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Abstract: Chilling injury is a physiological disorder caused by cold storage in peaches and nectarines.
The main symptom of chilling injury is mealiness/wooliness, described as a lack of juice in fruit flesh.
In this work, we studied two nectarine varieties (Andes Nec-2 and Andes Nec-3) with contrasting
susceptibility to mealiness after cold storage. A non-targeted metabolomic analysis was conducted
by GC-MS to understand if changes in metabolite abundance are associated with nectarine mealiness
induced by cold storage. Multivariate analyses indicated that in unripe nectarines, cold storage
promoted a higher accumulation of amino acids in both varieties. Interestingly, for ripe nectarines,
cold storage induced an accumulation of fewer amino acids in both varieties and showed an increased
abundance of sugars and organic acids. A pathway reconstruction of primary metabolism revealed
that in ripe nectarines, cold storage disrupted metabolite abundance in sugar metabolism and the
TCA cycle, leading to a differential accumulation of amino acids, organic acids, and sugars in mealy
and juicy nectarines.

Keywords: chilling injury; postharvest; primary metabolism; Prunus persica; wooliness

1. Introduction

Nectarines (Prunus persica (L.) var. nectarina) and peaches (Prunus persica (L.) Batsch) are
some of the most important fruits of the Rosaceae family [1]. Currently, there is a wide diversity
of nectarines and peaches, introducing more than 1000 new varieties during the last decades [2].
Nectarines are climacteric stone fruits and contain a lignified endocarp enclosing the seed, a
fleshy mesocarp, and a thin epicarp. Additionally, the nectarine skin lacks trichomes [3]. These
fruits are an important source of vitamin C (ascorbic acid), carotenoids and several phenolic
compounds, giving them an elevated nutritional value in the fresh fruit market [4,5].
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Once ripened, nectarines quickly deteriorate at ambient temperature and to avoid
this senescent process, cold storage at non-freezing temperatures is required to slow down
the decay development [6]. Nonetheless, refrigeration limits the postharvest fruit life by
triggering several physiological disorders known as chilling injury [7]. Chilling injury
is observed on ripened fruits after the removal from cold storage and is characterized
by the reduction of quality parameters of the fruit with a consequent loss of consumer
acceptance [6,8]. Common chilling injury symptoms are flesh bleeding, flesh browning,
and mealiness/wooliness [6,9]. Mealiness is manifested as a lack of crispiness, decreased
hardness and low juice content of the mesocarp, affecting the texture and organoleptic
properties of the fruit [6,8,10,11].

Mealiness has been associated with cell wall disassembly, particularly in the pectic
domain. In mealy fruits, altered homogalacturonan and rhamnogalacturonan I induce the
formation of gel structures within intracellular spaces, leading to a reduction in cell–cell ad-
hesion [12,13]. In addition, mealiness has been related to a reduction in the respiration rate
and ethylene production, affecting many ripening processes [14]. Cell wall-associated en-
zyme activities, such as polygalacturonases, require an initiation step mediated by ethylene,
driving to an abnormal flesh softening in mealy fruits [13,14]. Transcriptomic analyses also
pointed out to an increased expression of cell wall-associated genes in juicy nectarines, such
as cellulose synthase, cellulase, β-xylosidase, pectate lyase, and polygalacturonase [15,16].
Proteomic analyses have been described chilling injury differential protein accumula-
tion in peach fruits associated with cell wall dynamics, including pectin methylesterase,
polygalacturonase [17], and with carbon metabolism, such as α-galactosidase, galactose
dehydrogenase and NADP-dependent malic enzyme [18].

During abiotic stresses, plant cells promote the influx and biosynthesis of different
organic osmolytes, such as sugars, polyamines, secondary metabolites, methylamines,
polyols, and amino acids, thus accumulating them for homeostasis maintenance [19,20].
Cold storage and low temperature stress can trigger processes of dehydration-associated
responses in plant tissues [21]. As a protective response, plants can modify their metabolic
profile, allowing the accumulation of osmoregulation substances to prevent cold dam-
age [21]. These metabolic shifts are mainly derived from alterations in central carbon
metabolism, involving glycolysis and the tricarboxylic acid cycle (TCA cycle) as a source of
carbon skeletons for different metabolite biosynthesis [22].

Metabolomic analyses include the study of compounds involved in different plant cell
metabolisms and support understanding many biological processes. However, there still
needs to be more information on the Rosaceae family, particularly the genus Prunus [23].
Therefore, those works have been carried out using mainly peaches and have focused on de-
scribing the metabolic differences associated with harvest date [1], comparison of varieties
at harvest [24], fruit growth and development [25], fruit ripening after cold storage [26–29],
and treatments affecting quality traits after cold storage [30–33]. Thus, this work aimed
to identify the changes in primary metabolism induced by the effect of cold storage on
immature nectarines and the changes associated with the ripening process on shelf life,
where both varieties ‘Andes Nec-2’ and ‘Andes Nec-3’ exhibit contrasting susceptibility
to mealiness. This will help us to understand the processes underlying the biology of
the models we are analyzing, and thus potentially in the future contribute to reduce the
occurrence of this physiological disorder that leads to consumer dissatisfaction and food
losses. Additionally, by using a metabolomics approach we could elucidate compounds to
serve as potential biomarkers that could be used, for example, in breeding programs aimed
at obtaining new varieties of peaches and nectarines with longer postharvest lives.

2. Results
2.1. Phenotypic Properties and Metabolite Analysis of Unripe and Ripe Nectarines at Harvest and
after Cold Storage

Andes Nec-2 and Andes Nec-3 nectarines were studied at different stages
(Supplementary Figure S1). First, the physiological parameters of juiciness and firmness
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were evaluated using ripe nectarines at sampling points S2 and S4. Next, to determine the
degree of chilling injury in both varieties, juice percentage was evaluated, which showed
no difference in ripe fruit of both varieties at the S2 stage (Figure 1A). Interestingly, after
cold storage, fruit ripening at the S4 stage showed a significant difference in percentage
juiciness. As described in the Material and Methods, fruits with less than 30% juice content
were considered mealy. Therefore, Andes Nec-2 and Andes Nec-3 correspond to “mealy” and
“juicy” varieties, respectively. Additionally, nectarine firmness was measured to confirm pulp
softening in ripe fruit, showing no differences in both varieties at stages S2 and S4 (Figure 1B).
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Figure 1. Nectarine phenotyping and global metabolite analysis. (A) Juiciness percentage in ripe
fruits from Andes Nec-2 and Andes Nec-3 varieties. (B) The firmness of ripe fruits from the mealy and
juicy varieties. Error bars represent SEM (n = 9). Data were tested by t-test (* p < 0.05). (C) Distribution
of identified metabolites by GC-MS. Principal Component Analysis (PCA) of metabolites from S1, S2,
S3, and S4 stages. Score plots of the mealy metabolite dataset (D) and the juicy metabolite dataset
(E) consisting of three biological replicates (n = 3).

To better understand the metabolic changes associated with mealiness induced by
cold storage, a non-targeted metabolite profiling analysis was performed using GC-MS and
the relative abundances of polar metabolites were quantified. From this analysis, 111 com-
pounds were identified and classified (Supplementary Table S2), which showed different
metabolite distributions, being 14.2% proteinogenic amino acids, 6.2% non-proteinogenic
amino acids, 16.8% sugars, 16.8% sugar derivatives, 18.6% organic acids, 4.4% fatty acids
and 23.0% miscellaneous compounds (Figure 1C). All compounds were found in all four
stages in both varieties, and principal component analysis (PCA) was performed. The
score plot for the mealy variety explained 45.6% of the variability with two components
(Figure 1D). In contrast, for the juicy variety, the score plot explained 45.2% of the variability
with two components (Figure 1E).

2.2. Effect of Cold Storage on the Metabolite Profiling of Unripe Nectarines

A multivariate statistical analysis was carried out using unripe fruits to investigate
further the effect of cold storage on metabolic dynamics in nectarines. A PLS-DA analysis
using the S1 and S3 stages (of mealy and juicy nectarines) as response variables and
the 111 metabolites identified as predictor variables indicated that the stages could be
separated. The scores plots accounted for 64.6% (mealy variety) and 62.1% (juicy variety)
of the variability with two components (Figure 2A,B). In additional to these findings, data
visualization by heatmaps was conducted, displaying the top 25 metabolites based on
PLS-DA VIP (Variables Importance in Projection). This profiling showed that compounds
are mainly grouped into those with decreased relative amounts (in green) and those with
increased relative abundance (in red) in every variety, showing a distinct accumulation of
metabolites in the different S1 and S3 stages (Figure 2C,D).
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Figure 2. Multivariate analyses of metabolites of mealy and juicy unripe nectarines after cold storage.
Partial Least Squares Regression Discriminant Analysis (PLS-DA) for S1 and S3 stages and score
plot of mealy (A) and juicy (B) varieties. The identified metabolites were employed as predictor
variables and the varieties as response variables. Heatmap representation based on top 25 metabolites
identified by PLS-DA VIP of S1 and S3 stages from the mealy (C) and the juicy (D) varieties. The
columns represent biological replicates for each treatment. The similarity measure used to group the
different characteristics was based on Euclidean distance and Ward’s linkage from three biological
replicates (n = 3). Pathway analysis of S1 and S3 stages from the mealy (E) and the juicy (F) varieties.
Perturbed metabolic pathways and their KEGG entries are highlighted in grey (G). Three biological
replicates (n = 3) and the Arabidopsis thaliana pathway library were used for this analysis. Volcano
plots showing differentially accumulated metabolites (DAMs) from mealy (H) and juicy (I) varieties.

The unripe nectarines from the mealy variety showed that 88% (22/25) of the VIP
metabolites were accumulated after cold storage, primarily sugars, sugar derivatives, and
amino acids (Figure 2C). On the other hand, the juicy variety displayed a lower num-
ber of accumulated VIP metabolites after cold storage (7/25; 28%), primarily amino acids
(Figure 2D). Interestingly, cold storage decreased the metabolite abundance of sugars and
sugar derivatives in the juicy variety (Figure 2D). A metabolic pathway screening using
metabolites linked to a KEGG entry from the mealy (Figure 2E) and juicy variety (Figure 2F)
was done. These metabolic pathways were considered perturbed by having many pathway-
related metabolites and significant differences in the abundance of these compounds (circles
within the gray area) than the other pathways observed in the mealy and juicy varieties.
Figure 2G shows the metabolic pathways identified. Curiously, it was found that both vari-
eties shared differential metabolic pathways. Moreover, differentially accumulated metabo-
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lites (DAMs) induced by cold storage were analyzed by volcano plots showing that the
21 metabolites strongly accumulated in nectarines from the mealy variety were proteinogenic
amino acids, including alanine, serine, leucine, glutamine, proline, isoleucine, and valine.
In addition, non-proteinogenic amino acids were elevated, such as 5-hydroxynorvaline and
4-aminobutyric acid (GABA). Other compounds include organic acids, sugars, and sugar
derivatives, including mannonic acid, linoleic acid, threonic acid, adipic acid, saccharic acid,
cellobiose, fucose, epicatechin, and stigmasterol, which were also accumulated after cold
storage. Additionally, α-ketoglutarate, succinic acid, and uridine were diminished following
cold storage (Figure 2H). For unripe juicy nectarines, cold storage induced the accumulation
of several proteinogenic amino acids, including valine, leucine, alanine, and isoleucine, and
the sugar sucrose. Cold storage promoted a decrease in succinic acid and α-ketoglutarate,
and other metabolites such as glucoheptulose, β-gentobiose, and palatinitol (Figure 2I).

2.3. Effect of Cold Storage on the Metabolite Profiling of Ripe Nectarines

For ripe nectarines, the same analyses were conducted. A PLS-DA analysis using the
S2 and the S4 stages (from mealy and juicy ripe nectarines) showed that the stages are
separated. The score plots explained 39.3% (mealy variety) and 55.7% (juicy variety) of the
variability with two components (Figure 3A,B). In addition, visualization of the data using
heat maps containing the top 25 metabolites from PLS-DA VIP screening indicated that the
compounds showed differential accumulation at S2 and S4 stages. (Figure 3C,D). For the
mealy variety, cold storage induced the accumulation of 32% (8/25) of the VIP metabolites,
including organic acids, sugars, sugar derivatives, and amino acids (Figure 3C). The juicy
variety showed 60% (15/25) of the VIP compounds, mostly amino acids, sugars, and sugar
derivatives (Figure 3D). A metabolic pathway analysis for the mealy variety indicated
one differentially induced pathway by cold storage (Figure 3E). The metabolic pathway
analysis using metabolites from the juicy variety exhibited eight differentially induced
pathways by cold storage (Figure 3F). Figure 3G shows the metabolic pathways identified.

Interestingly, both varieties shared only one differential metabolic pathway, identified
as arginine biosynthesis (KEGG 00220). Moreover, differentially accumulated metabolites
induced by cold storage were analyzed by volcano plots showing that only one metabolite
was strongly accumulated in nectarines from the mealy variety (quinic acid; Figure 3H). Ad-
ditionally, aconitic acid and cellobiose were diminished following cold storage (Figure 3H).
For ripe, juicy nectarines, cold storage induced the accumulation of amino acids, including
glutamine, spermidine, and valine, as well as sugars and sugar derivatives such as xylose,
galacturonic acid, galactonic acid, and 1-kestose. Cold storage promoted a decrease in citric
acid, α-tocopherol, sucrose, and lysine (Figure 3I).

2.4. Effect of Cold Storage on the Ripening Process of Nectarines

Since multiple changes have been found in unripe and ripe nectarines, we investigated
the ripening process associated with cold storage. A multivariate analysis was performed
on ripening nectarines. A PLS-DA analysis using the S3 and the S4 stages (for mealy and
juicy nectarines) as response variables and the metabolites identified as predictor variables
showed that stages are separated. The score plots explained 66.0% (mealy variety) and 59.6%
(juicy variety) of the variability with two components (Figure 4A,B). In addition, display of
the data using heat maps containing the top 25 metabolites based on PLS-DA VIP screening
indicated that the compounds exhibited differential accumulation at the S3 and S4 stages
(Figure 4C,D). For the mealy variety, cold storage induced the accumulation of 28% (7/25)
of the VIP metabolites, including organic acids, sugars, sugar derivatives, and amino acids
(Figure 4C). The juicy variety showed an accumulation of 48% (12/25) of the VIP compounds,
primarily amino acids, sugars, and sugar derivatives (Figure 4D). A metabolic pathway analysis
utilizing metabolites linked to a KEGG entry of the mealy variety pointed to five pathways
differentially enhanced by cold storage (Figure 4E). The metabolic pathway analysis using
metabolites from the juicy variety displayed ten differentially induced pathways by cold storage
(Figure 4F). Additionally, we observed that both varieties differed in their levels of citrate in
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several metabolic pathways (Figure 4G). The volcano plots of DAMs induced by cold storage
displayed the four metabolites strongly accumulated in ripe nectarines from the mealy variety,
including sugars and sugar derivatives, such as mucic acid (galactaric acid), galacturonic acid,
β-gentobiose, and fucose (Figure 4H). Other metabolites, mainly amino acids such as threonine,
histidine, glycine, lysine, valine, leucine, and isoleucine, displayed a decreased accumulation
in ripe nectarines from the mealy variety (Figure 4H). Furthermore, in ripe nectarines from
the juicy variety after cold storage, eleven increased DAMs were found, including mucic acid,
galacturonic acid, gluconic acid, mannonic acid, xylose, fucose, glutaric acid, citramalic acid,
and glutamine (Figure 4I). On the other hand, eleven diminished DAMs were observed in
juicy ripe nectarines following cold storage, involving palatinitol, xylitol, glucose-6-phosphate,
sucrose, fructose-6-phosphate, cyano-L-alanine, isoleucine, and leucine (Figure 4I).
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Figure 3. Multivariate analyses of metabolites of mealy and juicy ripe nectarines after cold storage.
Partial Least Squares Regression Discriminant Analysis (PLS-DA) for S2 and S4 stages and score
plot of mealy (A) and juicy (B) varieties. The identified metabolites were employed as predictor
variables and the varieties as response variables. Heatmap representation based on top 25 metabolites
identified by PLS-DA VIP of S2 and S4 stages from the mealy (C) and the juicy (D) varieties. The
columns represent biological replicates for each treatment. The similarity measure used to group the
different characteristics was based on Euclidean distance and Ward’s linkage from three biological
replicates (n = 3). Pathway analysis of S2 and S4 stages from the mealy (E) and the juicy (F) varieties.
Perturbed metabolic pathways and their KEGG entry are highlighted in grey (G). Three biological
replicates (n = 3) and the Arabidopsis thaliana pathway library were used for this analysis. Volcano
plots showing differentially accumulated metabolites (DAMs) from mealy (H) and juicy (I) varieties.



Plants 2023, 12, 766 7 of 16Plants 2023, 12, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 4. Multivariate analyses of metabolites of mealy and juicy ripening nectarines after cold stor-

age. Partial Least Squares Regression Discriminant Analysis (PLS−DA) for S3 and S4 stages and 

score plot of mealy (A) and juicy (B) varieties. The identified metabolites were employed as predic-

tor variables and the varieties as response variables. Heatmap representation based on top 25 me-

tabolites identified by PLS−DA VIP of S3 and S4 stages from the mealy (C) and the juicy (D) varie-

ties. The columns represent biological replicates for each treatment. The similarity measure used to 

group the different characteristics was based on Euclidean distance and Ward’s linkage from three 

biological replicates (n = 3). Pathway analysis of S3 and S4 stages from the mealy (E) and the juicy 

(F) varieties. Perturbed metabolic pathways and their KEGG entries are highlighted in grey (G). 

Three biological replicates (n = 3) and the Arabidopsis thaliana pathway library were used for this 

analysis. Volcano plots showing differentially accumulated metabolites (DAMs) from mealy (H) 

and juicy (I) varieties. 

2.5. Comparison of Metabolite Abundance from Primary Metabolism between Mealy and Juicy 

Nectarines 

Because cold storage induced shifts in compounds’ abundance of the primary metab-

olism of nectarines, we studied the differences between mealy and juicy varieties in accu-

mulating these metabolites across ripening. This analysis found that most proteinogenic 

amino acids presented a higher accumulation in juicy nectarines than in mealy nectarines 

(Figure 5A). Alanine, asparagine, aspartic acid, glutamic acid, glutamine, glycine, 

Figure 4. Multivariate analyses of metabolites of mealy and juicy ripening nectarines after cold
storage. Partial Least Squares Regression Discriminant Analysis (PLS-DA) for S3 and S4 stages and
score plot of mealy (A) and juicy (B) varieties. The identified metabolites were employed as predictor
variables and the varieties as response variables. Heatmap representation based on top 25 metabolites
identified by PLS-DA VIP of S3 and S4 stages from the mealy (C) and the juicy (D) varieties. The
columns represent biological replicates for each treatment. The similarity measure used to group the
different characteristics was based on Euclidean distance and Ward’s linkage from three biological
replicates (n = 3). Pathway analysis of S3 and S4 stages from the mealy (E) and the juicy (F) varieties.
Perturbed metabolic pathways and their KEGG entries are highlighted in grey (G). Three biological
replicates (n = 3) and the Arabidopsis thaliana pathway library were used for this analysis. Volcano
plots showing differentially accumulated metabolites (DAMs) from mealy (H) and juicy (I) varieties.

2.5. Comparison of Metabolite Abundance from Primary Metabolism between Mealy and
Juicy Nectarines

Because cold storage induced shifts in compounds’ abundance of the primary
metabolism of nectarines, we studied the differences between mealy and juicy varieties
in accumulating these metabolites across ripening. This analysis found that most pro-
teinogenic amino acids presented a higher accumulation in juicy nectarines than in mealy
nectarines (Figure 5A). Alanine, asparagine, aspartic acid, glutamic acid, glutamine, glycine,
isoleucine, leucine, proline, serine, threonine, and valine are consistently higher in juicy nec-
tarines across ripening (S1, S3, and S4 stages). In addition, non-proteinogenic amino acids
are mainly accumulated in juicy nectarines (Figure 5B); 5-hydroxynorvaline, β-alanine, or-
nithine, oxoproline, and trans-4-hydroxyproline were higher in juicy than in mealy variety
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across the ripening process. The accumulation exhibited a heterogeneous pattern for sugars,
sugar derivatives, and organic acids (Figure 5C–E). Sugars such as glucose-1-phosphate
and ribose showed a consistently higher accumulation during ripening in the juicy variety
(Figure 5C).
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On the other hand, 1-kestose, cellobiose, and trehalose-6-phosphate displayed a con-
sistently lower accumulation across ripening in the juicy variety (Figure 5C). For sugar
derivatives, only mucic acid was found to be accumulated in juicy nectarines, while
galactinol, glyceric acid, and sorbitol were lower in juicy nectarines than in mealy nec-
tarines (Figure 5D). Organic acids, such as aconitic acid, isocitric acid, pipecolinic acid, and
shikimic acid, showed increased levels in the juicy than in the mealy variety during ripening
(Figure 5E). Otherwise, maleic acid, malic acid, and succinic acid exhibited a consistently
lower accumulation across ripening in the juicy variety (Figure 5E).

Moreover, cold storage (S3 and S4 stages) induced interesting shifts in metabolite ac-
cumulation. Compounds such as GABA, 3,6-anhydro-D-galactose, 3,6-anhydro-D-glucose,
fructose, glucose, glucose-6-phosphate, maltose, lactitol, N-acetylmannosamine, xylitol,
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α-ketoglutarate, benzoic acid, glycolic acid, and threonic acid presented a major accumula-
tion in the juicy variety at S1 stage, and after cold storage, their abundance increased in
the mealy variety (S3 and S4 stages; Figure 5). Furthermore, inositol-4-monophosphate
displayed the opposite pattern, showing a decreased accumulation in the juicy variety at
the S1 stage, and a lower accumulation in the mealy variety following cold storage (S3 and
S4 stages; Figure 5).

2.6. Reconstruction of Metabolic Pathways Associated with Primary Metabolism

The metabolic data analyses indicated that cold storage promoted spatiotemporal
changes in primary metabolism (mainly carbohydrate metabolism, TCA cycle, and amino
acids metabolisms) throughout unripe and ripe nectarines. Therefore, a metabolic pathway
reconstruction was carried out using metabolites with p < 0.05 when comparing both
mealy and juicy varieties in at least one phenological stage (Figure 6). The map shows
metabolites identified with p < 0.05 in black letters, while metabolites were not identified in
grey letters.
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For unripe nectarines from the mealy variety, cold storage induced an upregulation of
carbohydrate metabolism. Interestingly, unripe nectarines from the juicy variety exhibited
an opposite behavior promoted by cold storage (Figure 6). Related to the TCA cycle, cold
storage produced the increase and reduction of different components. Interestingly, only
malate was accumulated following cold storage from the juicy variety (Figure 6). In addi-
tion, for unripe nectarines from the mealy variety, cold storage induced the accumulation of
fifteen amino acids (Figure 6). For juicy unripe nectarines, fourteen amino acids displayed
an accumulation following cold storage. A lower abundance was observed for seven amino
acids (Figure 6).

During the ripening of nectarines from the mealy variety, cold storage induced a
downregulation of carbohydrate metabolism. Otherwise, ripening nectarines from the juicy
and mealy variety exhibited heterogeneous behavior promoted by cold storage (Figure 6).
In addition, for ripening nectarines from the mealy variety, cold storage induced the
accumulation of seven amino acids. On the other hand, fourteen amino acids were observed
in lower levels after cold storage (Figure 6). For juicy ripening nectarines, nine amino
acids such as GABA, β-alanine, oxoproline, alanine, glutamic acid, glutamine, histidine,
phenylalanine, and proline displayed an accumulation following cold storage (Figure 6).

3. Discussion

In this work, we describe spatiotemporal changes in metabolomic composition across
the ripening of nectarines from two varieties with contrasting mealiness induced by cold
storage. It is important to note that the concept of mealiness has different definitions
depending on the methodology used to quantify it. However, in the current work, a fruit
was considered mealy when it presented a juice content lower than 30% [9].

It is widely known that carbohydrates are incorporated into the central carbon pathway
to produce cellular energy and the biosynthesis of organic acids, amino acids, lipids
and secondary metabolites, which are relevant to enable life and development of quality
traits highly appreciated by the consumer. In this aspect, we observed rearrangements in
primary metabolism associated with cold storage dependent on the variety, suggesting
that nectarines ‘Andes Nec-2’ and ‘Andes-Nec-3’ responded with differential signatures of
metabolite accumulation.

3.1. Cold Storage Induced Differential Metabolic Rearrangements in Nectarines

Postharvest treatment at 0 ◦C promoted changes in metabolite accumulation in both
varieties. We observed common changes in unripe nectarines from VIP compounds, in
which alanine, leucine, and aspartic acid showed a higher accumulation following cold
storage. In contrast, succinic acid and α-ketoglutarate were diminished after cold storage
independent of the variety. Similar changes were recently described in a segregant nectarine
population (‘Venus’× ‘Venus’) with contrasting mealiness individuals, and α-ketoglutarate,
alanine, and leucine shared the same accumulation pattern [26]. Moreover, peach fruits
from the juicy varieties ‘Red Globe’ and ‘Limon Marelli’ and the mealy variety ‘Flordaking’
exhibited the same metabolite pattern for succinic acid, α-ketoglutarate, alanine, and
aspartic acid [29].

Interestingly, unripe nectarines from the mealy variety accumulated more metabolites
than the juicy variety after cold storage (19 and 4, respectively). However, when comparing
both varieties, threonic acid, saccharic acid, mannonic acid, xylose, gluconic acid, and
cellobiose displayed an increased abundance in the mealy variety. At the same time serine,
glutamine, oxoproline, 5-hydroxynorvaline, threonine, isoleucine, valine, and sucrose were
highly accumulated in the juicy variety. In the case of sucrose, its possible role in ROS
suppression has been raised, which could help to reduce some of the problems derived from
low temperatures [34]. In addition, authors have pointed out that high levels of sucrose can
help maintain membrane integrity and thus lower susceptibility to low temperature [35].
Surprisingly, these data suggested an upregulation of sugars and sugar derivatives in the
mealy variety and an upregulation of amino acids in the juicy variety.
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3.2. Metabolite Profiling of Juicy and Mealy Ripe Nectarines after Cold Storage

After cold storage (S4 stage), ripe nectarines from the juicy variety exhibited a higher
accumulation of fucose, glucoheptulose, glucose-1-phosphate, hexose-6-phosphate, leu-
crose, ribose, and xylose than nectarines from the mealy variety. Previous work had
reported an increased abundance of ribose and xylose in juicy peaches compared to wooly
ones from the ‘Spring Lady’ variety [27]. In addition to these observations, we found
that fructose, fructose-6-phosphate, glucose, glucose-6-phosphate, and sucrose levels were
lower in nectarines from the juicy variety at ripening after cold storage. Thus, concomitant
with data previously described for the chilling injury resistant peach varieties ‘Red Globe’
and ‘Limon Marelli’ and the susceptible variety ‘Flordaking’, showing a decreased abun-
dance of fructose and glucose in juicy ripe peaches after cold storage [29]. Interestingly, for
the peach variety ‘June Gold’, pre-conditioned fruits presented an increased expressible
juice content and a lower abundance of fructose and glucose [33]. For sugar derivatives,
we detected increased levels of galactonic acid, galacturonic acid, gluconic acid, inositol-
4-monophosphate, mannonic acid, mucic acid, ribitol, ribonic acid, saccharic acid, and
xylonic acid in nectarines from the juicy variety. These findings were also observed in juicy
fruits from the ‘Spring Lady’ peach, which contained higher abundances of gluconic acid
and saccharic acid than in wooly fruits [27]. Concomitant with our data, juicy ‘June Gold’
peaches exhibited an increased accumulation of galacturonic acid than in mealy fruits [33].
In addition, galactinol, glyceric acid, lactitol, sorbitol, and xylitol were found in lower
levels in juicy nectarines. In this aspect, juicy ‘Venus’ nectarines showed an accumula-
tion of polygalacturonase [36], which correlate with the increased amount of galacturonic
acid in nectarines from the juicy variety, suggesting the hypothetical incorporation of
monosaccharides derived from cell wall remodeling associated with flesh softening after
cold storage. A previous report using proteomics in ‘O’Henry’ peach fruits susceptible to
chilling injury indicated that mealy ripe fruits accumulated isocitrate dehydrogenase and
glutamate dehydrogenase following cold storage, which could explain the lower levels of
isocitric acid and the accumulation of glutamic acid in the mealy variety of nectarines [17].

Interestingly, a decrease in the abundance of sorbitol in juicy peach fruit after cold
storage has also been described [27,33]; in relation to this sugar, it has been indicated that it
has the capacity to protect against chilling injury, but it is less than that observed in other
sugars [35]. Ripe nectarines from the juicy variety also showed increased aconitic acid,
chlorogenic acid, citramalic acid, fumaric acid, glutaric acid, isocitric acid, and shikimic
acid. Previous works indicated that fumaric acid was increased in juicy peach fruits [29,33].
Otherwise, α-ketoglutarate, benzoic acid, glycolic acid, maleic acid, malic acid, quinic acid,
succinic acid, and threonic acid were abundant in nectarines from the mealy variety. A
former study also described a benzoic acid and succinic acid increased amount in wooly
peach fruits after cold storage [29]. The increase in shikimic acid in juicy fruits makes sense
since this compound is very important in the synthesis of phenylpropanoid compounds [37],
and several of these metabolites have been described to have the ability to counteract
ROS [38], which are produced under conditions of chilling injury. Amino acid accumulation
was mainly higher in ripe nectarines from the juicy variety; however, tryptophan, GABA,
and cyano-L-alanine were found to increase in nectarines from the mealy variety after cold
storage. Our findings are supported by previous works, in which alanine, valine, isoleucine,
glycine, serine, threonine, asparagine, glutamic acid, phenylalanine, β-alanine, ornithine,
aspartic acid, proline, and trans-4-hydroxyproline displayed an increased abundance in
juicy peach fruits. There are studies where it has been proposed that proline would be
related to mechanisms that allow tolerance to cold stress associated with decreased protein
degradation and osmotic regulation [39]. In this way and coinciding with our results, a
higher proline content has been correlated with a lower susceptibility to cold damage in
sensitive species such as grapefruit [40], tomato [41], chickpea [42] and bamboo shoots [43].
Likewise, treatments aimed at increasing proline have decreased susceptibility to chilling
injury in nectarines [44]. This higher amount of proline in the ripening of the juicy variety
is consistent with the higher amount of ornithine in these fruits, since the OAT (ornithine



Plants 2023, 12, 766 12 of 16

d-aminotransferase) pathway uses ornithine to synthesize proline and is associated with
stress conditions, including low temperature, which has been described in plants [39].

A proteomic analysis using the ‘Venus’ nectarines [36] indicated that ripe mealy fruits
accumulated malate dehydrogenase following cold storage, concomitant with the higher
abundance of malic acid detected in nectarines from the mealy variety. The increase of
organic acids in the mealy fruits could have been an attempt to access more energy and
carbon skeletons through the participation of TCA, to try to repair the deterioration in
the structures resulting from the physiological disorder. In many cold-sensitive crops,
an increase in respiration rate due to cooling temperatures has been observed [45]. Like-
wise, the accumulation of GABA described in mealy fruits (S3) could also have been a
strategy to increase the amount of energy via the GABA shunt pathway providing TCA
intermediates [46] in fruits that were experiencing chilling injury [47]. In this regard, there
are other reports where it has been determined that GABA accumulated in the fruits of
the woolly peach that could be supporting this assumption [27,29,33]. Since GABA (γ-
aminobutyric acid) is considered a relevant player in the regulation of metabolism under
stress conditions [48], it can be hypothesized that the timing of GABA accumulation may
be an indicator of cold-induced stress in mealy fruits, where GABA was preferentially
accumulated after cold storage (S4). In this aspect, researchers have indicated that GABA
content in part may regulate the susceptibility to chilling injury in peach trees [49].

Therefore, our results allow us to suggest that both varieties of ‘Andes Nec-2’ and
‘Andes Nec-3’ have differential responses to cold storage through the accumulation of
several metabolites that could support tolerance to low temperatures.

4. Materials and Methods
4.1. Plant Material and Postharvest Treatments

The experimental trial was conducted on nectarines (Prunus persica (L.), var. nectarina)
varieties ‘Andes Nec-2’ and ‘Andes Nec-3’ during the 2017–2018 growing season at an
experimental orchard located in Santiago (33◦30′0.86′′ S, 70◦49′37.4′′ W), Metropolitan
Region, Chile. Fruits were collected at commercial harvest maturity based on flesh firmness
and chlorophyll absorbance index (IAD) using a portable Vis/NIR Da-Meter (Sinteleia,
Bologna, Italy) (S1 stage; unripe nectarines, Supplementary Figure S1). The second pool
of harvested fruits was stored at 20 ◦C for 5–7 d (S2 stage; ripe nectarines). The third pool
of fruits was immediately packed and stored at 0 ◦C (90% relative humidity) for 30 d (S3
stage; unripe nectarines). Then, the fourth pool of fruits was stored at 20 ◦C for 2–5 d after
cold storage (S4 stage; ripe nectarines). In this stage emerges chilling injury symptoms,
such as mealiness. Fruits exhibiting 30% or less juice content are considered mealy [9].

4.2. Phenotypical Analyses

The different quality parameters were evaluated for all stages described above. At
each stage, flesh firmness was assessed on both fruit cheeks utilizing a fruit pressure tester
with an 8 mm plunger (Effegi, Alfonsine, Italy). Different ranges were considered for each
stage: S1: 45–60 N, S2 and S4: 5–18 N, and S3: 40–60 N. At stage S1, fruit weight (g) was
determined, soluble solids content (TSS %) was evaluated with a digital refractometer HI
96811 (Hanna Instruments Inc., Woonsocket, MA, USA), and IDA was measured using a DA-
Meter. At stages S2 and S4, juice content (%) was determined using the paper absorption
method (PAM) for quantitative juiciness determination [50]. For quality parameters, nine
fruits were analyzed per stage (n = 9).

4.3. GC-MS Metabolite Profiling Analysis of Polar Compounds

Samples from the S1, S2, S3, and S4 stages were used to evaluate the metabolite of both
contrasting phenotypes. Total metabolites were extracted as described by Fiehn et al. [51].
Metabolite analysis was performed by gas chromatography–mass spectrometry (GC-MS)
and carried out by the NIH West Coast Metabolomics Center. Data were obtained using
the protocol described by Fiehn et al. [51].
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4.4. Metabolic Pathway Assessment

Analysis of the metabolic routes of the identified metabolites by GC-MS was conducted
by comparing the different stages S1, S2, S3, and S4 of both nectarine varieties using the
‘Pathway Analysis’ tool from the MetaboAnalyst 5.0 software (Xia Lab, McGill University,
Quebec, QC, Canada) [52] with categorical classification and using the Arabidopsis thaliana
pathway library. In addition, metabolites were assayed by its KEGG (Kyoto Encyclopedia
of Genes and Genomes) entry [53].

4.5. Statistical Analyses

The statistical workflow was conducted as previously reported [54]. Principal compo-
nent analysis (PCA) and partial least squares regression-discriminant analysis (PLS-DA)
were performed on the normalized data set obtained by GC-MS using MetaboAnalyst 5.0
software. Data were mean-centered and weighted by their standard deviations for PCA and
PLS-DA tests. PLS-DA analysis was used with metabolites as predictor variables and S1–S4
stages (of both varieties) as response variables. To allocate equal variance, mean-centered
variables weighted by standard deviation were used. Important projection variable (VIP)
scores were utilized to filter the PLS results to identify relevant traits. The results were
examined using Student’s t-test statistical tools (p < 0.05) to target metabolites with sig-
nificant differences among stages of both strains. Pathways that reached cutoff values
p < 0.05 and pathway impact ≥ 0.1 were considered perturbed [55]. A two-way ANOVA
was utilized to compare the means of every metabolite at different stages and strains to
perform the reconstruction of metabolic pathways. For phenotypic assays, the Student’s
t-test was performed using R software version 4.0.2 (Vienna, Austria) with significance set
at p < 0.05 and was conducted using the ‘agricolae’ package. Experiments were performed
using a minimum three biological replicates (n ≥ 3).

5. Conclusions

Our findings contributed further evidence about the effects of cold storage in primary
metabolism dynamics and nectarine quality at postharvest. Multivariate analyses indicated
that cold storage in unripe nectarines induced mainly amino acid accumulation in both
varieties. Interestingly, for ripe nectarines, cold storage induced an accumulation of fewer
amino acids in both varieties and exhibited an increased abundance of sugars and organic
acids. A pathway reconstruction of primary metabolism revealed that in ripe nectarines,
cold storage disrupted metabolite abundance in sugar metabolism and the TCA cycle,
leading to a differential accumulation of amino acids, organic acids, and sugars in mealy
and juicy nectarines that could be driving a variety-dependent cold response.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12040766/s1, Table S1: Phenotypical properties of
nectarines ‘Andes Nec-2’ and ‘Andes Nec-3’ varieties; Table S2: Polar metabolites detected by GC-MS
from nectarines ‘Andes Nec-2’ and ‘Andes Nec-3’ varieties. Figure S1: Representative scheme of
experimental design and sampling points.
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