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Abstract: Diabetic nephropathy is a complication of diabetes that leads to end-stage kidney disease
and is a major health burden worldwide. Prenylflavonoid compounds extracted from Macaranga
tanarius (MTE) exhibit anti-inflammation, anti-oxidant, and anti-bacterial properties. However,
the effects of these compounds on diabetic nephropathy remain unclear. The effects of MTE on
diabetic nephropathy were investigated in vitro by using mouse renal mesangial cells and in vivo
by using a db/db knockout mouse model. No overt alteration in proliferation was observed in
mouse renal mesangial cells treated with 0–1 µg/mL MTE. Western blot analysis indicated that MTE
dose-dependently attenuated the expression of fibronectin, α-smooth muscle actin, and collagen IV.
Administration of MTE ameliorated renal albumin loss in db/db mice. Immunohistochemical staining
revealed that MTE mitigated diabetes-induced fibronectin and collagen IV expression. Periodic acid–
Schiff (PAS) and trichrome staining also showed that administration of MTE reduced the renal fibrosis
phenomenon. MTE significantly ameliorated diabetes-induced nephropathy.

Keywords: diabetes nephropathy; fibrosis; Macaranga tanarius extract (MTE)

1. Introduction

Diabetes mellitus (DM), one of the major metabolic disorders, has a high prevalence
(approximately 10.5% of adults in 2021) worldwide [1]. The incidence of DM has increased
every year and it is a significant health burden [1]. Hyperglycemia accumulates reac-
tive oxygen species and promotes complications of DM such as cardiovascular diseases,
retinopathy, and nephropathy. Diabetic nephropathy (DN) could lead to end-stage kidney
disease and then cause renal dysfunction [2]. Renal fibrosis caused by the massive accumu-
lation of extracellular matrix (ECM) including fibronectin and collagen IV in the glomerulus
is the major characteristic of DN [3]. A limited number of drugs have been shown to block
the progression of DN. Developing agents to rescue or attenuate the progression of DN
with fewer side effects and costs is an urgent issue.

Natural compounds derived from herbs have received much interest because of their
anti-oxidant, anti-inflammation, and anti-lipidemia properties. These compounds can
ameliorate renal fibrosis induced by DN [4,5]. In one study, administration of Zingiber
officinale extracts prevented streptozotocin (STZ)-induced renal cell apoptosis through
its anti-oxidant and anti-inflammation abilities [6]. Cinnamon and its procyanidin-B2
(MTEB2)-enriched fraction attenuated urine albumin and creatinine levels in diabetic mice.
In db/db mice, administration of curcumin significantly blocked the NLR family pyrin
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domain containing three inflammasome signaling (NLRP3) and reduce DN progression [7].
Polyphenols from Physalis peruviana fruits significantly reduced serum creatinine levels
and attenuated positive periodic acid–Schiff (PAS) staining signals in STZ-induced diabetic
mice [8]. Chtourou et al. demonstrated that STZ induced neutrophil infiltration and
hypertrophied podocyte, whereas administration of a mixture of naringin, chlorogenic acid,
and quercetin significantly reversed the phenomenon [9]. Administration of Shenkang pills,
a traditional Chinese medicinal formula, evidently downregulated the activities of aurora
kinase B and Ras homolog family member A (RhoA) and ameliorated renal podocyte
dysfunction [10]. Xu et al. demonstrated that extracts from Ranunculus ternatus Thunb
(RTT) significantly suppressed fibronectin, a-smooth muscle actin (a-SMA) and vimentin
in STZ-induced diabetic mice. The expression of inflammation factors such as NF-kB and
tumor necrosis factor-a was also mitigated by RTT [11].

Macaranga tanarius (L.) Mull.-Arg. (Euphorbiaceae) is a pioneer tree that grows first
ahead of other plants on impoverished soil [12]. It grows throughout eastern and southern
Asia. The root and bark of Macaranga tanarius are used as a folk medicine in Taiwan for
treating hemoptysis and dysentery, respectively [12]. M. tanarius contains various chemical
components such as prenylflavonoids [12], lignan glucosides [13], and terpenes [12] and
exhibits a broad spectrum of biological activities. Chen et al. demonstrated that an extract
from Macaranga exerted strong free radical scavenging activity [14]. Prenylflavonoids
extracted from Macaranga tanarius promoted the differentiation of dental pulp stem cells via
mitogen-activated protein kinase and protein kinase B pathways [15]. Treatment of L6 my-
otube cells with prenylflavonoids isolated from M. tanarius fruits dose-dependently stimu-
lated AMP-dependent protein kinase activity and glucose transporter 1 (GULT1) expression
and triggered glucose uptake [16]. Lee et al. showed that extracts from Macaranga tanarius
exhibited anti-bacterial and anti-fugal properties [17]. Nymphaeol-C, one chemical isolated
from Macaranga tanarius, significantly repressed fibroblast growth factor 8 expression and its
downstream signals through downregulation of β-catenin [18]. Recently, the anti-diabetes
properties of prenylflavonoid have received great attention. Two prenylflavonoids from
Epimedii Herba prevented advanced glycation end-product formation and may exhibit
an anti-diabetes ability [19]. Zhao et al. demonstrated that prenylflavonoid glycosides ex-
tracted from Epimedium koreanum attenuated lung fibrosis formation [20]. Xanthohumol,
a prenylated flavonoid, enhanced the activity of nuclear factor erythroid 2-related factor 2
(Nrf2) and subsequently facilitated wound healing in diabetic mice [21]. Administration
of 10 mg/kg O-prenylated flavonoid purified from Melicope lunu-ankenda leaves for
20 days evidently attenuated blood glucose levels in streptozotocin (STZ)-induced diabetic
mice [22]. No study has reported the effects of prenylflavonoid compounds (MTE) derived
from Macaranga tanarius on diabetic complications. In the present study, we investigated
the effects of MTE on DN.

2. Results
2.1. Cytotoxicity Effect of MTE on Mouse Renal Mesangial Cells

To evaluate the cytotoxicity of MTE on mouse renal mesangial cells, we treated the
cells with different concentrations of MTE for 12, 24, 48, or 72 h. Figure 1 shows no overt
alteration in the mouse renal mesangial cells in the presence of high glucose combined with
0, 0.01, 0.05, 0.1, 0.5, and 1 µg/mL MTE for the indicated times.

To determine whether MTE influences the expression of fibrosis-related proteins, we
conducted Western blot analysis. The expression of fibronectin, α-smooth muscle actin,
and collagen IV increased nearly five-fold in response to high glucose treatment. A low
dose of MTE (below 0.5 ng/mL) did not affect high glucose-induced fibrosis-related protein
expression whereas a high dose of MTE (1 and 1.5 µg/mL) reversed the high glucose-
induced phenomenon (Figure 2).
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renal mesangial cells were treated with the indicated concentrations of MTE for 12, 24, 48, and 72 h 
(from upper to lower). The cell morphology was pictured by light contract microscope. 
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high glucose for 48 h. Cells in the absence of high glucose were used as a negative control (Con). 
Proteins were extracted and subjected to Western blot analysis (upper panel). b-actin was used as a 
loading control. Lower panel: the data represent the means and standard error obtained from at 

Figure 1. Cytotoxicity of prenylflavanone compounds of mouse renal mesangial cells. The mouse
renal mesangial cells were treated with the indicated concentrations of MTE for 12, 24, 48, and 72 h
(from upper to lower). The cell morphology was pictured by light contract microscope.
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Figure 2. MTE mitigated the expression of fibrosis-related proteins in diabetic mice. The mouse renal
mesangial cells were treated with 0, 0.01, 0.05, 0.1, 0.5, and 1 and µg/mL MTE in the presence of high
glucose for 48 h. Cells in the absence of high glucose were used as a negative control (Con). Proteins
were extracted and subjected to Western blot analysis (upper panel). b-actin was used as a loading
control. Lower panel: the data represent the means and standard error obtained from at least three
independent experiments. *: p < 0.05 compared to the control group. #: p < 0.05 compared to the
db/db group.

2.2. Effects of MTE on Renal Fibrosis In Vivo

To further investigate the effects of MTE on diabetes-induced renal fibrosis, we de-
veloped animal models. The body weights and HbA1C levels of the db/db knockout
mice with or without MTE were significantly higher than those of the db/m control mice.
Interestingly, the albumin loss significantly increased to 0.368 in the db/db mice compared
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with that (0.010) in the db/m mice. Administration of 50 or 100 mg/kg MTE attenuated the
albumin loss to 0.144 and 0.198, respectively. The same is also true for the kidney weight.
No overt alterations were found in kidney weight/body weight and total protein loss
(Table 1).

Table 1. Effect of PPG on HbA1C, body weight, kidney weight, albumin loss, and total protein loss in
diabetic rats.

db/m db/db

(n = 6) 0 MTE (n = 6) 50 mg/kg MTE (n = 6) 100 mg/kg MTE (n = 6)

HbA1C 4.12 ± 0.16 10.38 ± 0.79 * 9 ± 3.64 * 9.12 ± 0.89 *
Kidney weight 0.30 ± 0.03 0.42 ± 0.03 * 0.36 ± 0.15 *,# 0.38 ± 0.03 *,#

Body weight 32.56 ± 1.70 49.34 ± 4.66 * 50.65 ± 7.02 * 48.44 ± 4.42 *
Kidney weight/body weight 0.93 ± 0.10 0.86 ± 0.09 0.72 ± 0.30 0.80 ± 0.11

Albumin loss 0.0097 ± 0.0033 0.3685 ± 0.2393 * 0.1436 ± 0.2514 *,# 0.1981 ± 0.1227 *,#

*: p < 0.05 compared to the db/m group. #: p < 0.05 compared to the db/db without MTE treatment group.

To validate whether MTE affects the expression of fibrosis-related genes, we performed
quantitative RT-PCR analysis. As shown in Figure 3, the mRNA levels of fibronectin
significantly increased by nearly four-folds in the db/db mice, whereas administration of
MTE (50 or 100 mg/kg) reduced gene expression. Similarly, administration of MTE also
repressed the expression of TGF-b and collagen IV in the db/db mice.
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Immunohistochemical staining for collagen IV and fibronectin was conducted to
verify the effect of MTE on the expression of fibrosis-related proteins. As shown in Figure 4,
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the expression of fibronectin and collagen IV was significantly enhanced in the db/db
mice. Administration of 50 and 100 mg/kg MTE obviously mitigated the increase in the
expression of fibronectin and collagen IV in the db/db mice.
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Figure 4. MTE altered the expression of fibrosis-related proteins in diabetic mice. Immunohistochem-
ical staining using anti-fibronectin (A) and collagen IV (B) antibodies of glomerulus derived from
the dd/db mice administered with 0, 50, or 100 mg/kg MTE. db/m mice were used as a negative
control. The lower panel represents the means and standard deviation of IDO obtained from six mice.
*: p < 0.005 compared with db/m mice. #: p < 0.005 compared with db/db mice without MTE. Scale
bar: 100 µm at 100× and 20 µm at 1000×.

To further determine whether MTE reverses renal fibrosis in db/db mice, we per-
formed trichrome and PAS staining. Increased trichrome staining intensity was found in
db/db mice, whereas administration of MTE reversed the phenomenon (Figure 5A). Ele-
vated PAS staining intensity was observed in db/db mice, whereas MTE dose-dependently
decreased the PAS signal (Figure 5B).
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Figure 5. MTE reduced renal fibrosis in the diabetic mice. Trichrome (A) and PAS (B) staining of
glomerulus derived from dd/db mice given 0, 50, or 100 mg/kg MTE. The db/m group was used as
a negative control. (B) The lower panel represents the means and standard deviation of IDO obtained
from six mice. *: p < 0.005 compared with the db/m mice. #: p < 0.005 compared with the db/db
mice without MTE. Scale bar: 100 µm at 100× and 20 µm at 1000×.

3. Discussion

Diabetes is a major metabolic disease and its prevalence is set to increase annually
from 10% in 2021 to an estimated 12.2% in 2045 [23]. DN, one of the complications of
diabetes, is the major risk factor for causing end-stage kidney disease [24]. In the pro-
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gression of DN, hyperglycemia promotes the generation of reactive oxygen species (ROS),
triggers inflammation, accumulates ECM, and eventually induces renal fibrosis and renal
dysfunction [25]. Flavonoids extracted from plants have received great attention because
of their anti-diabetes properties [5]. In this study, we demonstrated the effects of MTE from
M. tanarius on diabetic nephropathy.

Hyperglycemia triggers damage to podocytes, leading to albumin excretion and DN
progression [26]. In the present study, the administration of MTE significantly reduced
albumin loss in diabetic mice. In line with our observations, several reports have indicated
that flavonoids ameliorate diabetes-induced renal albumin loss. Treatment with tangeretin
reduced hyperglycemia-induced renal podocyte injury and recovered renal albumin ex-
cretion in db/db mice [27]. In STZ-induced diabetic mice, the levels of serum creatinine
and urine increased, whereas administration of Andrographis paniculata extract reversed
the STZ-induced phenomenon [28]. Li et al. showed that grape seed proanthocyanidin
extracts (GSPE) significantly reduced urine albumin excretion and serum creatinine levels
in STZ-induced diabetic mice [29]. Administration of a water extract of Hydrangea panicu-
late significantly improved the renal function of diabetic mice as evidenced by increased
creatine clearance and decreased urine albumin loss [30]. Widyarini et al. demonstrated
that Etlingera elatior ethanol extract reduced blood glucose levels and protected renal
function by decreasing urine albumin secretion in STZ-induced diabetic mice [31]. Overall,
our results indicate that MTE reversal of albumin loss in diabetic mice may ameliorate
podocyte injury and block DN progression.

The main pathological characteristic of DN is renal fibrosis caused by renal interstitial
inflammation, fibroblast proliferation, and excessive extracellular matrix (ECM) deposi-
tion [25]. Fibronectin, α-smooth muscle actin (α-SMA), and collagen IV, which are the
three major compounds of ECM, participate in renal fibrosis progression [32,33]. Plant
extracts suppress the expression of fibrosis-related proteins and ameliorated DN. Yang et al.
demonstrated that a Fufang Zhenzhu Tiaozhi capsule (FTZ), which is composed of eight
Chinese traditional herbs, dose-dependently inhibited diabetic-induced fibronectin and
collagen IV expression [34]. A Huangkui capsule combined with metformin repressed high
glucose-induced tumor growth factor β-1 (TGF-β1) and fibronectin expression in in vitro
and in vivo experiments [17]. Xu et al. showed that RTT mitigated renal fibrosis-related
protein expression through downregulation of SMYD2 (30%), H3K36me3, and H3K4me3
(53% and 75%, receptively) expression [11]. An extract of Polygala fallax Hemsl (EPF)
reduced IL-1β, TNF–α, fibronectin, and collagen IV expression in high glucose-treated
human glomerular mesangial cells which suggests that the compounds attenuated DN pro-
gression [35]. Moreover, EPF also mitigated the expression of matrix metalloproteinase -2
and -9 [35]. In db/db diabetic mice, administration of 10 and 50 mg/kg Polygoni avicularis–
ethanol soluble fraction (ER-PA) significantly reduced inflammation cytokines, TGF, and
collagen IV expression [36]. In this study, MTE dose-dependently reduced fibronectin,
α-SMA, and collagen IV in renal mesangial cells in the presence of high glucose. Quantita-
tive RT-PCR and immunohistochemical staining analysis also revealed that MTE obviously
attenuated fibrosis-related protein expression in db/db diabetic mice. Moreover, PAS and
trichrome staining indicated that MTE repressed renal fibrosis in db/db diabetic mice.
Collectedly, our results show that MTE exhibited anti-renal fibrosis in diabetic mice.

4. Materials and Methods
4.1. Sample Preparation

The study materials were provided by NatureWise Biotech & Medicals Corporation
(Taipei, Taiwan). Powdered dry leaves of M. tanarius (1.5 kg) were immersed in acetone
(4.5 L) at room temperature. After filtering, the filtrate was concentrated under reduced
pressure to obtain the acetone extract. The extract was resuspended in acetone, mixed with
active charcoal powder, filtered by celite 545 on a Büchner funnel, and eluted with aqueous
MeOH solution. The 90% MeOH layer was collected and separated by Sephadex LH-20 gel
eluted with MeOH to obtain the prenylflavonoid-enriched fraction, which was purified by



Plants 2023, 12, 656 8 of 11

low-pressure Daiso SP-120-ODS-BP gel (40–60 µm) column to obtain the prenylflavonoids-
enriched component. The major compounds of the prenylflavonoid-enriched fraction
contained Propolin C (PPC), Propolin D (PPD), and Propolin G (PPG). The recovery rate of
prenylflavonoid-enriched component from 1.5 kg dry M. tanarius leaves was about 2.63%.
The component was finally dissolved in 50% propylene glycol aqueous solution for activity
studies. We used a 1:1000 dilution to treat the cells, so the final concentration of propylene
glycol was 0.5% in the culture medium.

4.2. Cell Culture

The mouse renal mesangial cells were purchased from the American Type Culture
Collection (ATCC) and maintained in Dulbecco’s modified Eagle’s medium (DMEM)/F12
medium containing 5% fetal bovine serum. In the control group, the cells were treated
with 5.5 mM D-glucose. In the high-glucose group, the cells were stimulated with 25 mM
D-glucose for 24 or 48 h. All of the cells were cultured at 37 ◦C with 5% carbon dioxide.

4.3. Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

Total RNAs of glomerular mesangium obtained through a VERITAS™ laser-captured
dissection system were extracted by TRI Reagent. In brief, 1 µg of total RNA was subjected
to first cDNA synthesis and a quantitative polymerase chain reaction [37]. The PCR
conditions and primer sequences have also been described in a previous report [37].

4.4. Western Blot Analysis

The cells were treated with 0, 0.01, 0.05, 0.1, 0.5, and 1 mg/mL MTE in the presence of
25 mM glucose for 48 h. Proteins were extracted by RIPA buffer. About 30 g of proteins
were separated by 10% sodium dodecyl sulfate–polyacrylamide gel and transferred into a
nitrocellulose membrane. The membranes were blocked by phosphate buffer saline (PBS)
containing 5% non-fat milk and incubated in the indicated antibody at 4 ◦C overnight. The
membranes were incubated with an anti-mouse or anti-rabbit second antibody conjugated
with horseradish peroxidase for 1 h at room temperature. Signals were detected by an
enhanced chemiluminescent kit.

4.5. Animal Model

Eighteen 6-week-old db/db mice (C57BLKS/J Iar-+Leprdb/+Leprdb) were obtained
from Jackson Laboratory and randomly divided into three groups: (1) 0 MTE; (2) 50 mg/kg
MTE; and (3) 100 mg/kg MTE for 8 weeks (five times per week). Six age-matched db/m
mice were used as the negative control group. At the end of the experiment, their body
weight, hemoglobin A1C (HbA1C), urine albumin, and urine total protein were mea-
sured as described in a previous report [38]. The mice were sacrificed, and their kidneys
were immediately removed and weighed. All of the protocols of the animal experiments
were certified by the Institutional Animal Care and Use Committee of the Chang Gung
Memorial Hospital.

4.6. Histological Staining and Immunohistochemical Analysis

The 4 µm paraffin-embedded renal tissue sections were subjected to deparaffinization
and rehydration. Three percent H2O2 was used to remove endogenous peroxidase activity.
The antigen was retrieved by boiling in 10 mM of citrate buffer (pH 6.0) for 20 min. The
sections were incubated with the indicated antibody, and positive signals were detected
using a horseradish peroxidase-3-3-diaminobenzidene kit (BioGenex, San Ramon, CA,
USA). Hematoxylin staining was conducted as counterstaining.

Masson’s trichrome and periodic acid–Schiff (PAS) staining were performed to analyze
collagen deposition and mesangial matrix expansion [15,17]. The quantitative integrated
optical density (IOD) was measured as described in a previous report [15].
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4.7. Statistical Analysis

All data were presented by means ± standard error obtained from at least three
experiments. Significance was measured by the Student’s t-test using SPSS version 15. A
p-value < 0.05 was considered significantly different.

5. Conclusions

In the presented study, we demonstrated that MTE mitigated high glucose-induced
fibronectin, a-SMA, and collagen IV expression in cultured renal mesangial cells. Similarly,
our results showed that MTE attenuated the expression of fibrosis-related proteins in a
db/db diabetic mouse model. In addition, MTE significantly suppressed the excretion of
renal albumin. These findings suggested that MTE negatively regulated DN and may be a
potential agent for ameliorating DN progression.
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