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Abstract: Flowering is a crucial process in the life cycle of most plants as it is essential for the
reproductive success and genetic diversity of the species. There are situations in which breeders
want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth,
to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant’s
phenotypes. This review aims to provide an overview of the current state of knowledge to use
CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to
flowering induction. We discuss the underlying molecular mechanisms governing the regulation of
the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal path-
ways regulating the flowering time. In addition, we are investigating the most effective strategies for
nominating target genes. Furthermore, we have collected a dataset showing successful applications
of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally,
we explore the opportunities and challenges of using the potential of CRISPR technology in flowering
time engineering.

Keywords: breeding; flowering time; genetic engineering; plant development; molecular regulation;
crop improvement

1. Flowering Time Matters

The induction of flowering is a key process in the life cycle of mature angiosperms be-
cause it marks the transition from vegetative growth to reproductive development. During
this process, shoot apical meristems (SAM) undergo several changes in their metabolism,
morphology, and gene expression.

Natural selection exerts selective pressure on plants that exhibit synchronized flower-
ing, eliminating individuals that deviate from this optimal timing. Early flowering carries
risks, such as being susceptibility to damage from late frosts, and the insufficient availability
of pollinators and other flowering individuals for effective pollination. Conversely, delayed
flowering can lead to inhospitable conditions for seed maturation or dispersal, failure to
complete the seed set before mortality from late season frost or drought, or the production
of progeny in unfavorable growing environments [1–5].

In addition to natural selection, as part of the domestication process, early farmers
made conscious or unconscious choices regarding the flowering time in light of the harvest
time and yield practices. These decisions focused on strategically managing workloads over
different time frames, optimizing the use of labor, and maximizing overall productivity [6,7].
Today, the flowering time is one of the main goals of breeding and genetic engineering.
Longer vegetative growth leads to the development of robust vegetative organs, which in
turn facilitates the development of strong reproductive organs. This, particularly in cereals
such as rice, significantly increases the seed yield, quality, and nutrient accumulation [8].
In addition, precocious bolting, characterized by the early onset of flowering and seed
production, generally causes some vegetables to become unusable. Addressing this problem
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has significant economic benefits, including extending the vegetative growing season and
thus increasing yield [9,10]. In fruit trees, reducing the juvenile phase is interesting for
the early production of a plantation. Breeding for late or early seasonal flowering will
extend the harvest time. Alternate or biennial bearing prevents regular yields and should
be avoided as it affects the yield quantity and quality [11–14]. In addition, the development
of fast-flowering plant lines holds great potential for speed breeding researchers, who
aim to minimize the overall duration of the breeding process, which includes various
time-consuming stages of crossing, selection, and testing involved in generating new
plant varieties, and can extend the timeline for developing a new variety to one or two
decades [15,16].

Global climate change causes heat waves, extreme cold, changing temperatures and
rainfall patterns, and disrupts the phenology of many plant species and the development
of their pollinators, leading to anomalous fertility and a suboptimal fruit set [17–26]. A
strategy could be to actively change the flowering time of existing elite cultivars.

The recent pioneering technique of CRISPR offers a revolutionary solution to the above
challenges. To effectively select the genes to be edited, a solid understanding of the relevant
pathways and molecular mechanisms is essential. In the following chapter, we will take a
closer look at these mechanisms and pathways.

2. Molecular Mechanisms Regulating Flowering Time in Arabidopsis

A series of experiments beginning in 1865 led to the introduction of the florigen
hypothesis, which postulated the existence of a substance that could be transferred from the
leaf to the shoot and induce flowering. This hypothesis led to widespread research efforts
to elucidate the nature and existence of florigen [27,28]. Florigen is currently considered
synonymous with the flowering locus T (FT) gene, which comprises the FT mRNA, its
protein, or both [28–31]. The study of FT presents challenges due to the presence of
numerous paralogs, orthologs, and homologs that exhibit similar or antagonistic functional
behaviors, as well as their close sequence similarity with other proteins and interactions
with different pathways. For example, in the antagonistic interaction between FT and
TERMINAL FLOWER 1 (TFL1), a single amino acid turns a repressor (TFL1) into an
activator of flowering (FT) [32].

The generally accepted schematic of physiological pathways proposed by Corbesier
and Coupland (2005) [33] to control flowering includes four pathways: the photoperiodic,
autonomous, vernalization, and gibberellin pathways. However, an updated scheme based
on data collected in the Flowering Interactive Database [FLOR-ID] [34] introduces three
additional pathways: sugar, aging, and temperature. Here, we present a revised figure with
a simplified overview in Figure 1. Below, we explain briefly key signals or each pathway:

2.1. Photoperiod Pathway

The transcription factor, known as CONSTANS (CO), plays a central role in this path-
way. Its role is to enhance FT expression by forming a complex with NUCLEAR FACTORY
Y subunits (NF-Ys), TGACG MOTIF- BINDING FACTOR 4 (TGA4), or ASYMMETRIC
LEAVES 1 (AS1). The activation of this pathway is primarily controlled by the circadian
clock, orchestrated by GIGANTEA (GI), FLOWERING BHLHs (FBHs), RED AND FAR-RED
INSENSITIVE 2 (RFI2), REPRESSOR OF UV-B PHOTOMORPHOGENESIS 2 (RUP2), and
CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). In addition, non-circadian regulators
such as the MULTICOPY SUPPRESSOR OF IRA1 (MSI1), DAY NEUTRAL FLOWERING
(DNF), and MEDIATOR25 (MED25) also play a role in the initiation of this pathway. All
these elements can either positively or negatively influence the expression of CO. CO
activity is also modulated by PHYTOCHROME A (PHYA), which is more sensitive to
far-red light, and PHYTOCHROME B (PHYB), which responds better to red light. While
PHYA acts as a positive regulator, PHYB exerts a negative control on CO. CO is regulated
in transcriptional and translational levels. On short days (SDs), although the mRNA levels
are high, the translation into protein does not take place. This is because COP1 and PHYB
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act as negative regulators during the translation process. On the other hand, on long days
(LDs), GI and PHYA stimulate the translation of CO mRNA. The presence of CO protein
peaks during the last hours of daylight and decreases as darkness begins [35–46].
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Figure 1. A simplified schematic representation of the physiological pathways involved in flowering,
including photoperiod, autonomous, vernalization, hormonal, temperature, aging, and sugar. Each
pathway has one major player which in turn regulates FT. These pathways, except for photope-
riod, play a role not only in leaves, but also in shoot meristems. Flowering Locus T (FT), known
as florigen, plays a central role as it travels long distances from leaf to the shoot apical meristem
(SAM). Arrows indicate positive regulation, while blunt-ended arrows indicate negative regulation.
Abbreviations: SVP = SHORT VEGETATIVE PHASE, FLC = FLOWERING LOCUS C, SOC1 = SUP-
PRESSOR OF OVEREXPRESION OF CO1, FT = FLOWERING LOCUS T, GA = GIBBERELLIC ACID,
SPL = SQUAMOSA PROMOTER BINDING PROTEIN-LIKE, T6P = TREHALOSE-6-PHOSPHATE,
CO = CONSTANS, CK = CYTOKININ.

2.2. Autonomous Pathway

In the autonomous pathway, the FLOWERING LOCUS C (FLC) serves as the major
player, forming a complex with the SHORT VEGETATIVE PHASE (SVP) to negatively
regulate FT in leaves and the SUPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) in SAM.

The autonomous pathway is the most crowded of the flowering pathways, involving
approximately 115 genes, mostly multifunctional, that control diverse processes including
the cell cycle and DNA replication, chromatin modification, transcriptional regulation, the
control of protein stability, and the processing of mRNA and microRNA. Notably, FLOWER-
ING CONTROL LOCUS A (FCA) induces a reduction in FLC mRNA levels, FLOWERING
LOCUS D (FLD) represses FLC by facilitating histone H3 Lys-4 demethylation at the FLC
site, and FLOWERING LOCUS KH (FLK) represses FLC through post-transcriptional
modification. It is also important to note that biotic stress, which affects flowering, is
also considered as a part of the autonomous pathway. For instance, a single mutation
in CADMIUM SENSITIVE 2 (CAD2), which is responsible for the biotic stress response,
shows a delayed flowering phenotype under long days in Arabidopsis [47–49].

2.3. Vernalization Pathway

The vernalization pathway has FLC as its central component, similar to the au-
tonomous pathway. Before the cold phase, six protein complexes (FRIGIDA, COMPASS,
RAD6-BRE1, RAF1, SWA1, and FACT) are more active and positively regulate FLC in the
transcriptional level. After cold exposure, three different protein complexes (PRC2, PRC1-
like, and HDAC) increase their role in repressing FLC by not allowing RNA Polymerase to
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attach to the FLC locus. The prolonged exposure to cold shifts more cells to suppress FLC,
increasing FT signaling from the leaves to SAM, and increases SOC1 activity in the SAM
and, therefore, activates the meristem identity genes (MIs) to facilitate the transition from
the vegetative to the reproductive phase [50–54].

2.4. Hormonal Pathway

The hormonal pathway, also known as the gibberellin pathway, involves the activity
of cytokinins and gibberellins. Cytokinin affects the TWIN SISTER OF FT (TSF), while GAs
affect the regulation of FT. Cytokinin, in a putative mechanism, positively regulates the
transcription of TSF both in leaves and in SAM. TSF can be transferred from the leaf to the
SAM and forms a complex there with a transcription factor, FD, and acts directly on MIs,
making this the only pathway that can affect flowering independently of FT and SOC1.

In addition, GA4 boosts GID proteins, resulting in reduced DELLA proteins, which
subsequently downregulate FT in leaves and MIs in SAM. In essence, GA4 positively
controls FT in leaves and MIs in SAM, but negatively regulates SOC1 via its interaction
with SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 9 (SPL9).

Gibberellin signaling affects flowering by interfering with established endogenous and
environmental flowering pathways, as well as by interacting with various phytohormone
signaling pathways. In addition, cytokinins (CKs), abscisic acid (ABA), jasmonic acid
(JA), ethylene (ET), brassinosteroids (BRs), and auxin also interact with DELLA proteins
and, therefore, affect MIs. In conclusion, although this pathway has been traditionally
referred to as the “Gibberellic pathway”, it would be more accurate to call it the “Hormonal
pathway” [55–59].

2.5. Sugar Pathway

Trehalose-6-phosphate (T6P) is the main actor of this pathway which positively regu-
lates FT in leaves and SOC1 in SAM by affecting the MIR156-SPL9 pathway. This signaling
molecule (T6P) is the product of URACIL-DIPHOSPHATE GLUCOSE (UDPG) and GLU-
COSE 6-PHOSPHATE (G6P) catalyzed by TREHALOSE-6-PHOSPHATE SYNTHASE 1
(TPS1). It is highly dependent on photosynthesis and reaches its peak concentration just be-
fore darkness under LD conditions, gradually decreasing with the onset of darkness [60–65].
In addition to being affected by the sugar pathway, FT also has an effect on sugar transport
by activating sugar transporters such as SWEET10 [66].

2.6. Aging Pathway

The aging pathway, delays flowering in the juvenile phase and promotes it in the adult
phase, even in the absence of external triggers. In particular, the miR156, SPL transcription
factors (SPLs), miR172, SCHLAFMUTZE (SMZ), and TARGET OF EARLY ACTIVATION
TAGGED 1 (TOE1) are key players in this ageing pathway, driving the transition from the
juvenile to adult phase and then promoting flowering. MiRNA156 is more abundant in
young plants and decreases as they mature, while miRNA172 shows the opposite pattern,
increasing with age. The SMZ and TOE1 exert a repressive influence on the FT gene in the
leaves and APETALA1 (AP1) in the SAM, affecting the expression of MIs and, consequently,
controlling the initiation of flowering [67–74].

2.7. Temperature Pathway

The ambient temperature pathway influences FT through various components. At
high temperatures, PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and FLOWERING
CONTROL LOCUS A (FCA) enhance FT. Conversely, at low temperatures, the SHORT
VEGETATIVE PHASE (SVP) negatively regulates FT and SOC1 through a complex with
FLC (a product of the vernalization pathway) [75–86].



Plants 2023, 12, 4020 5 of 21

2.8. Interconnectedness between Pathways

It is important to note that these pathways interact with each other, and it is difficult
to completely distinguish between them. For example, miR172 is influenced by SPLs
(“aging pathway”), FCA (“temperature pathway”), and GI (“Photoperiodic pathway”),
demonstrating the interconnectedness of these pathways. Or in another example, the
production of T6P, which is considered as the key player of the sugar pathway, is obviously
dependent on photosynthesis and, therefore, the photoperiodic pathway.

2.9. Transportation of FT

FT and its homologous counterparts, known as FT-likes (FTLs), are synthesized in
leaf tissues via the above-mentioned biochemical pathways. These molecules are then
transported by specific transporters to the apical meristems in the shoots. The process of
FT migration, a 22 kD protein with 175 amino acids, can be divided into two steps: first, it
must be exported from companion cells into sieve elements, and second, it must cross sieve
elements to reach the SAM.

The involvement of the transmembrane region proteins FT-INTERACTING PROTEIN1
(FTIP1) and QUIRKY (QKY) in the initial export step has been identified. To reach the
SAM, another protein called SODIUM POTASSIUM ROOTDEFECTIVE 1 (NaKR1) with
a heavy-metal-associated (HMA) domain plays a crucial role. The activity of NaKR1 is
positively regulated by the product of the photoperiodic pathway, CO, in the model plant
Arabidopsis [30,87–89].

In rice, the long-distance transporter for FT is the tetratricopeptide repeat 075 (TPR075)
protein, while FTIP1 and FTIP9 are involved in the translocation of FT from companion
cells to sieve elements [90].

Taken together, the FTIPs appear to play a critical role in the short-range transport
of FT. Given recent research suggesting the involvement of different proteins in the long-
distance transport of FT, further investigation is needed to determine whether the ortholog
of TPR075 has a similar function in dicots, whether the ortholog of NaKR1 plays a role in
monocots, and whether other heavy-metal-associated domain proteins or tetratricopeptide
repeat proteins may also play a role.

In summary, our understanding of florigen transport remains largely incomplete,
highlighting the need for comprehensive studies in a wide range of plant species to develop
a more comprehensive understanding.

3. Optimal Gene Targeting Strategy for Flowering Time Engineering
3.1. Altering Flowering Time

Identifying the most effective gene(s) for either delaying or accelerating the flowering
process depends on variables such as the species, cultivar, and growth environment, such
as the plant’s response to the day length. The first step is to identify the predominant
pathway(s) involved. For example, in the case of cabbage, where vernalization is a key
determinant, genes such as BraFLC2, BraFLC3, AGL19s, and AGL24s associated with the
vernalization pathway have shown remarkable success in breeding trials [91,92].

However, as a comprehensive strategy, targeting key proteins that are central to the
overall flowering mechanism is a viable option. In genes such as FT, TFL1, and SOC1,
as detailed in Table 1, 20% of efforts were by knock outing these genes. FT affects the
expression of approximately 3652 genes [93]. However, from a breeding perspective, it
does not appear to pose a significant challenge to the breeding objectives, except for its
impact on seed dormancy [94,95]. In addition, FT affects the expression of some sugar
transporters, suggesting a potential influence on other sugar-related traits. However, there
is a paucity of research investigating the relationship between FT and traits such as fruit
flavor, which warrants further investigation. Putting all this together, the modulation of
the FT function is unlikely to result in major abnormalities. Conversely, the manipulation
of TFL1, a flowering repressor, could be challenging, as some studies suggest that TFL1
mutations can lead to the aberrant development of floral structures [95–99]. To achieve the
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precise control of flowering, it may be prudent to explore alternative regulators of the FT
gene, taking into account the primary pathway in your specific plant that effects greater FT
expression. Alternatively, the modification of FT(s)’s Cis-regulatory elements can be used
to precisely control the timing and level of expression too.

In addition to TFL1, in Arabidopsis, AGAMOUS-LIKE 12 (AGL12) displays late
flowering under LD, but also the short root phenotype [100]. The overexpression of C-
REPEAT/DRE BINDING FACTOR 1 (CBF1) results in late flowering under LD, but also
a reduction in the freezing tolerance [101]. CURVY 1 (CVY1) single mutant flowers early
under SD; however, as a side effect, altered trichome development and an increased number
of siliques were observed [102]. AGAMOUS-LIKE 19 (AGL19) single mutant shows slightly
late flowering under a short day, but also reduced the sensibility to vernalization [103].

The concept of interfering with transporters has also become a subject of debate. First,
it is likely that NaKR1 in Arabidopsis or TPR075 in rice are not the only transporters of the
FT protein. In addition, FT mRNA has the ability to migrate as well. Furthermore, NaKR1
also serves as a transporter for a wide range of sugars [89]. Mutations in NaKR1 could lead
to variations in the concentration of both primary and secondary metabolites (Figure 2).
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Figure 2. The transport of FT from the leaf to the SAM involves a number of steps. First, FT is
synthesized in the leaf through the pathways shown in Figure 1 (A). Next, FTIP1 facilitates the
transfer of FT from CC to SE (B). Finally, NaKR1 is responsible for the long-distance transport of FT
into the SAM (C). The scissor symbols in the diagram indicate potential CRISPR knockout sites that
could be used to disrupt FT transport. Abbreviations: FT = FLOWERING LOCUS T, SAM = SHOOT
APICAL MERISTEM, FTIP1 = FT-INTERACTION PROTEIN 1, CC = Companion cell, SE = Sieve
element, NaKR1 = SODIUM POTASSIUM ROOT DEFECTIVE 1 (Created with BioRender.com).

From a holistic perspective, a breeding project focusing on flowering time requires
us to consider the various interrelated pathways highlighted in this article, including
signaling proteins, miRNAs, transcription regulators, transporters, etc. By recognizing
the importance of these key components, we can gain a thorough understanding of the
complex mechanisms that regulate flowering time and, therefore, successful breeding.

As many of the proteins involved in flowering have multiple functions and diverse
effects, one strategy for regulating their activity is to place greater emphasis on manipulat-
ing cis-regulatory elements (Figure 3). This approach allows us not only to fine-tune the
level of gene expression, but also to precisely control the timing and location of expression.
This is exactly what happened during the domestication process. To illustrate, in Brassica
napus, a mutation in the transcription factor BnFLC.A10 was key to successfully altering
the timing of flowering [104]. Another example is found in maize, where mutations in the
transcription factors CCT and Vgt1/Rap2.7 led to significant adjustments in the flowering
time [105,106].
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scriptional level in CRISPR-based flowering time engineering. By highlighting key regulators
such as FRIGIDA and PRC-1-like complexes, the figure illustrates their ability to fine-tune FLC
expression either positively or negatively in transcriptional regulation. Green arrow indicates as
positive regulation, while red blunt-ended arrow indicates as negative regulation. Abbreviations:
SUF4 = SUPRESSOR OF FRIGIDA 4, CBP20 = CAP-BINDING PROTEIN 20, FLX = FLC EXPRESSOR,
FES1 = FRIGIDA ESSENTIAL 1, CBP80 = CAP BINDING PROTEIN 80, FRL2 = FRIGIDA LIKE 2,
FRL1 = FRIGIDA LIKE 1, FLL4 = FLOWERING LOCUS C EXPRESSOR-LIKE 4, EFS = EARLY
FLOWERING IN SHORT DAYS, BMI1A = DREB2A-INTERACTING PROTEIN 2, BMI1B = DREB2A-
INTERACTING PROTEIN 1, BMI1C = BMI1C, VRN1 = REDUCED VERNALIZATION RESPONSE 1,
EMF1 = EMBRYONIC FLOWER 1, LHP1 = LIKE HETEROCHROMATIN PROTEIN 1, LIF2 = LHP1-
INTERACTING FACTOR [31] (Created with BioRender.com).

As recent advancements, in grapefruit plants, CsLOB1 knockout mutants by CRISPR
showed a delayed flowering time compared to WT [107]. The technique of dCas9 SunTag
actively generated DNA methylation at the FWA promoter region, resulting in promoter
silencing and the early flowering phenotype in Arabidopsis [108]. In Arabidopsis, the MS2-
p300 CRISPR/dCas9 system, which incorporates H3K27 acetyltransferase as an effector
domain and is linked to a nuclear-targeted MS2, has been used to modify the promoter
region of the Flowering locus T (FT) gene. This resulted in a substantial two-fold increase
in H3K27 acetylation within the FT promoter, which subsequently led to a significant
alteration in the flowering time [109].

3.2. Stop Flowering

The idea of non-flowering angiosperms seems unlikely from a botanical point of
view. However, in horticulture, postponing the flowering process could lead to a state
of non-flowering cultivars. The disruption of FT or its transporter alone is not sufficient
to achieve this result. This is due to the probability that FT is not solely dependent on
a single transporter, and also because FT is not the only signaling molecule transmitted
from the leaves to the shoot apical meristem (SAM). In fact, there are at least three known
molecules—TSF, T6P, and AGL17—that also transduce the signal. What is more, certain
pathways in the SAM can function independently of the leaves, ultimately influencing the
expression of MI genes and thus the development of floral structures.

Of particular note is the structural similarity between FT and TFL1, two proteins with
opposing functions. By exploiting these similarities, we can change specific amino acids,
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such as substituting His-88 in TFL1 and Tyr-85 in FT [32]. This simple amino acid change,
with only a single nucleotide difference between His and Tyr, can switch their roles between
repressor and activator. This insight holds considerable promise for targeted CRISPR
breeding programs aimed at manipulating the flowering time, for example, by strategically
designing gRNA sequences to introduce such mutations using base or prime editing.

4. CRISPR-Mediated Modulation of Flowering Time in Literature

Since 2015, there has been a striking trend in the scientific literature regarding the
manipulation of the flowering time using CRISPR technology. From then until now (mid-
2023), there have been numerous publications investigating different gene families. These
studies cover a wide range of plant species, with a particular focus on altering the flowering
time. A thorough review was conducted of 103 peer-reviewed research publications, which
are listed in Table 1. Table 1 provides a comprehensive overview of genes with diverse
functionalities that contribute to successful flowering time engineering. These genes include
transcriptional regulators, non-coding RNAs, enzymes, signaling molecules, chromatin
modifiers, epigenetic modifiers, and many more (Figure 4).

Table 1. Non-exhaustive overview of studies of flowering time using CRISPR.103 peer-reviewed
research papers listed by the modified plant. In the table, “KO” represents knockouts, while “OE”
represents overexpression. The terms “early”, “late”, or “No effect” indicate whether the time of
flowering is earlier or later, or no difference compared to the wild type.

Author(s) Year Directed Gene(s) Mechanism Plant Results in Flowering

Torre et al. [110] 2022 AaFRAT1 KO Alpine cress Early

Charrier et al. [111] 2019 MdTFL1.1, PcTFL1.1 KO Apple, Pear Early

Liu et al. [112] 2019 TFL1, AP1, SVP KO Arabidopsis Abnormal flower
development

Ning et al. [113] 2015 NACs KO Arabidopsis Early

Nobusawa et al. [114] 2022 AMP1 KO Arabidopsis Early

Capovilla et al. [115] 2017 FLM-β KO Arabidopsis Early

Branchat et al. [116] 2020 FDP, fd KO Arabidopsis Early, late

Lian et al. [117] 2021 MIR172s KO and OE Arabidopsis Early, late, no effect

Yan et al. [118] 2017 KHZ1 and KHZ2 KO and OE Arabidopsis Late and early

Hyun et al. [119] 2015 FT and SPL KO Arabidopsis Late

Hou et al. [120] 2019 AtMIR396 KO Arabidopsis Late

Yao et al. [121] 2019 mir167a KO Arabidopsis Late

Huang et al. [122] 2019 OsNCED5 OE Arabidopsis Late

Wang et al. [123] 2021 RBP45D KO Arabidopsis Late

Zhao et al. [124] 2022 CIS1 KO Arabidopsis Late

Yang et al. [125] 2023 AtAGL79 KO Arabidopsis Late

Pyott et al. [126] 2016 eIF(iso)4E KO Arabidopsis No effect

Soto et al. [127] 2022 FT2 KO Aspen No report

Qin et al. [128] 2019 FTL9 KO Brachypodium Late

Jeong et al. [92] 2019 BraFLC2, BraFLC3 KO Cabbage Early

Jung et al. [129] 2021 BrSOC1 KO Cabbage Early

Hong et al. [130] 2021 BrVRN1 KO Cabbage Late

Shin et al. [131] 2023 BrLFY KO Cabbage Late
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Table 1. Cont.

Author(s) Year Directed Gene(s) Mechanism Plant Results in Flowering

Lee et al. [132] 2023 BrFT1 and BrFT2 KO Cabbage Late

Shin et al. [91] 2022 AGL19s, AGL24s KO Cabbage Late

Park et al. [133] 2019 GI KO Cabbage No report

Bellec et al. [134] 2022 15 genes KO Camelina Early

Jiang et al. [135] 2018 BnaSDG8.A, BnaSDG8.C KO Canola Early

Sriboon et al. [99] 2020 BnaC03.TFL1 KO Canola Early

Guo et al. [136] 2022 BnaCOL9 KO Canola Early

Ahmar et al. [137] 2022 BnaSVPs KO Canola Early

Zhou et al. [138] 2022 BnaSVP, BnaSEP1 KO Canola Early, no effect

Odipio et al. [139] 2018 TFL1-like KO Cassava Early

Bull et al. [140] 2018 AtFT Ectopic expression Cassava Early

Liu et al. [141] 2023 CiTFL1a, CiTFL1b KO Chrysantemum Early

Huang et al. [142] 2017 ZmCCT9 KO Corn Early

Li et al. [143] 2020 ZmPHYC1, ZmPHYC2 KO Corn Early

Takahashi et al. [144] 2022 GtFT2 KO Gentian Late

Ying et al. [145] 2022 BdRFS KO and OE Brachypodium Early, late

Sheng et al. [146] 2021 YSL3 KO Brachypodium Late

Herath et al. [147] 2022 AcBFT2 KO Kiwi No effect

Gasic et al. [148] 2019 AcCEN4, AcCEN KO Kiwi Early

Varkonyi et al. [149] 2021 CEN, CEN4, SyGl KO Kiwi Early

Choi et al. [10] 2022 SOC1 KO Lettuce Late

Singer et al. [150] 2021 MsSPL8 KO Lucerne Early

Galindo-Sotomonte
et al. [151] 2023 MSAD_264347 KO Lucerne Late

Wolabu et al. [152] 2023 MsFTa1 KO Lucerne Late

Shibuya et al. [153] 2018 EPHEMERAL1 KO Morning Glory Delay in petal aging

Andre et al. [154] 2022 FT2b OE Populus Early

Elorriaga et al. [155] 2018 PLFY, PAG1, PAG2 KO Populus No report

Lebedeva et al. [156] 2022 StLFY KO Potato Late, non-flowering

Li et al. [157] 2017 Hd2, Hd4, Hd5 KO Rice Early

Brambilla et al. [158] 2017 hbf1, hbf2 KO Rice Early

Zhou et al. [159] 2018 Ghd8 KO Rice Early

Cui et al. [160] 2019 se14 KO Rice Early

Wang et al. [161] 2020 OsGhd7 KO Rice Early

Karthika et al. [162] 2021 MSH2 KO Rice Early

Leon et al. [163] 2021 OsGA20ox2 KO Rice Early

Sun et al. [164] 2022 qHD5 KO Rice Early

Yin et al. [165] 2023 HBP1 KO Rice Early

Sedeek et al. [166] 2023 Hd2, Hd4, Hd5 KO Rice Early

Guo et al. [167] 2022 OsFTL4 KO Rice Early
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Table 1. Cont.

Author(s) Year Directed Gene(s) Mechanism Plant Results in Flowering

Sun et al. [168] 2021 OsLHY KO Rice Early, late

Zhang et al. [169] 2020 OsCCTs KO Rice Early, late, no effect

Cui Y et al. [170] 2021 14 genes KO Rice Early, late, no effect

Yasui et al. [171] 2017 MADS3 KO Rice Early/Late

Wu et al. [172] 2020 Ehd1 KO Rice Late

Li et al. [173] 2021 OsLHY KO Rice Late

Liu et al. [174] 2021 OsHd2 KO Rice Late

Zhang et al. [175] 2022 ga3ox-2 KO Rice Late

Xu et al. [176] 2023 OsLUX KO Rice Late

Zhang et al. [177] 2022 ospil12-1 and ospil12-2 KO Rice Late

Andrade et al. [178] 2022 LUX, ELF3 KO Rice Non-flowering

Dai et al. [179] 2021 HbFT1-2, HbTFL1-3 KO Rubber Tree No report

Wang et al. [180] 2022 SiPHYC KO Setaria Early

Zhu et al. [181] 2022 spp1 KO Setaria No effect

Char et al. [182] 2019 SbFT KO Sorghum Late

Han et al. [183] 2019 E1 KO Soy Early

Wang et al. [184] 2020 Gmprr37 KO Soy Early

Wang et al. [185] 2020 GmNMHC5 OE Soy Early

Zhaobo Li et al. [186] 2021 LNK2 KO Soy Early

Wan et al. [187] 2022 E1 KO Soy Early

Zhai et al. [188] 2022 E1 KO and OE Soy Early, late

Cai et al. [189] 2018 GmFT2a KO Soy Late

Wang et al. [190] 2019 GmLCLa1-4 KO Soy Late

Cong Li et al. [191] 2020 GmPRR3bH6 KO Soy Late

Chen et al. [192] 2020 GmAP1 KO Soy Late

Zhao et al. A [193] 2022 GmPHYAs KO Soy Late

Schmidt et al. [194] 2020 NtFT5 KO Tobacco Non-flowering

Soyk et al. [195] 2017 SP5G KO Tomato Early

Lemmon et al. [196] 2018 SP5G KO Tomato Early

Li et al. [197] 2018 SP and SP5G KO Tomato Early

Hu et al. [198] 2022 SlDOF9s KO Tomato Early

Moreira et al. [199] 2022 SP3C KO and OE Tomato Early, late

Xu et al. [200] 2016 S1BOP KO Tomato No effect

Lin et al. [201] 2021 SlMIR172c, SlMIR172d KO Tomato No report

Kwon et al. [202] 2019 SP5G, SP, SlER KO Tomato Early

Gupta et al. [203] 2022 TaSPL13 KO Wheat Early

Sun et al. [204] 2023 TaTFL1-5 KO Wheat Early

Chen et al. [205] 2022 FT-D1 KO Wheat Late

Errum et al. [206] 2023 TaPpd KO Wheat Late

Huiyun Liu et al. [207] 2020 TaAQ and TaDq KO Wheat No report
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Figure 4. Various CRISPR-Cas approaches to modulate flowering time: (A) Cas cleavage-induced
amino acid changes resulting in non-functional protein. (B) Cas cleavage resulting in stop codon
insertion, terminating transcription, and preventing mRNA and, therefore, protein production.
(C) Disruption of gene transcription by targeting elements involved in transcription, such as transcrip-
tion factors, promoters, and upstream enhancer regions. The scissor symbols in the diagram indicate
potential CRISPR knockout targets (D) Genes that regulate chromatin remodeling act as activators or
inhibitors, affecting transcription by controlling chromatin structure (Created with BioRender.com).

The visual representation in Figure 5A shows the percentage distribution of plant
species to which CRISPR technology has been applied. This distribution is likely influenced
by the ease of transformation and use of model organisms. It is noteworthy that this
approach is highly promising and can be extrapolated to various other commercial crops.
Altering the flowering time provides a versatile means of addressing a wide range of
cultivation, harvest, and post-harvest challenges.

The use of CRISPR technology for gene knockout, particularly in flowering projects,
has seen sustained growth (Figure 5B). Further breakthroughs are expected as researchers
refine and expand their understanding, leading to more sophisticated applications in
the future.
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Figure 5. (A) Peer-reviewed publications on CRISPR-based flowering time engineering by crop
(2015–mid-2023). (B) Annual number of indexed articles on CRISPR-mediated flowering time engi-
neering. (A,B) are derived from the information presented in Table 1, which represents a statistical
population that provides insight into the general state of the field.

5. Perspectives and Challenges of CRISPR-Mediated Flowering Time Engineering

Flowering-related breeding projects sometimes aim to completely inhibit flowering,
while in other cases, a delay or advance of days to weeks is desired. To achieve these
goals, the selection of the right pathway and protein to engineer is critical. In addition, the
location of the mutation on the gene and the type of mutation affects the flowering time,
which can vary from species to species based on the genotype or environmental factors.

About 300 genes are directly or indirectly involved in the flowering process [31]. To
obtain the desired breeding results, it might be necessary to test several genes or gene
combinations. However, the limited capacity of generating gene-edited plants slows
down breeding. This slow pace hinders the exploration of many candidate genes as
potential targets. In this regard, the need to increase the efficiency of transformation,
regeneration, and gene editing processes is, therefore, essential to save time and explore a
larger gene pool.

CRISPR technology is a leading innovation in plant breeding, offering precision, speed,
and flexibility. The rapid generation of plants with desired traits surpasses the time limits of
traditional breeding methods, while the scalability of CRISPR allows multiple target genes
to be edited in parallel. However, to fully achieve CRISPR’s potential, it is increasingly
recognized that it must be strategically combined with complementary techniques.

In this context, using inventive techniques and approaches to increase efficiency and
save time is critical to the success of molecular breeding projects. Recent advances include
improvements in delivery using improved Agrobacterium strains [208,209], viral deliv-
ery [210], improvements in regeneration using morphogenic regulators [211,212], and new
approaches to use multiplex gene editing to study many genes simultaneously [213,214].

Through such comprehensive and interconnected approaches, breeders can gain new
insights into the intricate web of regulatory networks that regulate the flowering time. This
new knowledge can guide targeted breeding initiatives aimed at producing crop varieties
with improved flowering traits.
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