22,27]; in contrast, few studies
have focused on tropical regions with high temperature and rainfall. Previous studies have
shown significant differences in intrinsic WUE between different species among habitats,
indicating that intrinsic WUE and its responses to climate change in different species in
different areas may be different [15]. There is a lack of integrated research on the WUE
response of different plant functional types to climate change in tropical areas. However,
the current warming rate in tropical areas is extraordinarily fast [28], and the impact of
climate change on plants in tropical areas may be more serious than that in other areas [1].
Therefore, it is of great significance to study the response of leaf WUE to climate change in
tropical regions.

In this study, plant samples were collected from Hainan Island, China, and the leaf
carbon content (LCC) and leaf carbon isotope ratio (δ13C) were measured as indicators of
leaf intrinsic WUE to investigate the relationship between the intrinsic WUE of different
functional types and geographical and climatic factors in tropical regions. Our objectives
were to explore the response mechanism of LCC and leaf intrinsic WUE to climate change
and to improve the understanding of plant adaptation strategies in tropical regions.

2. Results
2.1. Characteristics of LCC and Intrinsic WUE

The LCC ranged from 306.30 to 559.20 mg g−1 with a mean value of 418.85 mg g−1.
One-way analysis of variance (ANOVA) showed that there were significant differences
in LCC across plant functional types (Figure 1a, p < 0.05). In detail, the LCC of trees
(424.21 ± 38.32 mg g−1) was significantly higher than that of other plant functional types
(p < 0.01 for vines and herbs, p < 0.05 for ferns, Figure 1a). However, there were no signifi-



Plants 2023, 12, 951 3 of 16

cant differences in LCC among vines (404.04± 30.89 mg g−1), herbs (398.87 ± 26.13 mg g−1)
and ferns (401.34 ± 3.30 mg g−1) in the study area (Figure 1a). Multi-factor ANOVA anal-
yses suggested that plant functional types and the interaction of location and altitudinal
range played a significant role in LCC (p < 0.05, Table 1).
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Figure 1. The mean leaf carbon content (LCC) and the intrinsic water use efficiency (intrinsic WUE)
of trees, vines, herbs and ferns. (a) Leaf carbon content; (b) Intrinsic water use efficiency. Different
letters indicate significant differences between different plant functional types (p < 0.05). Boxes and
error bars represent the mean values and standard errors.

Table 1. The results of multi-factor ANOVA.

F L A F × L F × A L × A

LCC 3.78 * 0.37 1.08 0.49 0.49 7.91 **
Intrinsic WUE 3.07 * 6.74 *** 4.42 ** 1.73 0.91 2.56

Note: LCC, leaf carbon content; intrinsic WUE, intrinsic water use efficiency; F, plant functional types; L, location;
A, altitudinal range. The data in the table are the F values, *, ** and *** indicate significant effects at the levels of
p < 0.05, p < 0.01 and p < 0.001, respectively.

The intrinsic WUE ranged from 8.61 to 123.39 µmol mol−1 with an average value
of 60.66 µmol mol−1. There were no significant differences in the intrinsic WUE of the
different plant functional types (Figure 1b). Multi-factor ANOVA analyses indicated that
plant functional types, location and altitudinal range had significant impacts on intrinsic
WUE (p < 0.05, Table 1); however, the effect of the interaction of these three factors on
intrinsic WUE was insignificant.

2.2. Relationships among LCC, δ13C and Geographical and Climatic Factors

Linear regression analysis showed that LCC was significantly negatively correlated
with mean annual temperature (MAT, R2 =0.01, p < 0.05, Figure 2f), but had no significant
relationship with other geographical and climatic factors (p > 0.05, Figure 2).
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Figure 2. Changes in leaf carbon content (LCC, mg g−1) with geographical and climatic factors in
all samples. (a) LCC vs. longitude; (b) LCC vs. latitude; (c) LCC vs. altitude; (d) LCC vs. mean
annual temperature; (e) LCC vs. rainy season temperature; (f) LCC vs. mean annual precipitation;
(g) LCC vs. rainy season precipitation; (h) LCC vs. relative humidity; (i) LCC vs. mean annual wind
speed. The scatter points in the figure represent the measured C content of plant leaves. The dotted
line indicates no significant correlation between LCC content and geographical and climatic factors
(p > 0.05). The solid line indicates that the correlation between LCC content and climatic factors is
significant (p < 0.05).

The leaf intrinsic WUE was significantly positively correlated with latitude (R2 = 0.02,
p < 0.01, Figure 3b), MAT (R2 = 0.02, p < 0.05, Figure 3d) and rainy season temperature (RST,
R2 = 0.02, p < 0.05, Figure 3b,d,e), and it was significantly negatively related to altitude
(R2 = 0.02, p < 0.01, Figure 3c), relative humidity (RH, R2 = 0.02, p < 0.01, Figure 3h) and
wind speed (WS, R2 = 0.02, p < 0.01, Figure 3i). In addition, there was no significant
correlation between intrinsic WUE and longitude, mean annual precipitation (MAP) and
rainy season precipitation (RSP, all p > 0.05, Figure 3). Multiple linear regression analysis
showed that only 8.3% of the variability in the intrinsic WUE could be explained as a linear
combination of these nine factors (R2 = 0.083, p < 0.01, Table 2). Stepwise regression analysis
revealed that only WS drove the change in intrinsic WUE (R2 = 0.024, p < 0.01, Table 2).
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Figure 3. Changes in intrinsic water use efficiency (intrinsic WUE) with geographical climatic factors
in all samples. (a) Intrinsic WUE vs. longitude; (b) intrinsic WUE vs. latitude; (c) intrinsic WUE
vs. altitude; (d) intrinsic WUE vs. mean annual temperature; (e) intrinsic WUE vs. rainy season
temperature; (f) intrinsic WUE vs. mean annual precipitation; (g) intrinsic WUE vs. rainy season
precipitation; (h) intrinsic WUE vs. relative humidity; (i) intrinsic WUE vs. mean annual wind
speed. The scatter points in the figure represent the measured intrinsic WUE of plant leaves. The
dotted line indicates that the correlation between intrinsic WUE and climatic factors is not significant
(p > 0.05). The solid line indicates that the correlation between leaf intrinsic WUE and climatic factors
is significant (p < 0.05).
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Table 2. The results of multiple linear regression analysis between intrinsic WUE and geographical
and climatic factors.

Methods Factors Included in the Models R2 p

All sample Input All factors 0.083 <0.001
Stepwise WS 0.024 0.001

Woody plants Input All factors 0.081 <0.001
Stepwise Altitude 0.024 0.006

Ferns
Input All factors 0.810 0.048

Stepwise Altitude, RH 0.766 0.006

Note: LCC, leaf carbon content; intrinsic WUE, intrinsic water use efficiency. All factors included longitude,
latitude, altitude, RH and WS. RH, relative humidity; WS, wind speed.

2.3. Relationships among LCC, Intrinsic WUE and Geographical and Climatic Factors of Different
Plant Functional Types

There was no significant correlation between the LCC in herbs, vines and ferns and the
nine geographical climatic factors (p > 0.05, Figure 4). For trees, LCC was only negatively
correlated only with MAT (p < 0.05, Figure 4).
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Figure 4. Pearson correlation coefficient of LCC in different plant functional types. * indicates
significant correlations (p < 0.05). The color in the figure represents the correlation coefficient, with
red indicating a positive correlation and blue indicating a negative correlation. Lon., longitude;
Lat., latitude; MAT, mean annual temperature; RST, rainy season temperature; MAP, mean annual
precipitation; RSP, rainy season precipitation; RH, relative humidity; WS, wind speed.

The intrinsic WUE of trees was significantly negatively correlated with altitude, RH
and WS (p < 0.05 for RH, p < 0.01 for altitude and WS, Figure 5) but had no significant
relationship with the other factors (p > 0.05, Figure 5). There was no significant correlation
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between the intrinsic WUE and the nine geographical and climatic factors in herbs and
vines (p > 0.05, Figure 5). Multiple linear regression analysis showed that only 8.1% of the
variability in the intrinsic WUE could be explained as a linear combination of these nine
factors in woody plants (R2 = 0.081, p < 0.01, Table 2). Stepwise regression analysis revealed
that only altitude drove the change in intrinsic WUE in woody plants (R2 = 0.024, p < 0.01,
Table 2). The intrinsic WUE of ferns was negatively correlated with RH (p < 0.05, Figure 5),
but was positively related to MAT and RST (p < 0.05, Figure 5). Multiple linear regression
analysis showed that 81% of the variability in the intrinsic WUE could be explained as a
linear combination of these nine factors in ferns (R2 = 0.810, p < 0.05, Table 2). Stepwise
regression analysis revealed that altitude and RH drove the change in intrinsic WUE in
woody plants (R2 = 0.766, p < 0.01, Table 2).
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Figure 5. Pearson correlation coefficient of leaf intrinsic WUE in different plant functional types.
* and ** indicate significant correlations at p < 0.05 and p < 0.01, respectively. The color in the figure
represents the correlation coefficient, with red indicating a positive correlation and blue indicating
a negative correlation. Lon., longitude; Lat., latitude; MAT, mean annual temperature; RST, rainy
season temperature; MAP, mean annual precipitation; RSP, rainy season precipitation; RH, relative
humidity; WS, wind speed.

3. Discussion
3.1. Characteristics of LCC and Its Relationship with Geographical and Climatic Factors in the
Study Area

In the study area, the LCC ranged from 306.30 to 559.20 mg g−1 (Figure 1a) with a
mean value of 418.85 mg g−1, which was lower than the LCC at the on a global scale [29],
that in central and western China [30] and that in subtropical regions [31]. Moreover, the
mean LCCs of trees and herbs were 424.2 mg g−1 and 399.7 mg g−1, respectively (Figure 1a),
and these results were also lower than the results of a previous study [30–32]. The lower
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LCC may be caused by the higher temperatures on Hainan Island. Chapin et al. (2011) [33]
found that the LCC of coniferous forests grown in cold environments was significantly
higher than that of evergreen broad-leaved tree species. To improve cold resistance, the
content of nonstructural carbon in plants, such as starch, low molecular weight sugar and
stored lipids, must increase to balance the osmotic pressure of cells under low tempera-
ture [34,35], which might result in high LCC. The annual mean temperature on Hainan
Island is high, and there is no frost throughout the year. Moreover, the dominant tree
species in the study area are mainly evergreen broad-leaved forests. Therefore, the mean
LCC in the study area was lower than that in other areas.

The present study showed that the LCC on Hainan Island was significantly negatively
correlated with MAT (p < 0.05, Figure 2d) but had no significant correlation with the other
factors (Figure 2). As mentioned above, a low temperature leads to the increase of in
LCC by stimulating the synthesis of nonstructural carbon in plants [34,35]. In addition, a
high temperature may restrain the activity of photosynthetic enzymes [36], resulting in a
decrease of photosynthetic rate [37], and thus a decrease in LCC.

The LCC in the study area had no significant correlation with other geographical and
climatic factors (p > 0.05, Figure 2), which was different from the results of many previous
studies [32,33,38–40] that suggested that geographical and climatic factors including lon-
gitude, latitude, altitude, precipitation, relative humidity and wind speed had significant
effects on LCC. However, these effects were found at the global scale and in other climatic
zones. Our study sites were located in a tropical region with high temperature and precipi-
tation. The climate in tropical regions may be more favorable for plant growth than that in
other regions; thus, the LCC in plants may be less sensitive to climatic change. Therefore,
no relationship was found between the LCC and geographical and climatic factors except
for temperature.

3.2. Characteristics of LCC and Its Relationship with Geographical and Climatic Factors in
Different Functional Types of Plants

Significant differences in LCC were found among different plant functional types
(p < 0.05, Figure 1a). The LCC of trees was significantly higher than that of vines, herbs
and ferns, which was consistent with the research of He et al. (2006) [30]. In general, the
photosynthetic capacity of trees is higher than that of shrubs and herbs because of the
greater photosynthetic quantum intensity received by trees. Thus, trees accumulate more
carbon. In addition, trees contain a large number of carbon-rich compounds, such as lignin,
tannin and structural carbohydrates, which may lead to a higher LCC in trees [41,42].

The LCC of trees was only significantly negatively correlated only with the MAT
(p < 0.05, Figure 4), and had no significant relationship with other factors. This result was
consistent with the results for all samples. There was no significant correlation between the
LCC and geographical and climatic factors in herbs, vines and ferns (p > 0.05, Figure 4).
Because of their shallow root system, herbs are more affected by changes in soil nutrient
conditions than are woody plants [43]. Due to the high carbon assimilation rate per unit
mass, great light energy absorption and utilization capacity [44,45] and well-developed root
systems [46], the photosynthetic capacity of vines increases significantly with increasing
soil nutrients [44,47]. Therefore, the main factors affecting the LCC of herbs and vines may
be soil nutrients, rather than geographical and climatic factors. During fern growth, the
opening and closing leaf stomata are affected mainly by red light [48]; thus, the LCC in
ferns may also be less sensitive to geographical and climatic factors.

3.3. Characteristics of Intrinsic WUE and Its Relationship with Geographical and Climatic Factors
in the Study Area

The range of intrinsic WUE was from 8.61 to 123.39 µmol mol−1 with an average value
of 60.66 µmol mol−1 (Figure 1b), which was lower than the result from global, arid and
semiarid climate regions [49,50]. A previous study showed that the amount of water loss
by plants often exceeds the amount of carbon accumulation by three orders of magnitude
for terrestrial plants [14]. Thus, plant growth is mainly affected by water limitation. With
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increasing water supply, plants tend to open their stomata to absorb more CO2, which
leads to a higher the ratio of intercellular and environmental CO2 concentrations (ci/ca).
Previous studies have suggested that plant intrinsic WUE was negatively correlated with
ci/ca [6,16,51]. As a result, the intrinsic WUE of plants under better water conditions is
significantly lower than that under arid environments [20,49,51]. Compared with the study
sites at the global scale and in arid and semiarid regions, the abundant water conditions on
Hainan Island are more suitable for plant growth, leading to a lower intrinsic WUE than
that obtained for global, arid and semiarid plants.

Many environmental factors affecting leaf intrinsic WUE [16]. The leaf intrinsic WUE
in Hainan Island was significantly positively correlated with MAT (R2 = 0.02, p < 0.05,
Figure 3d) and RST (R2 = 0.02, p < 0.05, Figure 3e). Camarero et al. (2014) [6] also reported
that the intrinsic WUE was positively related to temperature. Under a high-temperature
environment, the increase in temperature leads to a rapid loss of plant water by transpira-
tion. Therefore, plants will close their stomata to avoid excessive water loss, which will
lead to a sharp decrease in the leaf CO2 exchange rate with increasing temperature [19,52].
Therefore, the ci/ca decreases with temperature, resulting in an increase in intrinsic WUE.
As mentioned above, the global change in temperature is within approximately 3 ◦C [2].
The temperature span in the present study was 6.51 ◦C, which was greater than the global
temperature change. Thus, our results suggested that global change in temperature would
have a significant impact on the intrinsic WUE on Hainan Island.

There was no significant correlation between the intrinsic WUE and MAP and between
the intrinsic WUE and RSP (p > 0.05, Figure 3f,g), suggesting that precipitation has a weak
effect on the intrinsic WUE on Hainan Island. This result was different from the negative
correlation between MAP and intrinsic WUE found in other studies [20,49,51]. Precipitation
affects the intrinsic WUE by adjusting stomatal conductance. However, a previous study
suggested that precipitation will no longer affect stomatal conductance, and thus intrinsic
WUE, when it exceeds approximately 1800 mm [53]. On Hainan Island, the precipitation
amount is higher than this value in most regions. Therefore, the change in precipitation in
the study area had little effect on intrinsic WUE.

In the study area, the intrinsic WUE was significantly negatively correlated with RH
(R2 = 0.02, p < 0.01, Figure 3h), which was also been found in some previous studies [22,50].
The increase in RH relieves the water stress in plants, which promotes an increase in
stomatal conductance. Therefore, the ci/ca increases, resulting in lower intrinsic WUE.

A negative correlation was found between the intrinsic WUE and WS (R2 = 0.02,
p < 0.01, Figure 3i). Wind speed affects the gas exchange in plant leaves by regulating the
boundary layer of the air on the leaf surface [24,54]. The increasing wind speed reduces the
thickness of the boundary layer, leading to a lower diffusion resistance for H2O and CO2.
Therefore, the ci/ca increases and the intrinsic WUE decreases with increasing wind speed.

There was no significant correlation between the intrinsic WUE and longitude in the
study area (p > 0.05, Figure 3a); however, the intrinsic WUE in the study area was positively
correlated with latitude (R2 = 0.02, p < 0.01, Figure 3b) and negatively correlated with
altitude (R2 = 0.02, p < 0.01, Figure 3c). In general, climatic factors change with geographical
factors, resulting in the close relationship between intrinsic WUE and geographical factors.
The lack of correlation between the intrinsic WUE and longitude may be caused by the
relatively lower longitude span in the study area. The positive correlation between the
intrinsic WUE and latitude may be caused by the negative links between latitude and WS
and between latitude and RH (Figure A1). The negative relationship between altitude
and intrinsic WUE can be explained by the negative correlation between temperature and
intrinsic WUE (Figure A1).

Collecting samples along the spatial gradient to study the relationship between in-
trinsic WUE and geographical and climatic factors will inevitably cause complex results
due to the high collinearity of these factors. A high degree of collinearity between the
geographical and climatic factors was also found on Hainan Island (Figure A1). Therefore,
we conducted a stepwise regression analysis to determine the main factors influencing the
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intrinsic WUE. The results showed that only WS entered the model (Table 2), suggesting
that WS was the key factor affecting plant intrinsic WUE on Hainan Island.

3.4. Characteristics of Leaf Intrinsic WUE and Its Relationship with Geographical and Climatic
Factors in Different Plant Functional Types

There was no significant difference in the intrinsic WUE between different plant
functional types in the study area (p > 0.05, Figure 1b). Peñuelas et al. (1999) [27] found that
the intrinsic WUE of trees was significantly higher than that of herbs by measuring the leaf
δ13C of four main plants growing in Spain. Woody plants have a longer water transport
pathway due to higher plant height; thus, they have a higher intrinsic WUE than herbs.
However, there was no significant difference in the intrinsic WUE between different plant
functional types of plants on Hainan Island. This result may be associated with abundant
water resources on Hainan Island. Because of high precipitation and air humidity, the
surface soil water is sufficient to support for the growth of different functional types of
plants, which may lead to no significant difference in the intrinsic WUE between different
plant functional types.

There was a significantly negative correlation between the intrinsic WUE of trees
and altitude, RH and WS (p < 0.01, Figure 5). Stepwise regression analysis showed that
only altitude entered the model (Table 1). With increasing altitude, atmospheric pressure
decreases, and the CO2 partial pressure decreases. Previous studies have illustrated that
intrinsic WUE increases with CO2 partial pressure [19,21]. Therefore, the intrinsic WUE of
trees decreased with increasing altitude.

The intrinsic WUE in ferns was positively correlated with MAT and RST (p < 0.05,
Figure 5), and negatively related to RH (p < 0.05, Figure 5). Stepwise regression analysis
suggested that altitude and RH were the key factors affecting the intrinsic WUE in ferns
(Table 2). In particular, the R2 in the regression model of the intrinsic WUE of ferns was
much larger than that in the other models (Table 2), implying that the sensitivity of intrinsic
WUE in ferns to geographical and climatic factors was much higher than that in other plant
functional types.

There was no significant correlation between the intrinsic WUE and geographical and
climatic factors in herbs and vines (p > 0.05, Figure 5). As mentioned above, herbs are
more affected by changes in soil nutrient conditions than are woody plants because of
the shallow root system [43]; similarly, the photosynthetic capacity of vines is primarily
affected by soil nutrients [44,47]. Therefore, geographical and climatic factors may have
little effect on the intrinsic WUE of herbs and ferns.

4. Materials and Methods
4.1. Study Site Description

The field study was conducted on Hainan Island (18◦10′–20◦10′ N, 108◦37′–111◦03′ E)
in Hainan Province, southern China (Figure 6). Hainan Island is located in the tropical
climate zone, and the climate is a typical tropical island monsoon climate. The annual
average temperature on Hainan Island is 22.5–25.6 ◦C, and the annual average rainfall
ranges from 923 to 2459 mm, with large spatial and temporal differences and an obvious
seasonal distribution. The rainy season on Hainan Island ranges from May to October,
which accounts for approximately 75–86% of the total precipitation in the whole year; the
dry season is from November to April, and only 14–25% of the total rainfall occurs during
this period. Most of the soil at the study sites is classified as yellow earth and red loam. The
terrain of Hainan Island is high in the middle and low in the periphery, and it is composed
of mountains, hills and platforms.
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4.2. Sample Collection and Analysis

During the period from 29 August 2017 to 4 September 2017, the study area in Hainan
Province was investigated. We designed 7 plots in Changjiang, Danzhou, Sanya, Tunchang
and Wuzhishan based on different climate types, altitudes and habitats (Figure 6). There
were two plots in the study sites of Tunchang and Wuzhishan, and only one plot in the
remaining study area. Leaves from trees, herbs, vines and ferns were collected from 7 plots,
which were located in primary or secondary forests far from areas of human activity. We
selected all visible species within the plots, which included constructive species, such as
Gleditsia sinensis, Acacia confusa, Sapium sebiferum, Acronychia pedunculata, Sterculia lanceolata,
etc. Specifically, there was a distribution of 79, 86, 59, 84, and 106 species from Changjiang
to Wuzhishan, respectively (Table 3). We collected 424 plant samples from 312 plant species
in 109 families, including 14 unnamed tree species. For trees, mature leaves were collected
from the middle and upper branches of 5 sampling trees in 4 different directions, and the
leaves of 5 sample trees were mixed into one sample. For herbs, vines and ferns in the lower
layer, mature leaves were collected from the top of five individuals. The samples were
collected from open and sunny environments to avoid the influence of partial shading on
plant growth. The samples were dried at 65 °C for 72 h and then ground and sifted through
a 60-mesh sieve (0.25 mm diameter) for chemical analysis. The total C concentrations of leaf
samples were determined by dry combustion using an elemental analyzer (Vario MAX CN
Elemental Analyzer, Elementar, Germany). The leaf δ13C was determined using a British
GV Instruments stable isotope mass spectrometer (GV IsoPrime-JB312, UK). The carbon
isotopic ratios were reported in the delta notation relative to the Vienna–Pee Dee Belemnite
(V-PDB) standard. δ13C is characterized by the following formula [16]:

δ13Csample =
[(

Rsample − Rstandard

)
/Rstandard

]
× 1000 (1)

where δ13Csample is the δ13C of the corresponding plant sample, ‰; Rsample and Rstandard

denote the 13C/12C molar ratios of the sample and the standard material (V-PDB), respectively.
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Table 3. Overview of the study area.

Study Site Longitude (◦E) Latitude (◦N) Altitude (m) MAT (°C) MAP (mm) Species

Changjiang 109◦04′ 19◦07′ 520–800 17.35 1563.12 79
Danzhou 109◦29′ 19◦30′ 137 23.86 1934.99 86

Sanya 109◦27′ 18◦22′ 387–568 23.47 1918.85 59

Tunchang 110◦06′ 19◦21′
110–160 23.13 2105.15 84110◦05′ 19◦27′

Wuzhishan
109◦38′ 18◦47′ 490–520

22.80 2080.95 106109◦28′ 18◦55′ 260

Note: MAT, mean annual temperature; MAP, mean annual precipitation.

4.3. Calculation of Intrinsic WUE

The present study calculated the intrinsic WUE using the equation published by
Farquhar et al. (1989) [14]. According to Farquhar et al. (1984) [16], the intrinsic WUE is
calculated as follows:

intrinsic WUE = A/gs= ca(1− ci/ca)/1.6 (2)

The definitions of A, gs and ci/ca are shown in the introduction section. The carbon
isotopic discrimination of C3 plants (∆13C) is indicated by the following formula [14]:

∆13C = (δ 13Cair − δ13Cplant)/(1 + δ
13Cplant /1000) = a+(b − a)ci/ca (3)

where δ13Cair and δ13Cplant are the δ13C of air and plants in ‰; a (= 4.4‰) is the diffusive
discrimination of 13C in air through the stomata; and b (= 27‰) represents the net discrim-
ination caused by carboxylation. Therefore, the intrinsic WUE can be calculated by leaf
∆13C [14,55]:

intrinsic WUE = ca

(
b − ∆13Cplant

)
/1.6(b − a) (4)

The data of ca and δ13Cair in the formula were from Global Monitoring Laboratory
(https://gml.noaa.gov, accessed on 20 December 2022).

4.4. Acquisition of Climate Data

The meteorological data including MAT, RST, MAP, RSP and WS on Hainan Island
during 2016–2017 were collected from the China National Meteorological Data Center
(Table A1). In addition, we used the published data of MAT and dew point data from
the China National Meteorological Data Center to calculate RH by the Goff–Gratch equa-
tion. Additionally, based on the meteorological data from other meteorological stations
on Hainan Island, the inverse distance weighted (IDW) method was used to fit the spa-
tial variation map of climate data on Hainan Island for the study area, which still lacks
climate data.

4.5. Statistical Analysis

For all statistical analyses, the LCC and intrinsic WUE data of each sample were
grouped together according to plant functional types (i.e., trees, herbs, vines and ferns),
location (i.e., Changjiang, Danzhou, Sanya, Tunchang and Wuzhishan), and altitudinal
range (i.e., <200 m, 200–300 m, 300–400 m, 400–500 m, 400–500 m, 500–600 m and >600 m).
The climate data of each study area during 2016–2017 were obtained by combining the
inverse distance weight interpolation method of ArcGIS 10.6 and other research methods.
IBM SPSS Statistics 25 was used for one-way ANOVA, multi-factor ANOVA, Pearson
analysis, linear regression analysis and stepwise regression analysis.

One-way ANOVA was used to compare the differences in LCC and intrinsic WUE
between each plant functional types. Multi-factor ANOVA was conducted to determine
the effect of functional plant type, location, altitudinal range and their interaction on LCC

https://gml.noaa.gov
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and intrinsic WUE. Pearson analysis and linear regression were conducted to assess the
relationships between the geographical and climatic factors with LCC and the intrinsic
WUE. If there was more than one factor that had a significant impact on LCC and intrinsic
WUE, multiple linear regression and stepwise regression analysis were used to analyze
the combined effect of geographical and climatic factors on LCC and intrinsic WUE and to
determine the main influencing factors.

5. Conclusions

In this study, LCC, intrinsic WUE and their relationships with geographical and
climatic factors were investigated in 424 samples (from 312 plant species) from five sites on
Hainan Island to explore the effect of global change on plant carbon content and intrinsic
WUE. We found that the LCC of trees was significantly higher than that of herbs, vines and
ferns. MAT was the main factor affecting the LCC of all plants and trees. Herbs, vines and
ferns were less affected by geographical and climatic factors. Additionally, we found that
there was no significant difference in the intrinsic WUE of different plant functional types.
The plant intrinsic WUE in the study area was affected by multiple geoclimatic factors,
and WS was the main driving factor. For trees, the intrinsic WUE was mainly affected
by altitude; for ferns, the intrinsic WUE was mainly affected by altitude and RH; and for
herbs and vines, geographical and climatic factors had little effect on the intrinsic WUE.
This result indicates that in tropical regions with high temperature and high humidity,
changes in geographical and climatic factors have an impact on plant intrinsic WUE, and for
different plant functional types, the intrinsic WUE is affected by different geographical and
climatic factors. Overall, the most important factor affecting leaf intrinsic WUE in the study
area was WS. The present study played a crucial role in guiding the water management in
tropical rainforest.
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