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Abstract: Plants are valuable sources of secondary metabolites with pharmaceutical properties, but
only a small proportion of plant life has been actively exploited for medicinal purposes to date.
Underexplored plant species are therefore likely to contain novel bioactive compounds. In this study,
we investigated the content of secondary metabolites in the flowers, leaves and pseudobulbs of the
orchid Oncidium sotoanum using an untargeted metabolomics approach. We observed the strong
accumulation of C-diglycosylated chrysin derivatives, which are rarely found in nature. Further
characterization revealed evidence of antioxidant activity (FRAP and DPPH assays) and potential
activity against neurodegenerative disorders (MAO-B inhibition assay) depending on the specific
molecular structure of the metabolites. Natural product bioprospecting in underexplored plant
species based on untargeted metabolomics can therefore help to identify novel chemical structures
with diverse pharmaceutical properties.

Keywords: chrysin; flavones; flavonoids; untargeted metabolomics; antioxidant activity; MAO-B;
Oncidium sotoanum; Orchidaceae; underexplored species; phytochemicals

1. Introduction

The search for phytochemicals with pharmaceutical potential is a key aspect of mod-
ern medicine, which continuously seeks new therapeutic agents with minimal adverse
effects [1]. This research is urgently required due to the emergence of many new diseases,
the re-emergence of old ones, and the declining effectiveness of conventional drugs. For
example, the overuse and misuse of antibiotics has increased the incidence of microbial
infections [2,3] and the prevalence of drug-resistant pathogens [4,5]. Moreover, cancer
cells can adapt to anticancer agents, making tumors extremely difficult to eradicate while
increasing the risk of toxicity to normal cells caused by chemotherapy [6]. Researchers have
therefore turned back to nature in order to expand the search for novel drug candidates [4,7].

Plants offer a large reservoir of bioactive compounds with therapeutic properties. Nat-
ural products are structurally diverse and can be classed as alkaloids, phenolics, tannins,
glucosinolates, saponins, steroids, terpenes and carotenoids, among others. The natural
distribution of such compounds is not equal; phenolic compounds representing 45% of
all phytochemicals discovered thus far, followed by terpenoids and steroids (27%) and
alkaloids (18%) [8,9]. Plants are thought to produce more than 200,000 different compounds,
and even this large number may be an underestimation [10]. Bioprospecting in underex-
plored plant species may therefore lead to the discovery of novel phytochemicals with
desirable pharmaceutical properties.

Flavonoids are phenolic compounds that form a subclass of phenylpropanoids char-
acterized by a common skeleton composed of three rings (C6-C3-C6). These rings can be
enzymatically modified to generate chalcones, flavanones, flavones, isoflavones, flavonols,
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anthocyanidins and flavanols [11]. Flavonoids confer many beneficial effects, including car-
diovascular protection, anti-atherosclerosis, anti-inflammation, anticancer and anti-aging
activities [12–14]. The biological activity of flavonoids has been attributed mainly to their
intrinsic antioxidant capacity; this allows them to scavenge free radicals and thus reduce
or prevent damage to cells [11]. The specific bioactivity and its potency depend on the
decoration of the basic scaffold, mainly with hydroxyl, methoxyl, glycosyl and acyl groups.

Chrysin (5,7-dihydroxyflavone) is a flavone whose bioactivity profile includes an-
titumor properties [15]. It is particularly active against skin, breast, lung, liver, colon,
prostate and pancreatic cancer cells in vitro [1,16]. Chrysin also protects the liver [17,18],
attenuates psoriasis-like skin lesions [19], and protects the eye from diseases leading to
blindness [20,21] in murine disease models. Molecular docking experiments, sometime
supported by in vitro data, suggest that chrysin may be active against influenza virus strain
H1N1 [22], enterovirus 71 (EV71) [23], and SARS-CoV-2 [5]. It was also shown to prevent
coxsackievirus B3 (CVB3)-induced acute pancreatitis in murine models [24] and inhibit
the growth of pathogenic bacteria in vitro [25]. A recent review suggested that, based on
in vitro and in vivo data, chrysin may also be neuroprotective [26].

Oncidium sotoanum is an ornamental species that produces purple, slightly scented
flowers and belongs to the Orchidiaceae family, which is one of the largest families
among flowering plants [27]. Historically, the term sotoanum was used as a synonym of
ornithorhynchum, but recent phylogenetic analysis of different Oncidium accessions demon-
strated that sotoanum and ornithorhynchum are two different species probably originating
in two different zones in the American continent [28]. Although Oncidium hybrids are the
second most popular varieties of orchids [29], the secondary metabolome of these plants is
still poor elucidated, especially for O. sotoanum. In O. baueri, two recent studies showed
that flowers, leaves, pseudobulbs, roots and rhizomes accumulated flavonoid derivatives
that belong to the classes of flavanones, such as oncibauerin A and B, and flavones, such as
acacetin 7-O-rutinoside and pectolinarigenin-7-O-rutinoside [30,31]. In O. “Gower Ramsey”
flowers, the red color was ascribed to the presence of anthocyanins based on cyanidin and
peonidin aglycones [27].

In this study, we explored the chemical composition of the underexplored orchid
species Oncidium sotoanum by using an untargeted metabolomics approach to survey
the natural compounds produced in various organs. Results revealed high levels of C-
diglycosylated chrysin derivatives, which are particularly rare in nature. The metabolic
profiling of orchid species could provide a series of leads for the development of new,
pharmacologically active natural products.

2. Results
2.1. Structural Analysis of the Most Abundant O. sotoanum Metabolites by LC-HRMS

We prepared methanol extracts of O. sotoanum flowers, leaves and pseudobulbs for LC-
HRMS analysis (UPLC-PDA-ESI/QqTOF) following an untargeted metabolomics approach.
The resulting chromatograms are shown in Figure 1.

Flowers (Figure 1A) accumulated three major compounds, the first with an m/z
value of 603.1723 and a retention time of 8.08 min (peak 1), and the other two with the
same m/z value of 645.1820 and retention times of 8.82 min (peak 2) and 9.06 min (peak
3). Leaves and pseudobulbs (Figure 1B,C) accumulated one major compound with an
m/z value of 849.2453 and a retention time of 9.55 min (peak 4). The absorption spectra
of these metabolites showed a major peak at 267 nm and a less intense one at 313 nm,
which are characteristic of flavones [32]. The metabolites were identified by inspecting their
fragmentation patterns as determined using the FAST-DDA function available in MassLynx.
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Figure 1. Negative base peak ion chromatograms of diluted O. sotoanum flower, leaf and pseudobulb 
extracts. (A) Base peak chromatogram of a flower extract diluted 1:200 (v/v) and 0.5 µL injected to 
the LC-HRMS. Peaks numbers stand for a putative chrysin C-(acetyldeoxyhexosyl) hexoside (peak 
1) and two putative isoforms of chrysin C-(diacetyldeoxyhexosyl) hexoside (peak 2 and 3). (B) Base 
peak chromatogram of a leaf extract diluted 1:100 (v/v) and 1 µL injected to the LC-HRMS. Peak 4 
indicates a putative chrysin C-(triacetyldeoxyhexosyl) hexoside-O-hexoside. (C) Base peak chroma-
togram of a pseudobulb extract diluted 1:10 (v/v) and 1 µL injected to the LC-HRMS. 
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Compound 1 (Figure 2A) produced a base peak ion of m/z = 483.1291 (0,2X0–) by the 
loss of 120 Da (suggesting the cross-ring cleavage of a hexose) and an ion of m/z = 397.0932 
(Z1–) by the loss of 206 Da, which matches an acetyl hydrated deoxyhexose (42 Da + 18 Da 
+ 146 Da) moiety (Figure 2B). The daughter ion (m/z = 397.0932) may therefore represent a 
dehydrated C-glycosylated flavone, as reported for the fragmentation of vitexin-2″-O-
rhamnoside [33]. Neutral losses of 60, 90 and 120 Da were observed for an ion of m/z = 
397.0932, resulting in the production of three fragments of m/z = 337.0688 [M-206-60]–, 
307.0594 [M-206-90]– and 277.0504 (0,2X0Z1–) [M-206-120]–, with the last being the most 
abundant. These neutral losses are characteristic of glycosides linked via carbon–carbon 
(CC) bonds. A fragment of m/z = 253.0505 was also detected, differing by 24 Da from the 
ion with an m/z value of 277.0504. Previously, the main fragment of vitexin-2′′-O-rhamno-
side (m/z = 577) was shown to have an m/z value of 293, consisting of the aglycone apigenin 
(m/z = 269) plus 24 Da [33]. These data suggest that compound 1 is an aglycone (254 Da) 
C-glycosylated with a hexose, which is in turn attached to a deoxyhexose, and is probably 
acetylated at one hydroxyl group of the sugar moiety. 

Figure 1. Negative base peak ion chromatograms of diluted O. sotoanum flower, leaf and pseudobulb
extracts. (A) Base peak chromatogram of a flower extract diluted 1:200 (v/v) and 0.5 µL injected to the
LC-HRMS. Peaks numbers stand for a putative chrysin C-(acetyldeoxyhexosyl) hexoside (peak 1) and
two putative isoforms of chrysin C-(diacetyldeoxyhexosyl) hexoside (peak 2 and 3). (B) Base peak
chromatogram of a leaf extract diluted 1:100 (v/v) and 1 µL injected to the LC-HRMS. Peak 4 indicates
a putative chrysin C-(triacetyldeoxyhexosyl) hexoside-O-hexoside. (C) Base peak chromatogram of a
pseudobulb extract diluted 1:10 (v/v) and 1 µL injected to the LC-HRMS.

Compound 1 (Figure 2A) produced a base peak ion of m/z = 483.1291 (0,2X0
−)

by the loss of 120 Da (suggesting the cross-ring cleavage of a hexose) and an ion of
m/z = 397.0932 (Z1

−) by the loss of 206 Da, which matches an acetyl hydrated deoxy-
hexose (42 Da + 18 Da + 146 Da) moiety (Figure 2B). The daughter ion (m/z = 397.0932)
may therefore represent a dehydrated C-glycosylated flavone, as reported for the frag-
mentation of vitexin-2′′-O-rhamnoside [33]. Neutral losses of 60, 90 and 120 Da were
observed for an ion of m/z = 397.0932, resulting in the production of three fragments of
m/z = 337.0688 [M-206-60]−, 307.0594 [M-206-90]− and 277.0504 (0,2X0Z1

−) [M-206-120]−,
with the last being the most abundant. These neutral losses are characteristic of glycosides
linked via carbon–carbon (CC) bonds. A fragment of m/z = 253.0505 was also detected, dif-
fering by 24 Da from the ion with an m/z value of 277.0504. Previously, the main fragment
of vitexin-2′′-O-rhamnoside (m/z = 577) was shown to have an m/z value of 293, consisting
of the aglycone apigenin (m/z = 269) plus 24 Da [33]. These data suggest that compound
1 is an aglycone (254 Da) C-glycosylated with a hexose, which is in turn attached to a
deoxyhexose, and is probably acetylated at one hydroxyl group of the sugar moiety.

The aglycone of compound 1 was characterized by selective fragmentation of the
m/z = 253 ion [aglycone-H]−, which was achieved using the selected reaction monitoring
(SRM) method and a high cone voltage (150 V) to induce in-source fragmentation. The
results showed a peculiar fragmentation profile that was highly similar to that of a chrysin
authentic commercial standard (Figure 3). Therefore, compound 1 was annotated as chrysin
C-(acetyldeoxyhexosyl) hexoside (Figure 2B).
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ing argon gas at 35 eV. 

Compounds 2 and 3 shared the same m/z value (645.1820) at different retention times 
and the same fragmentation profiles, suggesting that they might be structural isomers. 
The collision-induced dissociation (CID) of both ions (m/z = 645.1820 [M-H]–) produced 
fragments of m/z = 603.1726 [M-42-H]– and 525.1377 [M-120-H]–, suggesting the presence 
of an acetyl group and a C-glycoside. The detection of an ion with an m/z value of 397.0932 
indicated a neutral loss of 248 Da, suggesting the presence of a hydrated deoxyhexose 

Figure 2. Fragmentation profile and identity of the ion with an m/z value of 603.1729. (A) Frag-
mentation profile determined by FAST-DDA. (B) Putative structural annotation as chrysin C-
(acetyldeoxyhexosyl) hexoside. Cyan and red arrows indicate the breakage points, giving rise
to the diagnostic fragments highlighted by the glycoside fragmentation nomenclature [33].
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Figure 3. Selected reaction monitoring (SRM) profile of the ion with an m/z value of 253.0504. The
flower extract was analyzed in negative ionization mode at a high cone voltage (150 V) to induce
the in-source fragmentation of larger metabolites and release the aglycone. The same analysis was
applied to the chrysin standard (1 ng/µL). Collision induced dissociation (CID) was carried out using
argon gas at 35 eV.

Compounds 2 and 3 shared the same m/z value (645.1820) at different retention times
and the same fragmentation profiles, suggesting that they might be structural isomers. The
collision-induced dissociation (CID) of both ions (m/z = 645.1820 [M-H]−) produced frag-
ments of m/z = 603.1726 [M-42-H]− and 525.1377 [M-120-H]−, suggesting the presence of
an acetyl group and a C-glycoside. The detection of an ion with an m/z value of 397.0932 in-
dicated a neutral loss of 248 Da, suggesting the presence of a hydrated deoxyhexose joined
to two acetyl groups (164 Da + 42 Da + 42 Da). Other daughter ions, such as those of
m/z = 337.0726, 307.0594, 277.0504, 295.0612 and 253.0505, indicated the presence of the
same core structure detected in compound 1 (Figure 4A,B). These data strongly suggest that
compounds 2 and 3 are structural isomers of chrysin C-(diacetyldeoxyhexosyl) hexoside.
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Figure 4. FAST-DDA analysis of four unidentified compounds. The analysis of compounds 1 (A),
2 and 3 (B), and 4 (C) showed that compounds 2 and 3 share the same m/z value (645.1820) but
eluted at 8.82 and 9.06 min, respectively. Red boxes indicate the same core structure among the
four compounds.

Compound 4 had an m/z value of 849.2487 and produced a major fragment ion of
m/z = 687.1964, revealing a neutral loss of 162 Da compatible with the release of an O-
hexose. This glycosyl residue is probably esterified with a hydroxyl group at position 5 or
7 of the aglycone A ring. Moreover, the fragment ion of m/z = 645.1837 differs by 42 Da
from 687.1964, suggesting the presence of an acetyl group. The other two visible fragments
of m/z = 567.1508 and 525.140 represented losses of 120 Da, suggesting a cross-ring cleavage
of hexose from ions with m/z values of 687.1964 and 645.1837, respectively. Similar to
compounds 2 and 3, compound 4 generated the same core fragments at lower m/z values,
suggesting a common basic structure (Figure 4C). Therefore, compound 4 was identified as
chrysin C-(triacetyldeoxyhexosyl) hexoside-O-hexoside.

2.2. Untargeted Metabolomics Reveals the Existence of Other Chrysin Derivatives

The LC-MS data files for the flower, leaf and pseudobulb samples were processed us-
ing Progenesis QI, resulting in a final data matrix with 457 rt/mz features and 61 putatively
identified metabolites (Supplementary File S1). Most of the identified metabolites were
flavones, with apigenin and chrysin as the two most representative aglycones. Chrysin
derivatives were putatively identified by comparing their absorbance peaks and fragments
with those of the chrysin authentic commercial standard. We induced in-source fragmenta-
tion as described above with the specific aim of fragmenting the aglycone (m/z = 253.0505)
in negative ionization mode. This revealed 26 putative chrysin derivatives in leaves and
pseudobulbs (Table 1).

Most of these metabolites shared the main crysin C-(deoxyhexosyl) hexoside core
structure, but the deoxyhexose moiety was decorated with a variety of acetyl and/or acyl
groups, such as syringic or gallic acid. In some of the chrysins, a glycoside was esterified to
one of the two hydroxyl groups of the flavone structure. In some cases, the O-glycoside
was modified further with caffeic, gallic or methylgallic acid. The various combinations are
shown in Figure 5.
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Table 1. Chrysin derivatives putatively identified in Oncidium sotoanum organs.

r.t. m/z Negative m/z Positive Formula Putative Identification

6.03 577.1569 579.1714 C27H30O14 Chrysin-C-hexoside-C-hexoside
6.82 561.1611 563.1765 C27H30O13 Chrysin-C-(O-deoxyhexosyl) hexoside
7.08 811.2311 * 767.2399 C35H42O19 Chrysin-C-(O-monoacetyldeoxyhexosyl) hexoside-O-hexoside
7.36 917.2367 919.2508 C42H46O23 Chrysin-C-(O-monoacetyldeoxyhexosyl) hexoside-O-galloyl hexoside
7.39 603.1722 605.1870 C29H32O14 Chrysin-C-(O-monoacetyldeoxyhexosyl) hexoside 1
7.51 603.1723 605.1870 C29H32O14 Chrysin-C-(O-monoacetyldeoxyhexosyl) hexoside 2
8.05 921.2301 ** 809.2512 C37H44O20 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside-O-hexoside 1
8.07 603.1723 605.1870 C29H32O14 Chrysin-C-(O-monoacetyldeoxyhexosyl) hexoside 3
8.11 755.1827 757.1980 C36H36O18 Chrysin-C-(O-galloyl-monoacetyldeoxyhexosyl) hexoside 1
8.27 593.1563 * 549.1608 C26H28O13 Chrysin-O-hexosyl pentoside
8.28 959.2485 961.2614 C44H48O24 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside-O-galloyl hexoside
8.66 921.2297 ** 809.2504 C37H44O20 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside-O-hexoside 2
8.69 973.2639 975.2770 C45H50O24 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside-O-methylgalloyl hexoside
8.76 943.2523 945.2665 C44H48O23 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside-O-galloyl deoxyhexoside
8.81 645.1831 647.1976 C31H34O15 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside 1
8.84 755.1815 757.1980 C36H36O18 Chrysin-C-(O-galloyl-monoacetyldeoxyhexosyl) hexoside 2
8.91 741.2047 743.2187 C36H38O17 Chrysin-C-(O-syringyl-deoxyhexosyl) hexoside
9.05 645.1830 647.1976 C31H34O15 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside 2
9.06 645.4419 647.1976 C31H34O15 Chrysin-C-(O-diacetyldeoxyhexosyl) hexoside 3
9.27 1001.2589 1003.2719 C46H50O25 Chrysin-C-(O-triacetyldeoxyhexosyl) hexoside-O-galloyl hexoside
9.47 783.2140 785.2293 C38H40O18 Chrysin-C-(O-syringyl-monoacetyldeoxyhexosyl) hexoside
9.55 849.2453 851.2610 C39H46O21 Chrysin-C-(O-triacetyldeoxyhexosyl) hexoside-O-hexoside
9.57 769.1979 771.2136 C37H38O18 Chrysin-C-(O-methylgalloyl-monoacetyldeoxyhexosyl) hexoside
9.71 985.2633 987.2829 C46H50O24 Chrysin-C-(O-triacetyldeoxyhexosyl) hexoside-O-galloyl deoxyhexoside
9.72 1015.2743 1017.2876 C47H52O25 Chrysin-C-(O-triacetyldeoxyhexosyl) hexoside-O-methylgalloyl hexoside
9.90 1011.2792 1013.2927 C48H52O24 Chrysin-C-(O-triacetyldeoxyhexosyl) hexoside-O-caffeoyl hexoside

* formic acid adduct; ** diformic acid and sodium adduct; rt: retention time (min).
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flavone A ring). R = possible esterification sites with a sugar that can be acylated with caffeic, gallic
and methylgallic acid.
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2.3. Chrysin Quantification

Absolute quantification of chrysin derivatives in flowers, leaves and pseudobulbs
was carried out by comparing the absorption at 267 ± 4 nm with a calibration curve of
the chrysin authentic commercial standard. The precise levels are expressed as chrysin
equivalents in Table 2, representing the sum of the amounts of peaks 1, 2, 3 and 4 from
Figure 1. The other chrysin derivatives detected by LC-MS were not taken into account
because the photodiode array (PDA) signal was too low. An O. sotoanum flower was found
to weigh 53.2 ± 2.6 mg on average, so 19 flowers were needed to prepare 1 g of fresh
weight (FW).

Table 2. Chrysin content in Oncidium sotoanum organs. FW = fresh weight.

Flowers Leaves Pseudobulbs

Chrysin equivalents
(mg g−1 FW) 10.5 ± 2.1 0.6 ± 0.2 0.5 ± 0.3

2.4. Antioxidant and MAO-B Inhibition Assays

The antioxidant activity of flowers, leaves and pseudobulbs was evaluated using
FRAP and DPPH assays (Figure 6). The antioxidant capacity of leaf extracts was higher
than that of pseudobulbs or flowers in both assays. However, even though the antioxidant
capacity of flowers was higher in the DPPH assay than the FRAP assay, the reverse was
true for the other two organs.
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Figure 6. Antioxidant and MAO-B inhibition assays of flower, leaf and pseudobulb extracts. (A) An-
tioxidant (FRAP, DPPH) assays, with values expressed as Trolox equivalents. (B) MAO-B assay
using undiluted samples, with values expressed as relative light units (RLUs). In this assay, 2.5 µM
deprenyl was used as a positive control, and MAO buffer without inhibitor as a negative control. Data
are means ± standard deviation (n = 3, one-way ANOVA with Tukey’s post hoc test, and different
lowercase letters represent statistically significant differences between groups, p < 0.05).
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Given that chrysin has been reported as a neuroprotective agent [26], we carried out
an in vitro monoamine oxidase (MAO-B) inhibition assay on flower, leaf and pseudobulb
extracts using deprenyl as a positive control and buffer without inhibitor as a negative
control. We found that non-diluted leaf extracts significantly inhibited MAO-B whereas
the other extracts had a negligible effect (Figure 6B). Chrysin derivatives in flowers and
pseudobulbs therefore appear to lack MAO-B inhibition activity. Moreover, serial dilutions
of leaf extracts (1:5 and 1:10 v/v in MAO buffer) revealed no inhibition even at the lowest
dilution factor, suggesting leaf metabolites possess only weak MAO-B inhibition activity
(data not shown).

Finally, orthogonal partial least squares (OPLS) multivariate statistical analysis was
used to investigate the correlation between metabolite levels, antioxidant activity and MAO-
B inhibition capacity in the extracts. The peak values in the data matrix were converted
to percentages after setting the total ion signal of each sample to 100% to account for the
different extraction volumes, dilutions and injection volumes used for each tissue. The score
scatter plot showing t[1] vs. u[1] highlighted a linear correlation between the metabolites
(X variables) and the antioxidant activity (Y variable) determined using the FRAP assay
(Figure 7A) and DPPH assay (Figure 7B). The corresponding loading plots (Figure 7D,E),
which showed the p[1] vs. pq(corr)[1], revealed specific metabolites correlating with
antioxidant activity.Plants 2023, 12, x FOR PEER REVIEW 9 of 18 
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Figure 7. OPLS analysis showing correlation between the metabolites, antioxidant capacity and
MAO-B activity of different extracts. (A–C) are the score scatter plots of the FRAP, DPPH and MAO-B
assays, respectively. Red hexagons indicate pseudobulb samples, pink stars the flowers and blue
circles the leaves. (D–F) are the loading plots of the FRAP, DPPH and MAO-B assays, respectively.
Triangles indicate the metabolites. Yellow triangles are chrysin derivatives in which the acyl group
(syringic or gallic acid) is linked to the deoxyhexose of the C-diglycoside (Ac in Figure 5). Green
triangles indicate those chrysin derivatives with gallic, methylgallic or caffeic acid attached to the O-
glycoside (R in Figure 5). The red arrows indicate the two chrysins including methylgalloyl residues
attached to the O-glycoside.
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The results showed that only the chrysins with gallic or caffeic acid attached to the
sugar moiety linked via an O-glycosidic bond to the A ring of the flavone aglycone were
strongly correlated with antioxidant activity. Such structures were abundant in the leaves
but not in the flowers, despite the generally high levels of chrysins in flowers. These data
confirm that chrysin bioactivity is dependent on the precise decoration of the basic chrysin
scaffold. In leaves, chrysins often feature a galloyl residue attached to the O-glycoside,
whereas the further methylation of one hydroxyl group in the galloyl residue seems to
reduce the antioxidant capacity (Figure 7D,E). Similarly, the OPLS score scatter plot showed
a difference between extracts in terms of MAO-B inhibition (Figure 7C), and the loading plot
suggested, even in this case, that chrysins with galloyl residues attached to the O-glycoside
might show a greater degree of MAO-B inhibition activity (Figure 7F).

3. Discussion

Untargeted metabolomics analysis of O. sotoanum flower, leaf and pseudobulb ex-
tracts revealed 26 different chrysin derivatives, all based on a unique common structure
of chrysin C-(deoxyhexosyl) hexoside. We tentatively annotated the four most abundant
molecules as chrysin C-(acetyldeoxyhexosyl) hexoside, two structural isomers of chrysin
C-(diacetyldeoxyhexosyl) hexoside and chrysin C-(triacetyldeoxyhexosyl) hexoside-O-
hexoside. These structures are rare in nature, and only a few species produce similar
chrysins to those found in O. sotoanum. One example was identified in the leaves of
Sarcotheca griffithii (family Oxalidaceae) by LC-MS analysis, which revealed an m/z value of
563.17611 [M+H]+ and a fragmentation pattern similar to the chrysin C-(O-deoxyhexosyl)
hexoside found in our extracts. Additional 1H NMR analysis [34] confirmed the iden-
tity of chrysin 6-C-(2′′-O-α-L-rhamnosyl)-β-glucoside. Other chrysins with similar struc-
tures include chrysin-8-C-(2′′-O-α-6- deoxyglucosyl)-β-glucoside found in the peel tis-
sue of Passiflora edulis Sim fruits [35], chrysin-6-arabinosyl-8-C-glucoside and chrysin-7-
O-glucuronide found in Scutellaria immaculata and S. ramosissima aerial parts and root
tissue [36], chrysin-7-O-β-glucoside found in Cytisus villosus Pourr [37] and chrysin 6-C-β-
glucosyl-8-C-β-glucuronoside, chrysin-7-O-gentiobioside and chrysin-6-C-β-glucosyl-8-
C-α-arabinoside found in Oroxylum indicum seeds [38]. Acetylated forms of chrysin, such
as chrysin 7-(6′′-O-acetyl)-O-β-glucoside and chrysin 7-(4′′-O-acetyl)-O-β-glucoside, were
identified in Calicotome villosa by NMR spectroscopy [39].

The two major sources of chrysin in nature are honey and propolis. The chrysin
content of honey ranges from 0.22 µg/g in Wolfberry honey from China [1] to 1.2 µg/g
(chrysin plus galangin) in Rubus honey [40], 1.31 µg/g in Manuka Honey [1] and 1.53 µg/g
in Forest honey from Spain [41]. Chrysin is also found in 10 different buckwheat honeys at
concentrations of 0.19–1.28 µg/g [42]. Much higher levels are found in propolis, reaching
10 mg/g in Greek propolis, 11 mg/g in Korean propolis, 19 mg/g in Polish propolis,
66.3 mg/g in Bulgarian propolis and 82.9 mg/g in Hungarian propolis [43–46]. Other
minor sources of chrysin are listed in Table 3.

Table 3. Chrysin content of different plant materials. DW = dry weight; FW = fresh weight.

Species Material Chrysin Content Ref.

Hyphaene thebaica Male flowers 83 µg/g DW [47]
Juglans regia Diaphragma juglandis (from walnuts) 3.18 µg/g DW [48]

Cytisus villosus Pourr * Aerial parts 4 µg/g DW [37]

Momordica charantia

Ripe fruit pulp 11 µg/g DW

[49]
Ripe fruit peel 39 µg/g DW
Ripe fruit seed 24 µg/g DW

Unripe (whole fruit) 9 µg/g DW
Bulbophyllum odoratissimum Air-dried whole plant 27 µg/g DW [50]

Cypripedium macranthos var. rebunense In vitro regenerated plantlets 0.5 mg/g FW [51]
Desmos cochinchinensis Shade-dried leaves 14 µg/g DW [52]

* For chrysin-7-O-β-D-glucopyranoside: 15.9 mg/g DW [53].
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The presence of chrysin in propolis and honey strongly suggests that many plant
species accumulate chrysins in flowers, probably in the pollen and/or nectar [54,55]. Ac-
cordingly, we found that O. sotoanum accumulates high levels of glycosylated chrysins in
flowers, reaching bulk levels of 10 mg/g FW. However, honey and propolis include chrysin
aglycones that are probably derived from glycosylated forms by the enzymatic activity
of honeybee saliva on flavonoids [56]. The high chrysin content of flowers supports the
hypothesis that crysins might be involved in reproduction in O. sotoanum and perhaps in
other plant species.

Flavonoids are phenolic compounds that confer positive health effects in humans
due to their antioxidant capacity. Chrysin aglycone is a strong antioxidant based on ABTS
and DPPH assay data [57,58], reflecting its ability to scavenge superoxide radicals [59].
However, chrysin has a lower antioxidant capacity than other flavones such as luteolin,
which has been attributed to the lack of hydroxyl groups in the B ring [60]. We assessed
the antioxidant capacity of O. sotoanum flower, leaf and pseudobulb extracts, which ac-
cumulated different sets of metabolites. Leaf extracts showed the greatest antioxidant
activity in FRAP and DPPH assays. OPLS analysis revealed that only chrysins featuring
hydroxybenzoic or hydroxycinnamic acid linked to the O-glycosyl moiety were strong an-
tioxidants. These structures were abundant in leaves, which correlated well with the FRAP
and DPPH assay data. Accordingly, the common structure of chrysin C-(deoxyhexosyl)
hexoside does not appear to contribute much to the antioxidant capacity of the extracts.
Indeed, C-glycosylated flavonoids possess lower antioxidant activity than O-glycosylated
forms, especially those conjugated in the A-ring [61,62]. Furthermore, the presence of
hydroxybenzoyl and hydroxycinnamoyl residues (especially gallic acid) attached to the
O-glycoside strongly enhanced the antioxidant activity compared to non-acylated counter-
parts, as previously reported [63–65]. Interestingly, the type of linkage between chrysin and
the sugar residues seems to strongly affect the FRAP and DPPH results, regardless of the
type of attached hydroxybenzoic acid. In fact, galloyl moieties joined to the C-diglycoside
showed less antioxidant activity than the same moieties linked to the O-glycoside, which
should be explored in more detail in future investigations.

Chrysin may also confer neuroprotection, slowing the pace of cognitive decline in
neurodegenerative disorders such as Alzheimer’s disease and Parkinson’s disease [26]; the
latter has been demonstrated in vivo using transgenic Caenorhabditis elegans disease mod-
els [66]. The administration of 5 and 20 mg/kg chrysin every 28 days also increased sucrose
consumption and reduced immobility during the tail suspension test in female C57B/6J
mice exposed to chronic unpredictable mild stress as a model of depression [67–69]. Other
in vivo investigations in rodent depression models indicated antidepressant-like effects
following the administration of chrysin [70]. Neurodegenerative disease and depression
are both associated with the loss of MAO activity [71]. MAOs oxidize endogenous and
exogenous monoamine neurotransmitters, producing reactive oxygen species and trig-
gering oxidative stress. Humans produce two isoforms of MAO known as MAO-A and
MAO-B, with the latter active in the brain [72]. Selective MAO-B inhibitors can therefore
slow the progression of neurodegenerative disorders, and are also effective for atypical
or treatment-resistant depression [73]. Chrysin has been shown to inhibit MAO-B in
a concentration-dependent manner with IC50 values of 12.3 µM [74], 0.79 µM [75] and
1.04 µM [76]. We did not evaluate the IC50 of O. sotoanum extracts due to the poor MAO-B
inhibition responses that occurred, even with undiluted samples. This result appears to
contradict previous findings. However, this discrepancy may reflect the fact that previous
experiments tested only chrysin aglycone, whereas all our chrysins were glycosylated and
acylated. O. sotoanum flowers contain mainly C-diglycosylated and acylated chrysins, and
MAO-B inhibition by flower extracts was negligible. The decoration of the chrysin structure
therefore appears to have a profound effect on MAO-B inhibition. Finally, the presence of
gallic acid attached to the O-glycosyl moiety appeared to favor MAO-B inhibition, and this
should be investigated in more detail.



Plants 2023, 12, 655 11 of 17

The potential health benefits of chrysin depend strongly on its pharmacokinetic and
pharmacodynamic profiles in the human body. The administration to human volunteers
of 400 mg chrysin in a single dose resulted in extensive plasma binding (>99%) and oral
bioavailability of 0.003–0.02% [77]. After absorption, chrysin is extensively converted by
phase II metabolism into chrysin 7-O-sulfate and chrysin 7-O-glucuronide, as observed
in studies using human intestinal Caco-2 cells, male Sprague-Dawley rats and human
volunteers. Moreover, these forms are mainly excreted in the feces [77–79], suggesting
that chrysin is poorly absorbed and rapidly metabolized and eliminated, resulting in low
bioavailability [77]. In addition, chrysin is poorly soluble in water [80], which limits its
applications in healthy food [81] and makes it more difficult to achieve the recommended
daily amount of 0.5–3.0 g [82]. Furthermore, even low amounts of chrysin were found to
be toxic in a liver cell line [82,83], probably due to the activity of peroxidase-like enzymes
that generate toxic chrysin derivatives [83]. Therefore, further studies on the toxic effects
of chrysin are required. However, many of the previously cited pharmacological studies
refer to chrysin aglycone, whereas no data are available for C-diglycosylated chrysins.
C-glycosylated flavonoids are resistant to hydrolysis, and no mammalian enzymes that
cleave the C-glycosidic linkage have been discovered thus far. C-glycosylated flavonoids
might therefore act as probiotics, serving as substrates for bacteria resident in the human
colon [84]. Interestingly, C-multiglycosylated flavonoids are rapidly and easily absorbed in
the intestine, unlike the C-monoglycosylated forms, and they can be distributed to other
tissues where they may exert pharmacological effects [61]. Because O. sotoanum chrysins are
mainly C-diglycosylated forms, they could be absorbed and distributed in the body, bypass-
ing the problem of low bioavailability and conferring the abovementioned health benefits.
However, the hydrolysis of the O-glycoside group, the part responsible for antioxidant and
MAO-B inhibition activity, might reduce the bioactivity of these metabolites.

4. Materials and Methods
4.1. Sample Collection and Preparation

Six O. sotoanum plants were purchased from an Italian orchid nursery and cultivated
in phytotrons at 25 ± 2 ◦C and 70% relative humidity with a 16 h photoperiod. Flowers,
leaves and pseudobulbs were collected 10 days after anthesis; nine flowers, six pseudobulbs
and six leaves were used to create each sample, defined as a biological replicate. Almost
30 flowers were weighed on an analytical balance. The samples were immediately frozen
in liquid nitrogen, ground with a mortar and pestle, and 100 mg of frozen powder was
extracted with six volumes (w/v) of 100% LC-MS grade methanol (Honeywell, Seelze,
Germany). The samples were vortexed for 30 s, sonicated for 10 min in a 40-kHz ultrasonic
bath (SOLTEC, Milano, Italy) with ice, and centrifuged at 14,000× g for 15 min at 4 ◦C. The
supernatants were stored at −20 ◦C.

4.2. Untargeted Metabolomics Analysis

Methanol extracts of flower, leaf and pseudobulb samples were diluted to 1:200,
1:100 and 1:10 with LC-MS grade water (Honeywell) and then passed through 0.22-µm
Minisart filters (Sartorius-Stedim Biotech, Göttingen, Germany). LC-HRMS analysis was
carried out as previously described [85]. Briefly, an ACQUITY I CLASS UPLC system with
an ACQUITY PDA detector was connected to an electrospray ionization (ESI) source and
Xevo G2-XS qTOF mass spectrometer (all equipment from Waters, Manchester, UK). The
PDA comprised an eλ detector (190–800 nm) and a sensitive flow cell. The samples were
fractionated in a Waters reversed-phase BEH C18 column (2.1 mm × 100 mm, 1.7 µm) with
a Vanguard column (2.1 mm × 5 mm, 1.7 µm) at 30 ◦C. We used a gradient of solvent A,
which was 0.1% formic acid (Biosolve Chimie, Dieuze, France) in LC-MS grade water, and
solvent B, which was 100% acetonitrile, at a flow rate of 0.350 mL/min. The gradient started
with 1% B, held to 1% B for 1 min, then increased to 40% B at 10 min, to 70% B at 13.5 min,
and to 99% at 14 min. Subsequently, the method remained in 99% B for 2 min and was then
decreased to 1% B at 16.1 min. The method remained in isocratic (1% B) for 3.9 min and
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ended at 20 min. Samples were placed in an ACQUITY flow through needle autosampler
kept at 8 ◦C. We injected 0.5 µL of each flower sample and 1 µL of the other samples. The
ESI source parameters were as previously described [86] and samples were ionized in
negative mode. Positive ionization was also induced to facilitate identification. MS data
were acquired in continuum and sensitivity modes. The scan range was set to 50–2000 m/z
and the scan time at 0.3 s. MS data were acquired using function 1 (no fragmentation) and
function 2 (CID with argon gas at a collision energy of 35 eV). Samples were analyzed
by FAST-DDA and SRM in negative ion mode. FAST-DDA analysis was carried out by
setting the dual-dynamic collision energies to 10–40 eV for low-mass collision energy
and 20–80 eV for high-mass collision energy. Automatic switching to MS/MS mode was
enabled when the total ion current intensity rose above 100,000/s, switching off after 1 s. A
tolerance window of ±3.0 Da and a peak extract window of 2.0 Da were set in deisotope
peak detection mode. For SRM analysis, the ESI cone voltage was set at 150 V to induce
in-source fragmentation. MS data were acquired using function 1 as described above,
whereas function 2 was set to a scan range of 50–400 m/z, a scan time of 0.1 s, a selected
mass of 253 m/z and a collision energy ramp of 15–60 eV. All functions were controlled
using Masslynx v4.1 (Waters). Instrument accuracy was checked by infusing a solution
of 100 pg/µL leucine-enkephalin at a flow rate of 10 µL/min and generating a signal of
556.2771 in positive mode and 554.2615 in negative mode. The raw MS data files were
processed using Progenesis QI (Waters) to obtain a final data matrix.

4.3. Chrysin Quantification

Chrysin was quantified using the peak areas of the four most abundant chrysin
derivatives visible in the chromatograms (Figure 1). The PDA chromatograms at 267± 4 nm
and an automatic integration function available in Masslynx v4.1 were used to determine
the peak areas. Chrysin commercial standards (Sigma-Aldrich, St Louis, MO, USA) at 0.001,
0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 1 and 2 ng were injected into the LC-HRMS system twice
to create a calibration curve (y = 1486.2x − 71.112) with an r2 value of 0.9986. The final
amounts were reported as mg/g FW of chrysin equivalents.

4.4. DPPH and FRAP Antioxidant Assays

Antioxidant activity was assessed using both FRAP and DPPH in vitro assays, as
previously described [87]. Briefly, 20 µL of each crude or diluted methanol extract (Table 4)
was tested in triplicate in a 96-well microplate (Sarstedt, Nümbrecht, Germany) by adding
200 µL of test reagent (FRAP solution or 100 µM DPPH in 70% methanol). Absorbance was
recorded using an Infinite 200 Pro Microplate reader (Tecan Italia, Cernusco sul Naviglio,
Italy) at 593 nm after incubation for 15 min at 37 ◦C (FRAP) or at 515 nm after incuba-
tion for 30 min at 25 ◦C in the dark (DPPH). For both assays, antioxidant activity was
expressed as µmol/100 g FW in comparison to a Trolox (Sigma-Aldrich, St Louis, MO,
USA) calibration curve.

Table 4. Extract dilutions tested in FRAP and DPPH assays.

Organ FRAP DPPH

Leaves 1:10 1:5
Flowers 1:10 1:2

Roots 1:10 crude extract
Pseudobulbs 1:10 crude extract

4.5. MAO-Glo Assay

MAO-B activity was tested using a two-step bioluminescent MAO-Glo assay (Promega,
Milan, Italy) as previously reported [88]. Briefly, 250 µL of flower, leaf or pseudobulb
methanol extract was placed in a speedvac (Heto-Holten, Frederiksborg, Denmark) to
remove the solvent, and the dry pellets were solubilized in 250 µL of MAO reaction buffer,
comprising 100 mM HEPES (pH 7.5), 5% (v/v) glycerol and 10% (v/v) dimethyl sulfoxide
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(DMSO). Samples were used undiluted or diluted to 1:5 and 1:10 (v/v) with the MAO
reaction buffer. MAO-B inhibition was tested by adding 12.5 µL of MAO buffer containing
4 µM MAO-B substrate and 12.5 µL of the candidate inhibiting solution in 96-well flat-
bottom white opaque plates (Thermo Fisher Scientific, Rodano, Italy). The reaction was
initiated by adding 25 µL MAO buffer containing 20 µg/mL of MAO-B. The 50-µL reaction
was incubated for 1 h at room temperature, then mixed with 50 µL of luciferin detection
reagent and incubated for 20 min at room temperature. Luminescence was recorded on an
Infinite 200 Pro microplate reader. Three technical replicates were analyzed for each sample.
We used 12.5 µL of the irreversible MAO-B inhibitor L-deprenyl/selegiline (Sigma-Aldrich,
St Louis, MO, USA) at a concentration of 2.5 µM in MAO reaction buffer as a positive
control and 12.5 µL of the MAO reaction buffer as a negative control. Blank samples were
also included in the experiment and contained only the MAO reaction buffer without
the enzyme.

4.6. Statistical Analysis

Multivariate statistical analysis was applied to the LC-MS data matrix (output from
Progenesis QI) using Umetrics SIMCA 13.0 (Sartorius-Stedim Biotech). The data matrix
included “n” observations (samples) and X variables (relative abundances of detected
metabolites). The FRAP, DPPH and MAO-B inhibition values were added and considered as
Y variables. Prior to analysis, the X variables were mean centered and PARETO transformed,
whereas the Y variables were mean centered and UV transformed. OPLS analysis was
carried out to detect correlations between the X and Y variables (i.e., which metabolites
correlated with the antioxidant and MAO-B inhibition activities). The final OPLS model
was checked by 400 permutations and CV-ANOVA (p < 0.01) tests. The FRAP, DPPH and
MAO-B inhibition data were validated by ANOVA followed by a post hoc Tukey’s test
(p < 0.05).

5. Conclusions

In this study, we have demonstrated that O. sotoanum, an ornamental orchid species
producing purple flowers, mainly accumulates derivatives of chrysin C-(deoxyhexosyl)
hexoside, which are rarely found in nature and would act as antioxidants and weak MAO-B
inhibitors when acylated at the O-glycosyl moiety. Although C-diglycosylated flavonoids
should be more easily absorbed than C-monoglycosides, the pharmacokinetic and pharma-
codynamic profiles of C-diglycosylated chrysin require further investigation. The possible
hydrolysis of the O-glycoside moiety in the gut may also reduce the bioactivities of these
metabolites after ingestion.

The exploitation of the untargeted metabolomics approach combined with the use of
LC-HRMS technique allows to deep investigate the metabolic profiles of underexplored
plant species, which may be precious sources of healthy metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12030655/s1, Supplementary File S1: LC-HRMS datamatrix
with putatively identified metabolites.
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