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Abstract: Amaranthus tuberculatus is the most common weed in soybean and corn in the USA and
Canada. In Israel, it has been a minor riverbank weed. However, in recent years, growing densities
of this plant have been observed in field crops, orchards, and roadsides. Between 2017 and 2022,
we surveyed the distribution of A. tuberculatus and collected seeds for further study. We identified
three main distribution zones in Israel: the Jezreel Valley, Hula Valley, and Coastal Plain. Most
of the populations were found near water sources, fishponds, barns, dairies, or bird-feeding sites,
suggesting the involvement of imported grain in introducing A. tuberculatus to Israel. Populations
were screened for their responses to various post-emergence herbicides (i.e., ALS, EPSPS, PPO,
HPPD, and PSII inhibitors). Several populations from the Jezreel Valley were found to be putatively
resistant to ALS, EPSPS, and PPO inhibitors. The responses of those populations to trifloxysulfuron,
glyphosate, and carfentrazone-ethyl were also studied. A single ALS-, EPSPS- and PPO-resistant plant
was vegetatively propagated to create a clonal population, which was treated with foramsulfuron,
glyphosate, and carfentrazone-ethyl. No resistance to PSII or HPPD inhibitors was observed, but
resistance to herbicides that inhibit ALS, EPSPS, and PPO was observed. A clonal propagation assay
revealed the existence of a population that was resistant to ALS, EPSPS, and PPO inhibitors. Since the
local A. tuberculatus populations have not been exposed to herbicide selection pressure, these traits
probably reached Israel through seed-mediated gene flow via imported grain.

Keywords: waterhemp; glyphosate; acetolactate synthase (ALS); protoporphyrinogen oxidase (PPO);
gene transfer; seed-mediated gene flow

1. Introduction

Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer), also known as common
waterhemp, is a dioecious, summer annual C4 weed with vigorous growth. The female
plant can produce over 500,000 seeds [1], and dense populations of this weed can develop
quickly [1,2]. The phenology of A. tuberculatus has been well-reviewed and reported [2–4].
Waterhemp has been declared the most common and the second most troublesome weed
in soybean (Glycine max L. Merr.) fields in the USA [5], where this species has evolved
resistance to various herbicidal modes of action (MOA), including multiple resistance [6].

The first herbicide-resistant (HR) A. tuberculatus was an ALS-resistant population
reported in Illinois, USA, in 1993 [6]. Later, populations with resistance to different MOAs
were detected. However, the distribution of these HR populations was limited to the US
(Iowa, Minnesota, Missouri, Kansas, Nebraska, etc.) [6]. In 2002, a population from Ontario,
Canada, was also found to be ALS- and PSII-resistant [6]. That was the first report of HR
waterhemp outside the USA. Yadid et al. reported in 2017 an ALS-resistant population of
A. tuberculatus in row crops in Israel, such as corn (Zea mays L.), cotton (Gossypium hirsutum
L.), and sunflower (Helianthus annuus L.) [7]. Later, another ALS-resistant population was
reported in Italy [8,9]. The authors of those studies proposed that the populations they
had encountered could have originated from North America. These first reports of HR A.
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tuberculatus outside of North America stand as milestones in disseminating this species as
a troublesome herbicide-resistant weed.

In Israel, A. tuberculatus is an alien weed species. It was first found in 1970 on the
banks of the Jordan River and, in 1982, was identified as A. rudis Sauer [10]. However,
in recent years, we have detected the weed in increasing densities in different regions of
the country near animal-feed compounds. Simultaneously, waterhemp had become more
noticeable in row crops, orchards, and roadsides. Failure to control this weed has been
observed following the application of herbicides, such as ALS inhibitors, PPO inhibitors,
and glyphosate, indicating the possible existence of putative HR populations. Furthermore,
it is very easy for the existing population to spread from one field to another via agricultural
machinery. Shattered seeds are probably dispersed via soil and water erosion and/or rivers
and streams, introducing them to new sites [11]. This worrying increased infestation calls
for a study of this weed’s biology and its responses to different herbicides to ensure proper
management. This study aimed to (i) conduct a survey detailing the distribution of A.
tuberculatus in Israel and (ii) examine the responses of those different populations to ALS,
EPSPS, PSII, HPPD, and PPO inhibitors.

2. Results
2.1. Distribution of A. tuberculatus: Survey Results

We randomly detected and sampled 37 A. tuberculatus populations in three main
regions: the Jezreel Valley, the Hula Valley, and the Coastal Plain, as well as two minor
areas, the Western Galilee and the Sharon Plain (Figure 1). Initially, most populations were
found at non-cultivated sites, such as roadsides and near cowsheds, the banks of fishponds,
regional animal-feed production sites, and along riverbanks. However, during the last few
years, perhaps due to anthropogenic activities, more populations have been detected and
collected from infested irrigated summer crops, such as cotton, corn, sunflower, and olive
groves, particularly in the Jezreel Valley.

2.2. Herbicide Screening

Among the 37 collected populations, four of the examined populations were confirmed
as ALS-resistant, three as PPO-resistant, and four as EPSPS-resistant (Table 1). All examined
populations were susceptible to aclonifen, fomesafen, and flumioxazin (PPO-inhibiting
herbicides), and tembotrione (HPPD-inhibiting herbicides). Some of the populations were
also resistant to more than one MOA (multiple resistance), specifically the population from
Newe Ya’ar, which was resistant to both trifloxysulfuron and glyphosate (Figures 2–5) and
the population from Megiddo that was resistant to PPO, EPSPS, and ALS inhibitors. Some
populations were categorized as resistant due to their ability to survive a double dose of
herbicide but had no dose-response curves constructed for them; those populations are
marked accordingly in Figure 1. Our screening did not reveal populations with resistance
to MOAs other than inhibitors of EPSPS, ALS, and PPO, although some survival was
observed following the application of atrazine (Table 1).
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Table 1. Responses of A. tuberculatus populations to herbicides with different modes of actions applied at a rate given in the Materials and Methods. Shoot dry
weight (DW) and plant survival are expressed as % of untreated control. Means marked with an asterisk (*) are significantly different from the respective susceptible
population analyzed using Student’s t-test (p ≤ 0.05). Populations exhibiting a survival rate of >40% and/or shoot dry biomass of >25% relative to the control
identified as putative-resistant populations. Population exhibiting survival below 40% and <25% shoot DW were considered susceptible. NA = not measured.

Population

Protoporphyrinogen oxidase (PPO) inhibitors

Carfentrazone-ethyl Oxyfluorfen Oxadiazon Sulfentrazone Pyraflufen-ethyl

Shoot DW Survival Shoot DW Survival Shoot DW Survival Shoot DW Survival Shoot DW Survival

% of untreated control

Tzora (S) 0.0 0.0 0.0 0.0 9.3 50.0 0.0 0.0 0.0 0.0

Havat Gadash 22.4 * 66.6 14.1 100.0 25.1 100.0 2.1 16.6 9.9 * 50.0

Newe Ya’ar 2.3 16.6 6.4 33.3 6.2 50.0 0.0 0.0 0.0 0.0

Megiddo 59.7 * 100.0 28.4 * 66.6 42.3 * 83.3 0.4 16.6 3.1 16.6

Kfar Yehoshua 19.4 * 66.6 0.8 16.6 8.0 50.0 0.0 0.0 0.0 0.0

Ginegar 3.2 33.3 12.9 83.3 18.8 100.0 0.0 0.0 2.5 16.6

Nahal Timnah 0.0 0.0 0.0 0.0 8.2 66.6 0.0 0.0 0.0 0.0

Population

PSII inhibitor Acetolactate synthase (ALS) inhibitors EPSPS inhibitor

Atrazine Trifloxysulfuron Pyrithiobac-sodium Glyphosate

Shoot DW Survival Shoot DW Survival Shoot DW Survival Shoot DW Survival

% of untreated control

Hulata 0.2 0.0 NA NA NA NA NA NA

Havat Gadash (S) 6.0 40.0 0.1 0.0 0.1 0.0 0.0 0.0

Tzora 0.2 80.0 * 5.8 20.0 0.2 0.0 2.7 20.0

Newe Ya’ar 19.1 80.0 * 48.1 * 80.0 * 72.4 * 80.0 * 27.3 * 100.0 *

Megiddo 26.3 100.0 108.5 * 100.0 * 64.6 * 100.0 * 29.3 * 80.0 *

Kfar Yehoshua 36.1 80.0 * 65.2 * 80.0 * 60.7 * 60.0 * 46.7 * 100.0 *

Ginegar 6.0 40.0 110.7 * 100.0 * 88.0 * 100.0 * 9.4 60.0
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Figure 5. Trifloxysulfuron dose responses (21 DAA) of three A. tuberculatus populations: (A)-Newe Ya’ar
(resistant), (B)-Ginegar (resistant) and, (C)-Tel Nof (susceptible). The pots are labeled with the applied
trifloxysulfuron doses: 0, 0.35, 0.7, 2.8, 5.6, 11.3, 45 or 90 (g ai ha−1). 11.3 g ai ha−1 is the recommended dose.
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2.3. Glyphosate Resistance

The response of the putative glyphosate-resistant (GR) populations to the herbicide
was examined three times during the Israeli summer using two populations: Newe Ya’ar
(GR) and Nahal Timnah-glyphosate susceptible (GS). The response of each experiment to
glyphosate was quite similar, enabling a combined analysis, and is presented in Figure 2.
The ED50 values were 341.5 ± 28.6 g ae ha−1 and 168.2 ± 11.8 g ae ha−1 for the GR and
GS populations, respectively. The resistance index (RI) (i.e., the ratio between the ED50
value of the resistant (R) compared to that of the susceptible (S) population (R/S)), in this
case was relatively low for A. tuberculatus (Table 2) compared to other reported cases. In
the literature, we mainly find reports of ~ 5–10-fold resistance indices [12,13], whereas we
report an RI of ~2. RI is indeed an important tool for quantifying the level of resistance.
However, this value is just as dependent on the response of the susceptible population
as it is on the resilience of the resistant population. In addition, these populations are in
transition and, being "newcomers", may contain a mixture of GR and GS individual plants,
a fact that increases the variability within each population.

Table 2. Responses of the different populations to the PPO, ALS, and EPSPS herbicides, along with
their ED50 values and resistance-index (RI) values. R = resistant; S = susceptible, I = intermediate.
Values were extracted as described in Materils and Methods.

Herbicide (MoA) Population Response ED50 (g ai ha−1) RI

Glyphosate (EPSPS) Nahal Timnah S 168.2 ± 11.8 --
Newe Ya’ar R 341.5 ± 28.6 2.0

Trifloxysulfuron (ALS)

Tel-Nof S 0.4 ± 0.17 --
Tzora I 2.9 ± 1.0 6.8

Newe-Ya’ar R 11.1 ± 6.3 25.8
Ginegar R 56.8 ± 24.4 132.3

Carfentrazone-ethyl (PPO)
Tzora S 2.2 ± 1.4 --

R 9.5 ± 1.8 4.3
Havat Gadash R 5.8 ± 1.7 2.6

2.4. ALS Resistance

Following the screening (Table 2), four populations were chosen for further inspection.
Dose-response curves (Figures 4 and 5) were constructed for Newe Ya’ar and Ginegar
populations from the Jezreel Valley (putative ALS-resistant) and Tzora and Tel Nof (putative
ALS-susceptible), from the Coastal Plain. ED50 values for the resistant populations were
11.11 and 26.85 g ai ha−1 trifloxysulfuron, for Newe Ya’ar and Ginegar, respectively. ED50
value for the susceptible population from Tel-Nof was 0.43 g ai ha−1

. The population from
Tzora varied in its response to trifloxysulfuron, where some plants were killed. In contrast,
others were injured, resulting in an ED50 value of 2.92 g ai ha−1 which is significantly
higher than the ED50 of the apparent susceptible Tel-Nof population, but significantly
lower than that of the resistant populations from Newe-Ya’ar and Ginegar, hence it was
designated in Figure 4 as intermediate (I). RI values were 6.8, 25.8-fold, and 132.3 folds for
Tzora, New-Ya’ar, and Ginegar, respectively, compared to the Tel-Nof sensitive population
(Table 2).

2.5. PPO Resistance

Two populations were confirmed as carfentrazone-ethyl-resistant using dose-response
curves (Figures 6 and 7). A few more populations survived the recommended rates of
the herbicides (Table 1) and the population from Megiddo (Jezreel Valley) even survived
two more PPO inhibitors (oxyfluorfen and oxadiazon; Table 1). In this case, rapid injury
was evident following exposure to carfentrazone-ethyl, which is apparently similar to the
phoenix phenomenon described for EPSPS resistance [14], as the resistant population was
injured but then recovered.
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2.6. Multiple Herbicide Resistance

The multiple-resistance assay (Figure 8) showed that the clonal propagated cut-
tings from the Megiddo population (R) withstood the application of all three herbicides
(glyphosate (EPSPS), foramsulfuron (ALS) and carfentrazone-ethyl (PPO)), while the sus-
ceptible clonal cuttings from the Tzora population (S) were significantly injured following
the treatments.
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The plants were treated post-emergence with carfentrazone-ethyl (20 g ai ha−1), foramsulfuron
(45 g ai ha−1), and glyphosate (360 g ae ha−1). The data represent the mean shoot dry weights (% of
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and the means were compared using a student’s t-test for each herbicide treatment. Means followed
by the same letter are not significantly different (p ≤ 0.05). UTC-untreated control.

3. Discussion
3.1. Distribution of A. tuberculatus

Although HR A. tuberculatus populations were reported in Israel (Asia), Italy (Europe),
and recently in Uruguay (South America), the vast majority of HR A. tuberculatus cases were
recorded in North America where, in a short period, it became one of the most troublesome
HR weeds in soybean and corn [5,6]. In addition to harboring a genetic pool of HR A.
tuberculatus, the USA is also a major exporter of grains (second and fifth biggest exporter
of corn and wheat, respectively [15]). Thus, the outflow of A. tuberculatus seeds with or
without HR traits via contaminated shipments of goods is plausible, as documented in
Europe and the Mediterranean countries [16].

The unique distribution of A. tuberculatus in Israel indicates at least three different
invasion events, presumably via imported grain shipments, with further dispersal powered
by anthropogenic activities, as recently described for other invasive species in China [11,17].
The first invasion event was recorded in the Hula Nature Reserve, a habitat for water birds
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in the Hula Valley that currently serves as a crane (Grus grus) feeding site and is heavily
infested with A. tuberculatus. Cranes migrate from cold northern countries to spend the
winter in the warm Hula Valley, where they feed on fish and crops, particularly peanuts
(Arachis hypogaea L.), grown in and around the reclaimed muck soils of the Hula Lake.
Starting in the early 2000s, farmers have been importing corn grains to feed the wintering
cranes in order to draw them away from the cultivated crops, hence minimizing this heavy
damage to crops [18]. The first detection of A. tuberculatus was monitored in 2009 at the
feeding site and at 2018 it was a major invasive weed in this Natural Reserve [19]. The
Hula Nature Reserve is probably the primary source of other A. tuberculatus populations
detected in 2018 and 2019 in the Hula Valley (Figure 1).

The second possible introduction region is the Jezreel Valley along the Kishon River,
where most of the detected populations were identified as HR within crops and around
dairy sheds. This region is characterized by fertile, heavy soils (50–60% clay) and various
irrigated, well-fertilized summer row crops-an appropriate habitat for A. tuberculatus pro-
liferation [3]. Moreover, heavy A. tuberculatus infestation was observed in olive groves
following the application of fresh local dairy manure (Figure 9). Another possible introduc-
tion site, where most populations detected are herbicide-sensitive, is the area surrounding
the Sorek River, which runs along the Coastal Plain. Despite the similarities to the Jezreel
Valley in terms of soil types and irrigated crop selection, much lower infestation was ob-
served, possibly due to the fact that being herbicide-sensitive limited their distribution to
riverbanks, field margins, and roadsides.
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3.2. Glyphosate Resistance

It should be mentioned that the current study is the first report of GR A. tuberculatus
outside North America. Despite the low RI values observed, which can be attributed
to the high ED50 value of the susceptible population, the GR plants survived and set
seeds following four folds of glyphosate recommended rates (Figure 3), thus potentially
increasing the GR distribution. In some plants, the phoenix phenomenon (in which a plant
is severely injured by an herbicide but regrows and sets seed) was visible, indicating that
the resistance mechanism might, at least in part, be related to a non-target-site mechanism,
where insufficient amount of herbicide reaches the target site [20]. It should be noted that
genetically engineered crops (e.g., Roundup Ready® crops) are not registered or used in
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Israel. Despite this fact, glyphosate resistance has previously been reported in Israel in
Lolium rigidum [21] and Conyza bonariensis [22,23], but not in any of the other Amaranthus
species growing in the country (i.e., A. palmeri, A. retroflexus, A. spinosus, A. albus, A. blitoides,
A. graecizans, A. viridis, A. cruentus, and A. blitum). This increases the risk of gene flow via
inter-species hybridization [24].

In addition, as a recent invader, A. tuberculatus still has a limited distribution in the
country and has hardly been exposed to herbicide treatments that could impose a shift
toward individual herbicide-resistant plants. Hence, we assume that the detected herbicide-
resistant populations were probably imported through contaminated animal-feed grain
shipments, most probably from a country where GR A. tuberculatus was previously reported.

3.3. ALS Resistance

High RI values (>25) detected in the populations from the Jezreel Valley are usually
attributed to an altered ALS target-site mechanism, whereas lower RI values, as detected
in the population from the Coastal Plain (5–10), are usually related to a non-target site
resistance mechanism [1,25]. Studies are in progress to elucidate the mechanism rendering
the observed resistance. Since ALS-inhibiting herbicides are widely used, along with the
exogamous nature of A. tuberculatus, one can expect a rapid dissemination of this trait in
the region.

Despite comparable cultivation of winter and summer crops in the Jezreel Valley and
the Coastal Plain, all the ALS-resistant populations were collected exclusively from the
Jezreel Valley (Figure 1). In contrast, the populations from the Coastal Plain were either
ALS-susceptible or ALS–intermediate, indicating that the latter population might be in
transition. Furthermore, the Haifa Port (Figure 1), which is close to the Jezreel Valley, and
the Ashdod Port, which is close to the Coastal Plain region, both serve for unloading and
delivery of imported grains to adjacent feed-production centers, dairy farms, and fishponds,
possibly linking the detected A. tuberculatus populations with entry ports, as was reported
for common ragweed in China [17]. These findings support our hypothesis that there were
several independent introductions of this A. tuberculatus.

That said, ALS resistance is known to evolve rapidly [1,6,25]. Therefore, local evolution
of this trait is conceivable, while other resistance traits are less likely to evolve quickly post-
invasion. Interestingly, the anticipated even distribution of ALS–resistant A. tuberculatus
across regions was not observed.

3.4. PPO Resistance

The MOA and resistance mechanism of PPO-inhibiting herbicides were recently re-
viewed [26]. In the study, the authors indicate that most PPO-resistant cases were found
mainly in the US, showing A. tuberculatus as the most prevalent resistant weed species. To
the best of our knowledge, this is the first report of PPO-resistant A. tuberculatus outside
North America [6]. The resistant populations were detected mainly in the Jezreel Valley,
where carfentrazone-ethyl is not commonly used in irrigated row crops.

PPO-resistance takes time to evolve, since the first case of PPO-resistant was A. tubercu-
latus in Kansas in 2001 [27], well after this MOA was commercialized [26], whereas, in our
case, the carfentrazone-ethyl resistant populations were detected with no apparent prior ex-
posure to herbicide. This further supports our hypothesis that A. tuberculatus seeds invaded
Israel, already carrying herbicide-resistance traits. Interestingly, despite the considerable
resistance level observed (RI of 9.4 and 5.7), most of the populations exhibited resistance to
carfentrazone-ethyl only, as reported by Obenland et al. from Illinois [28]. These results
indicate the involvement of a non-target site resistance mechanism. Known mutations, such
as the deletion of glycine at position 210 (∆G210) or the substitution of arginine at position
128, endow resistance to most known PPO-inhibiting herbicides yielding significantly high
resistance indices (<25 fold) [1,26,28–30].
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Fortunately, the resistant populations were only resistant to carfentrazone-ethyl (tri-
azolinones), allowing the future use of PPO inhibiting herbicides, an important weed
management tool of A. tuberculatus in infested fields.

3.5. Multiple Herbicide Resistance

Multiple-herbicide-resistant A. tuberculatus is not an uncommon scenario. To date,
there are 23 unique cases of multiple-herbicide-resistant (MHR) A. tuberculatus, all of which
are reported in North America [6]. The discovery of the MHR populations to ALS-, PPO-
and EPSPS-inhibiting herbicides in the Jezreel Valley, a region where most of the HR
populations were found, is consistent with the unique distribution of the species in Israel.
The presence of MHR populations may indicate that the introduction of A. tuberculatus
is not a singular event but an ongoing phenomenon. This weed was first detected in
Israel around riverbanks in 1970 [10], long before the first reported MHR A. tuberculatus
in 2006 in the US [6]. The expansion of these traits outside North America to new regions
further prompts the consideration of ongoing seed-mediated gene flow via grain imports
to the region.

A. tuberculatus can now be added to the list of MHR weeds reported locally: A.
blitoides, A. palmeri, L. rigidum, C. canadensis, and Senecio vernalis [6,21–23]. This disturbing
distribution of MHR species threatens the sustainability of the agro-system, as most of
these herbicides are widely used on local farms. The ongoing effort of regulators to ban the
use of different herbicides and the lack of new MOAs on the horizon leaves farmers with
minimal options for chemical weed management.

4. Materials and Methods
4.1. Survey and Plant Material

Seeds of A. tuberculatus were collected from 2017 to 2021 from plants detected in
ruderal sites or cultivated fields. Seeds collected from several plants in one site are defined
as a population. The location and collection date of each population were recorded and
mapped using Google Maps. The seeds were dried at 35 ◦C for one week, threshed (Test
Sieve Ari Levy, LTD), and stored at 4 ◦C until used. For each experiment, seeds were sown
in pots (9 × 9 × 9.5 cm or 6 × 6 × 7 cm) containing a commercial potting mix (Tuff Marom
Golan, Israel). Seedlings were grown in a net-house under ambient summer conditions or
controlled conditions in a phytotron under natural daylight at temperatures of 28/22 ◦C
(16 h day/ 8 h night) and irrigated as needed.

4.2. Herbicide-Response Screening

Application of herbicides was conducted using a 4th Generation Research Chamber
Sprayer (DeVries Manufacturing Inc., Hollandale, MN, USA) equipped with an 80015E
nozzle delivering a 200 L ha−1 spray volume.

A preliminary examination of the collected A. tuberculatus populations (screening
assay) was performed on plants grown as described in Section 4.1. Herbicides with different
MOAs were applied post-emergence at five replicates, as described earlier, on seedlings
at the 4–6 leaves stage. Herbicides and doses used are given in Table 3. A. tuberculatus
populations exhibiting both a survival rate of >40% and a shoot dry biomass of >25%
relative to the control were identified as putative-resistant populations. Plant shoots
were harvested 21 days after application (DAA), oven-dried at 70 ◦C for 72 h, and shoot
dry weight was recorded. All experiments were repeated at least twice. Glyphosate,
trifloxysulfuron and carfentrazone-ethyl were selected for further studies in recognition of
their frequent use locally and the results of the screening assay.
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Table 3. Herbicide active ingredients (ai) or acid equivalent (ae) for different modes of action, were
applied at the recommended dose to A. tuberculatus populations post-emergence at the 4–6-leaf stage.

Mode of Action * Active Ingredient Dose
(g ai/ae ha−1)

ALS
Trifloxysulfuron 11.3

Pyrithiobac–sodium 51.7

PPO

Oxyfluorfen 480
Carfentrazone–ethyl 20

Sulfentrazone 336
Pyraflufen 7.2
Oxadiazon 500
Aclonifen 600

Flumioxazin 40
Fomesafen 200

EPSPS Glyphosate 1080

HPPD Tembotrione 99

PSII Atrazine 500
* Acetolactate synthase (ALS), protoporphyrinogen oxidase (PPO), 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS), 4-hydroxyphenylpyruvate dioxygenase (HPPD), Photosystem II (PSII).

4.3. Dose–Response Studies

A. tuberculatus plants from Newe Ya’ar (putative GR) and Nahal Timnah (GS) pop-
ulations were used for the dose–response studies. Plants were grown and sprayed as
described in Section 4.1 and 4.2 at 4 to 6 leaves stage with glyphosate (Roundup®, 360 g ae
glyphosate L−1 as isopropylamine salt (Bayer Agriculture BVBA, Belgium) at rates of 0, 90,
180, 360, 720, 1080, 1440, 2160 and 2880 g ae ha−1. Plants were then grown in a net-house
under ambient summer conditions. The experiment was repeated three times with 6 to
10 replicates per each treatment. Data represent the mean shoot dry weights of the three
experiments as % of untreated control.

A. tuberculatus plants from Newe Ya’ar and Ginegar (putative ALS resistance) and
Tzora and Tel Nof (putative ALS-susceptible) populations were grown and sprayed (as
described in Sections 4.1 and 4.2) at 4–6 leaves stage, with five replicates per treatment
with trifloxysulfuron (Envoke® WG 75% trifloxysulfuron, Syngenta, Basel, Switzerland)
at 0, 0.35, 0.7, 2.8, 5.6, 11.3, 45 and 90 g ai ha−1. The experiment was conducted twice in a
similar manner but the second run of the experiment included additional application rates
(i.e., 1.4 and 22.5 g ai ha−1).

A. tuberculatus plants from Tzora and Ginegar (PPO susceptible) and from Havat
Gadash and Kfar Yehoshua (putative PPO resistance) populations were grown and sprayed
(as described in Sections 4.1 and 4.2) at 4–6 leaves stage with carfentrazone–ethyl [Spotlight®

OD, 60 g carfentrazone-ethyl L−1, FMC, USA] at rates of 0, 5, 10, 20, 40, 60, 80, and
120 g ai ha−1. Experiments were run twice with five replicates, and shoot dry weight was
recorded as described in Section 4.3.

4.4. Clonal Cutting: Multiple Herbicide Resistance Assay

In order to demonstrate the presence of multiple herbicide resistance at the single plant
level, stock plants from two populations, Megiddo (R) and Tzora (S), served as parent plants
in five replicates. The plants were grown in 3L pots until branching. Small, 7-10-cm-long
twigs (cuttings) with two to four leaves each, were excised from each single parent plant,
inserted into 25-mL glass flasks containing water, and allowed to develop roots. Rooted
plantlets were transplanted into pots (9 × 9 × 9.5 cm) containing potting mix and grown for
one week in a controlled environment, as described above (Section 4.1). One plantlet from
every single parent was treated post-emergence either with foramsulfuron, carfentrazone-
ethyl or glyphosate applied at 45, 20, and 360 g ai ha−1, respectively, as described above
(Section 4.2). In this way, isogenic plantlets originating from the same plant were treated
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with multiple herbicides (Figure 10). Plant shoot dry weight was recorded at 21 DAA and
compared to untreated control shoot dry weight.
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4.5. Data Analysis

Data analyses were performed using R programming software (version 4.2.3) [31].
Dose-response analysis was conducted by fitting a two-parameter log-logistic function with
the upper, using the ‘DRC’ package [32]. The model estimates the log-logistic equation:

f (x) =
1

1 + e(b(log (x)−log (e)))

where f(x) is shoot dry biomass % of untreated control, x is the herbicide rate (g ai/ae ha−1),
b is the slope at the infliction point, and e is ED50; g ai/ae ha−1 (i.e., The herbicide dose
that caused a 50% reduction in biomass). Box-plots were constructed using the GGPLOT
2 package [33] and means were compared using a student’s t-test (p ≤ 0.05) between the
two population within each herbicide.

5. Conclusions

The eco-geographic distribution of this species in three regions indicates that A. tuber-
culatus has invaded Israel probably via multiple entry points: along the Kishon River in
the Jezreel Valley, along the Sorek River in the Coastal Plain, and at the crane-feeding site
in the Hula Valley (Figure 1). This hypothesis is supported by observations of the specific
sites at which the populations were first detected—in regional feed-production centers,
dairy houses, and a crane-feeding site—as well as their proximity to rivers and ports where
imported grain shipments are unloaded. It should be noted that some populations collected
in the Jezreel and Hula Valleys were identified as highly resistant to ALS inhibitors, other
populations were identified as GR and others exhibited resistance to carfentrazone. In
addition, MHR was also confirmed for three different MOAs. In contrast, most populations
collected in the other regions were diagnosed as herbicide-susceptible. One can assume
that, due to the lack of regulation, inadvertent importation of weed seeds is ongoing, a
situation that, together with anthropogenic activities, facilitates multiple introductions and
wider dispersal of the weed carrying alien traits.

The above supports the hypothesis that A. tuberculatus seed reached Israel with
herbicide-resistant traits via seed-mediated gene flow. Further research is underway to
uncover the mechanisms rendering the observed herbicide resistance.
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