
Supplementary Method S1 

 

1. QTL analysis 

 
The multi-environment trial (MET) dataset for each trait comprised the data on both blocks 

where each block is considered an ‘environment’. A baseline linear mixed model (LMM) was 

formulated first, and then it was extended to a factor analytic (FA) form for the genotype by 

environment (GE) effects between environments. The GE effects were then partitioned into 

additive and non-additive GE effects by incorporating the marker data into the model. A 

working model for QTL analysis was then developed, and a genome scan was performed 

on this model to identify genomic regions associated with each trait. The potential markers 

identified from the genome scan were then thinned to establish a final multi-QTL model. 

Here we present information on how we developed the baseline model and the FA model 

fitted for each trait, depending on the current study. Raman et al., 2022 presents the details 

on the working model for QTL analysis, genome scan and the final multi-QTL model, as the 

methods and the models used are the same. 

 

1.1. Formulation of the baseline LMM 

 
Firstly, formulation of the baseline LMM commenced with fitting a model that assumed 

independence of the GE effects between environments. This model, termed the diagonal 

(DIAG) variance model for the GE effects, is analogous to analysing each environment 

separately. This baseline LMM was used to assess whether additional terms were required 

to account for non-treatment sources of variation and investigate the presence of outlier 

observations. Two terms were fitted as fixed effects, representing the main effects of the 

environments (blocks) and the interaction of the environments with those genotypes which 

were not genotyped but had phenotypic data (see (Tolhurst et al., 2019) for details). SY is 

measured for each plot, and the number of plants available in each plot was counted. The 

number of plants was fitted as a covariate accounting for the variation in SY (p-value = 

0.0000000 from the Wald test) and an interaction effect with the environment (p-value = 

0.0000000 from the Wald test). As mentioned, DTF was analysed as if both blocks 

constituted a single environment. Hence, the genotype main effects were partitioned into 

two: genotypes that were not genotyped but had phenotypic data, and genotypes that were 

genotyped and had phenotypic data. The former was fitted as a fixed effect, while the latter 

was a random one. All models also included a term representing the overall mean as a fixed 

effect. 



 
The non-genetic component of the baseline LMM required the inclusion of random terms, 

which represent the plot (blocking) structure of the experiments as well as accounting for 

other significant sources of non-genetic variation which occurred in the field (random row or 

range terms) (see Gilmour et al. (1997) for example). Using the notation of Wilkinson & 

Rogers (1973), for each environment (blocks), the plot structure can be given as field plots 

nested within replicates (Rep/Plot). Thus the random plot structure term included in the 

model was Rep (Rep:Plot is the observational unit hence the errors). For PH, the baseline 

model also included the Rep:Plot term, which partitioned the error variance as the 

experimental unit of this trait is not the observational unit (see Bailey (2008)). We also 

allowed for variance heterogeneity between environments for all the random terms fitted in 

the models. For DTF, random block term was also included; for this trait, both blocks were 

considered a single environment. The variance models for the errors were independent and 

identically distributed (iid) effects with different variance parameters for each environment.  

 

1.2. Factor analytic variance model for the GE effects 

 
The baseline LMM for all traits except DTF was then extended to include FA variance 

models for the GE effects. A MET analysis was not necessary for DTF as this trait was 

measured before the water regimes were imposed for the two blocks; hence, both blocks 

were considered as a single environment. The FALMM estimates the genetic variances and 

covariances between environments using a small number of unknown factors (𝑘). These 

models were fitted using the reduced rank form of the FA model introduced by (Thompson 

et al., 2003), where common (corresponding to the common factors in the FA model) 

genotype by environment (CGE) effects and the specific genotype by environment (SGE) 

effects are modelled separately. The CGE effects may thought of as the correlated GE 

effects since the effects for one environment are correlated with those in at least one other 

environment. In contrast, the SGE effects are uncorrelated between environments. In other 

words, these effects are specific to the environment. The FA modelling process commences 

with one factor (𝑘 =  1) and continues until either the limit of the data is reached, or the 

overall percentage variance accounted for reaches 80%. For example, the limit for a MET 

dataset with 𝑝 =  3 environments is 𝑘 =  1 factor because an increase in the number of 

factors will result in more parameters being estimated than are possible in the fully 

unstructured model (𝑝(𝑝 +  1)/2 =  6). For the FA1 model, there are 𝑝𝑘 +  𝑝 −  𝑘(𝑘 −

 1)/2 =  6 parameters to estimate. 



 
In our case, as we had only two environments (blocks), the variance of the SGE effects of 

the WD block was constrained to be zero following (Cullis and Smith, 2016). We refer to 

these models as baseline FALMM. On average, the percentage of genetic variation 

accounted for (%VAF) by the baseline FALMM were above 85% for all traits (SY: 92.9%, 

PH: 99.9% and SPAD: 85.8%). Estimated genetic correlations between environments were 

all greater than 0.88 for all traits.  

1.3. Partitioning GE effects into additive and non-additive GE effects 
 

The baseline FALMM was then extended to include marker information to determine the 

genomic regions influencing the traits’ plasticity to terminal water stress. GE effects were 

partitioned into additive, and non-additive GE effects (Oakey et al., 2007) and each were 

modelled by separate FA variance models. We utilised a genetic linkage map of the 5101 

DH population based on 1793 ‘bin’ DArTseq markers representing all 19 chromosomes of 

B. napus. The linkage map was constructed using the package ASMap (Taylor and Butler, 

2017) in R statistical computing environment (R Core Team, 2021) utilising the minimum 

spanning tree algorithm (Wu et al., 2008). The missing values in these markers were 

imputed using the k-nearest neighbour method (Troyanskaya et al., 2001). The resulting 

marker matrix, 𝑴, was used to construct a genomic relationship matrix, 𝑲, (GRM) 

(VanRaden, 2008), using the package pedicure (Butler, 2021) in R statistical computing 

environment (R Core Team, 2021), where the GRM was scaled by the reciprocal of the 

average marker variance. The GRM, 𝑲, was the matrix proportional to the variance of the 

additive GE effects. The resulting model was equivalent to the standard genomic best linear 

unbiased prediction (GBLUP) model used in models for genomic selection (Tolhurst et al., 

2019). We refer to this model as the baseline FALMM with markers. Supplementary Table 

1 presents a summary of baseline LMM, baseline FALMM and the baseline FALMM with 

markers in terms of the variance model for the GE effects, the number of estimated 

parameters (total and genetic), residual log-likelihood and Akaike Information Criterion 

(AIC). The AIC value of the baseline FALMM with markers (or baseline LMM for DTF) was 

the lowest for each trait, indicating that this model is the better fit. 

1.4. Investigation of GE interaction in the MET dataset 
 

To test the significance of the specific GE interaction in the MET dataset for the three traits 

SY, PH and SPAD, we compared the baseline FALMM with markers, which models both the 



common and specific GE interaction, with a model that only models the common GE 

interaction for each trait using the likelihood ratio test. The baseline FALMM with markers 

was reduced to model only the common GE interaction in the random component together 

with all the non-genetic effects fitted before. The terms in the fixed component were retained 

as before. 

 

2. Multivariate analysis 
 

The genetic correlations between traits were obtained using multivariate analyses. The data 

for all traits were combined and analysed together within the MET analysis framework using 

FALMM, where the traits were considered as ‘environments’. Three sets of multivariate 

analyses were performed: (1) all traits from WW block, (2) all traits from WD block and (3) 

SY from WW block and carbon isotope discrimination (Δ13C) from the previous study 

(Raman et al., 2022). As the water regimes were imposed after flowering, DTF was 

considered only in the first set. For brevity, we only present the details of the analyses 

conducted for sets 1 and 3. The analysis conducted for set 2 is very similar to set 1. We first 

constructed the multivariate data set and formulated the baseline multivariate LMM. It is then 

extended to a FA form for genotype by trait (GT) effects between traits. We then partitioned 

the GT effects into additive and non-additive by incorporating the marker data into the model, 

and finally, the inference on the genetic correlation between traits was obtained. 

 

2.1. Constructing the multivariate dataset  

 

The multivariate dataset was constructed by combining the datasets for all traits (row-wise) 

under evaluation. The response variable, i.e. the measurements taken for each trait, is 

stored in the same column. For set 1, the traits SY, PH and SPAD from WW block and DTF 

from one of the blocks (WW block, although there was no difference between the blocks in 

terms of watering) were combined. For set 3, Δ13C from 2 experiments conducted in 2017 

and 2018 and SY from the WW block of the current study were combined. As there were 

data from multiple environments for Δ13C, we defined a factor called ‘EnvironmentTrait’ with 

3 levels which were the combinations of the levels of experiments and the 2 traits under 

evaluation: ‘1: Δ13C’, ‘2: Δ13C’ and ‘3: SY’. For set 1, the multivariate dataset was ordered 

as traits nested within observational units as all observations were measured for the same 

plots. In contrast, for set 3, it was ordered as observational units within each of the levels of 

EnvironmentTrait. We note that the multivariate datasets in our case were very similar to 



MET datasets as the combined analysis of all levels of either trait or EnvironmentTrait was 

analogous to a MET analysis, where we consider each level of these factors as an 

‘environment’. 

 

2.2. Formulating the baseline multivariate LMM 
 

For set 1, a diagonal variance model was fitted for the GT effects similar to the baseline 

LMM for QTL analysis. Three terms were fitted as fixed effects representing the main effects 

of the traits, the interaction of the trait with those genotypes which were not genotyped but 

had phenotypic data and the number of plants as a covariate accounting for the variation 

only for SY. We also included a term representing the overall mean as a fixed effect. The 

non-genetic component of the baseline multivariate LMM was derived from the baseline 

LMM of each trait used for the QTL analysis. For all random terms fitted in the model we 

allowed for variance heterogeneity between the traits. Considering that all traits were 

measured for the same field plots, error structure was specified as two-dimensional, with iid 

effects and an unstructured variance matrix across traits. 

  
Similar to set 1, for set 3, we began with a diagonal variance model for the GT effects. Three 

terms were fitted as fixed effects representing the main effects of EnvironmentTrait, the 

interaction of EnvironmentTrait with those genotypes which were not genotyped but had 

phenotypic data and the number of plants as a covariate accounting for the variation only 

for SY at the corresponding environment. We also included a term representing the overall 

mean as a fixed effect. For SY, the non-genetic component of the baseline multivariate LMM 

was derived from the baseline LMM used for the QTL analysis. As Δ13C was a trait measured 

from multi-phase experiments: field and laboratory, the random plot structure terms from 

both field and the laboratory phases were included in the baseline multivariate LMM. Using 

the notation of Wilkinson and Rogers (1973), the plot structure of the field phase of the 

experiment can be given as Rep/Plot. Hence, the random terms Rep and Rep:Plot were 

fitted in the baseline multivariate LMM only for this trait at the corresponding environments. 

Random row and range effects were included as necessary. 

 
Similarly, the plot structure for the laboratory phase can be considered as sample positions 

(Tube) nested within carousels crossed with runs (Run*(Carousel/Tube)), given that the 

same carousels were used in each run. This resulted in the inclusion of the random terms 

Run, Carousel, Run:Carousel and Carousel:Tube (Run:Carousel:Tube is the observational 



unit hence the errors). For all random terms fitted in the model, we allowed for variance 

heterogeneity between all levels of EnvironmentTrait. The variance models for the errors 

were iid effects with different variance parameters for each level of EnvironmentTrait. 

Moreover, we constrained the errors to be zero (very small) for the level ‘3:SY’ of 

EnvironmentTrait as the errors for SY is at the field phase, and these have already been 

fitted as random effects. That is, we only needed to model the errors for the levels of 

EnvironmentTrait, which had the laboratory phase, in other words, laboratory errors. 

 

2.3. Factor analytic variance model for the GT effects 
 

The baseline multivariate LMM for both sets were then extended to include FA variance 

models for the GT effects. As we had four traits for set 1 and three levels of EnvironmentTrait 

for set 3 we fitted an FA1 model for both the sets. We refer to these models as baseline 

multivariate FALMM.  

 

2.4. Partitioning GT effects into additive and non-additive GT effects 
 

The baseline multivariate FALMM was then extended to include marker information. GT 

effects were partitioned into additive and non-additive GT effects, and each were modelled 

by separate FA variance models. Marker information was incorporated into the model via 

the GRM, 𝐾. We refer to this model as final multivariate FALMM with markers. 

 

2.5. Inference on genetic correlation between traits 
 

For set 1, the between trait correlation matrix for the total (additive plus non-additive) genetic 

effects was obtained from the final multivariate FALMM with markers. For set 3, as Δ13C 

was measured at multiple environments (2017 experiment and 2018 experiment), we first 

obtained the between EnvironmentTrait variance matrix for the total genetic effects. The 

values in this matrix were averaged across the two environments for Δ13C using a 

transformation matrix, and consequently, between trait genetic correlations were obtained. 
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