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Abstract: Heat shock transcription factors are key players in a number of transcriptional regulatory
pathways that function during plant growth and development. However, their mode of action in
Rhododendron simsii is still unclear. In this study, 22 RsHsf genes were identified from genomic data
of R. simsii. The 22 genes were randomly distributed on 12 chromosomes, and were divided into
three major groups according to their phylogenetic relationships. The structures and conserved
motifs were predicted for the 22 genes. Analysis of cis-acting elements revealed stress-responsive
and phytohormone-responsive elements in the gene promoter regions, but the types and number
varied among the different groups of genes. Transcriptional profile analyses revealed that RsHsfs
were expressed in a tissue-specific manner, with particularly high transcript levels in the roots.
The transcriptional profiles under abiotic stress were detected by qRT-PCR, and the results further
validated the critical function of RsHsfs. This study provides basic information about RsHsf family
in R. simsii, and paves the way for further research to clarify their precise roles and to breed new
stress-tolerant varieties.

Keywords: Rhododendron; RsHsf family; abiotic stress; gene expression

1. Introduction

With global climate change, excessive heat is becoming one of the main environmental
factors restricting plant growth. Transient or persistent heat stress negatively affects plant
growth, and can result in death in severe cases. However, plants can detect even slight
changes in temperature and respond accordingly. Plants have evolved a series of complex
and efficient response mechanisms to adjust their morphology and physiology to adapt
to environmental conditions [1,2]. Studies on the regulation mechanisms of plants have
shown that heat shock transcription factors (Hsfs) are key transcription factors in the heat
response and in signal transduction [3].

Hsfs were first discovered in yeast [4], and were subsequently found in Drosophila [5]
and mammals [6,7]. Plant Hsfs were first discovered and cloned in tomato [4]. Then,
21 members of the Hsf family were identified from Arabidopsis thaliana [8,9] and classified
according to their structural characteristics. This became the basis of Hsf research in the
following decade. Other studies have since identified members of the Hsf family in many
higher plants, including maize [10], cotton [11] and rice [12]. As a transcription factor, Hsf
can combine with the heat shock element (HSE) and activate the expression of downstream
genes during the response to heat stress [13–15].

Hsfs play crucial roles in plant growth and stress response, and their expression is
induced by various stresses. For instance, HsfA2 is a heat stress-inducible gene and its
product regulates the expression of a subset of downstream stress response genes [16].
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Overexpression of HsfA2s from A. thaliana, Zea mays, and Oryza sativa conferred heat
tolerance in transgenic Arabidopsis [17–19]. In wheat, TaHsfA6f encodes a transcription
factor that regulates the expression of several target genes (TaHsps, TaRof1, TaGST) to
improve heat resistance [20]. In addition, AtHsfA1s were found to be involved in responses
to other stresses, such as salt, osmotic, and oxidative stresses [21]. Overexpression of
CarHsfB2 led to increased expression levels of some stress-related genes (RD22, RD26
and RD29A) in transgenic Arabidopsis under drought stress, and improved its drought
tolerance [22]. However, SlHsfA3 and VpHsf1 were found to play a negative regulatory role
in salt stress and osmotic stress, different from the positive roles of the regulatory factors
mentioned above [23,24]. The results of those studies show that Hsf transcription factors
play functionally diverse roles in stress responses.

Rhododendron is well known for its beautiful, brightly colored flowers, and is cultivated
worldwide. In addition to their ornamental value, Rhododendron species have other uses in
food and medicine [25]. For example, its root extracts have been shown to promote blood
circulation, stop bleeding, reduce heat, and eliminate toxic materials. Essential oils are
extracted from some cultivars. Rhododendron grows best in cool, humid, and ventilated
semi-shady environments. The optimum temperature range for growth is 12 ◦C to 25 ◦C.
When the temperature is too high, new sprouts and leaves grow slowly and become semi-
dormant. Therefore, it is essential to study how the heat stress response is regulated in
Rhododendron.

The Hsf gene family has been studied in many species, but has not been analyzed in
detail in Rhododendron. In this study, 22 RsHsfs were identified, and their gene structure
and phylogenetic relationships were determined. The physicochemical properties of the
putative proteins and their conserved domains were predicted. The gene promoter regions
were analyzed to detect cis-acting elements. The transcriptional profiles of RsHsf genes in
different tissues and in response to various abiotic stresses were determined by qRT-PCR,
which identified candidate genes involved in stress responses. The results of this study
provide a theoretical reference for further studies on the Hsfs of R. simsii and their roles in
heat tolerance.

2. Results
2.1. Gene Identification and Physicochemical Properties of Putative Proteins

BLASTX searches were performed using AtHsf gene sequence as queries. PFAM and
SMART were used to remove the invalid and repetitive amino acid sequences obtained
from Rhododendron simsii genome database [26]. In total, 22 RsHsf genes were identified
and named RsHsf1–RsHsf22 (Table 1). The proteins encoded by RsHsfs contained 140
(RsHsf2) to 740 (RsHsf3) amino acids (a.a.), with predicted molecular weights ranging from
16.63 (RsHsf2) to 83.56 (RsHsf3) KDa, and isoelectric points ranging from 4.5 (RsHsf2) to
9.13 (RsHsf22). All of the RsHsfs except for RsHsf16 and RsHsf19 were predicted to be
unstable proteins. The grand average of hydropathicity values of RsHsfs were all negative.
Therefore, RsHsfs were predicted to be predominantly hydrophilic proteins.

2.2. Location of Genes on Chromosomes

Based on the R. simsii genome database [26], chromosome mapping of RsHsfs showed
that the 22 candidate genes were unevenly dispersed on 12 of the 13 chromosomes (all
except chromosome 12) (Figure 1). Four genes were located on chromosome 3, three
on chromosome 1, two on each of chromosomes 2, 6, 7, 9 and 11, and one on each of
chromosomes 4, 5, 8 and 10.
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Table 1. Physicochemical properties of putative RsHsfs.

Gene Name Gene ID Amino Acid Molecular
Weight (KDa)

Theoretical
Isoelectric

Point

Instability
Index

Grand Average of
Hydropathicity

RsHsf1 Rhsim01G0094400 296 33.01 5.42 57.20 −0.47
RsHsf2 Rhsim01G0168300 140 16.63 4.50 55.62 −0.37
RsHsf3 Rhsim01G0272100 740 83.56 6.84 53.50 −0.74
RsHsf4 Rhsim02G0062200 464 52.26 5.35 60.59 −0.82
RsHsf5 Rhsim02G0071200 354 39.70 6.29 44.08 −0.70
RsHsf6 Rhsim03G0027200 257 29.01 5.56 70.97 −0.84
RsHsf7 Rhsim03G0081300 577 63.55 4.70 60.67 −0.52
RsHsf8 Rhsim03G0178900 327 36.11 5.45 54.93 −0.64
RsHsf9 Rhsim03G0236900 250 28.23 9.45 46.61 −0.70
RsHsf10 Rhsim04G0197300 352 39.11 4.83 56.31 −0.61
RsHsf11 Rhsim05G0018200 415 46.58 4.83 51.85 −0.72
RsHsf12 Rhsim06G0051500 332 37.54 6.73 61.12 −0.61
RsHsf13 Rhsim06G0124200 428 48.77 5.26 56.09 −0.77
RsHsf14 Rhsim07G0130600 540 59.94 5.16 59.15 −0.60
RsHsf15 Rhsim07G0227900 324 36.93 5.94 58.81 −0.68
RsHsf16 Rhsim08G0100600 282 31.20 6.38 33.73 −0.77
RsHsf17 Rhsim09G0088300 417 47.75 4.64 50.57 −0.51
RsHsf18 Rhsim09G0213400 524 57.63 5.50 52.32 −0.43
RsHsf19 Rhsim10G0118300 286 31.88 8.76 31.74 −0.74
RsHsf20 Rhsim11G0019200 501 55.43 4.86 65.34 −0.63
RsHsf21 Rhsim11G0043100 370 42.03 4.79 67.84 −0.54
RsHsf22 Rhsim13G0177200 300 35.04 9.13 46.37 −0.79
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Figure 1. Chromosomal locations of RsHsfs in R. simsii. The scale represents megabases (Mb) and the
sizes of the chromosomes can be determined using the scale given at the left.

2.3. Phylogenetic Classification

To analyze the phylogenetic relationships of RsHsf proteins, we constructed a phy-
logenetic tree consisting of 22 RsHsf proteins, 25 CsHsf proteins and 21 AtHsf proteins
(Figure 2). Based on the well-established classification of AtHsfs in A. thaliana, the RsHsfs
were divided into three major groups: A, B and C. These groups were further subdivided
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into 14 subgroups. Group A had the largest number of proteins, and had nine-subgroups
A1–A9, with 14 proteins in total. Group B had four subgroups B1–B4, with seven proteins:
RsHsf6, RsHsf8, RsHsf9, RsHsf12, RsHsf15, RsHsf16 and RsHsf19. Group C was a separate
clade with a single RsHsf member, which was strongly associated with group A.
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Figure 2. Phylogenetic analysis among the identified Hsf-conserved proteins in A. thaliana, C. sinensis
and R. Simsii. The 21 A. thaliana, 25 C. sinensis and 22 R. simsii Hsf sequences were aligned using
Muscle. The phylogenetic tree was constructed by MEGA11.0 with the maximum likelihood method,
and the bootstrap value was set at 1000 repetitions. Different families and subclasses are indicated by
different colors.

2.4. Gene Structure and Conserved Motifs

The structural diversity of the RsHsf family was analyzed in terms of the exon/intron
arrangement of the coding sequences via GSDS (Figure 3) [27]. RsHsfs in the same group
typically had similar numbers of introns. Group A members contained one to four introns.
All group B members had one introns, except RsHsf14, which had three. The single member
of group C had one intron. Among the members of group A, RsHsf14 and RsHsf22 had the
largest number of introns (4). RsHsf3 and RsHsf9 each contained three introns, and RsHsf7
contained two introns.
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Figure 3. Phylogenetic tree, gene structure, and distribution of conserved motifs. (A) Phylogenetic
tree constructed using MEGA 11.0 software. (B) Schematic of gene structure constructed using tools at
gene structure display server. Coding sequences, untranslated regions and introns were represented
by yellow boxes, purple boxes and black lines, respectively. The relative position was proportionally
displayed based on the kilobase scale at the bottom of the figure. (C) Conserved motifs of RsHsf
proteins. Each colored box represented a motif in each of the RsHsf proteins, with the motif’ s number
represented. The sizes of the gene can be determined using the scale given at the bottom.

Next, the conserved motifs were predicted. Ten conserved motifs were identified, with
lengths ranging from 16 a.a. to 49 a.a, as shown in (Figure S1). All members showed similar
motif composition, but there were small differences among the different groups. Among
the predicted motifs, motif 1, motif 2 and motif 3 were the most widely distributed and
highly conserved. Some motifs were only present in certain groups. For instance, motif 6
was present in all members of group B, but was also present in RsHsf22 in group A. Motif
4 and motif 5 were present in group A and group C, but not in group B. These findings
suggested that the structure of RsHsfs is highly conserved, and the complex structure and
specific motifs of RsHsf members in different groups may have led to the diversification of
protein functions.

2.5. Promoter Analysis

To explore the regulatory mode and potential functions of RsHsfs, we extracted the
2-kb promoter region upstream of the initiation codon of each gene and used PlantCARE
to search for cis-acting elements (Figure 4). This analysis revealed 12 cis-acting elements in
three categories: phytohormone-response elements (ABRE, TCA-element, P-box), stress-
response elements (TC-rich repeats, MBS, circadian, LTR) and light-response elements
(G-box, MRE). Phytohormone-response elements were most frequently detected, indicating
that RsHsfs may be associated with multiple phytohormone signaling pathways. All RsHsf
promoter regions contained different types of cis-acting elements, indicating that they play
essential roles in growth and development and in stress responses.
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2.6. Tissue-Specific Transcriptional Profiles of RsHsfs

Gene expression patterns can reflect the potential functions of their encoded products
to some extent. Based on the sequences of RsHsfs, nine genes were randomly selected for
qRT-PCR to analyze their transcriptional profiles in seven different tissues (buds, tender
leaves, mature leaves, tender stems, mature stems, flowers, roots) (Figure 5). There were
some differences in transcriptional profiles among these genes, indicating that they showed
tissue-specific transcriptional patterns. This suggested that RsHsfs have a range of functions
in physiological and developmental processes. For example, RsHsf18 transcript levels were
relatively high in the mature leaves and mature stems, the transcript level of RsHsf19 in
flowers was significantly higher than those of the other genes, and RsHsf21 transcripts
were detected in mature stems. Interestingly, the nine genes showed similar transcriptional
profiles, with the highest transcript levels in the roots and the lowest in the flowers. Because
all of the tested genes showed high transcript levels in the roots, we speculated that RsHsfs
may be closely associated with the regulation of gene expression in the roots.

2.7. Transcriptional Profiles of RsHsfs under Abiotic Stresses

To detect the responses of Hsfs to drought stress, we detected the transcript levels of
their encoding genes in R. simsii leaves under drought treatment at four time points (0 h,
4 h, 12 h, and 240 h). Most of the genes showed changes in their transcript levels, compared
with that at 0 h, but there were differences in the trends in their expression (Figure 6).
Under drought stress, RsHsf1 and RsHsf21 were down-regulated, whereas the other genes
were up-regulated. The transcript levels of RsHsf12, RsHsf13, RsHsf15, RsHsf16 and RsHsf17
peaked at 240 h of drought stress, at levels much higher than those at 0 h. Notably, nine out
of six genes were up-regulated in the early stage of treatment (4 h and 12 h). The remaining
genes were down-regulated in the early stage, but reached peak at 240 h. This suggested
that these genes may less sensitive to drought.



Plants 2023, 12, 3917 7 of 15

Plants 2023, 12, x FOR PEER REVIEW 6 of 15 
 

 

boxes were represented by different cis-acting elements. The coordinates at the bottom of the figure 
indicated the length of the gene promoter, which was defined as 2 kb before the start codon. 

2.6. Tissue-Specific Transcriptional Profiles of RsHsfs 
Gene expression patterns can reflect the potential functions of their encoded products 

to some extent. Based on the sequences of RsHsfs, nine genes were randomly selected for 
qRT-PCR to analyze their transcriptional profiles in seven different tissues (buds, tender 
leaves, mature leaves, tender stems, mature stems, flowers, roots) (Figure 5). There were 
some differences in transcriptional profiles among these genes, indicating that they 
showed tissue-specific transcriptional patterns. This suggested that RsHsfs have a range 
of functions in physiological and developmental processes. For example, RsHsf18 tran-
script levels were relatively high in the mature leaves and mature stems, the transcript 
level of RsHsf19 in flowers was significantly higher than those of the other genes, and 
RsHsf21 transcripts were detected in mature stems. Interestingly, the nine genes showed 
similar transcriptional profiles, with the highest transcript levels in the roots and the low-
est in the flowers. Because all of the tested genes showed high transcript levels in the roots, 
we speculated that RsHsfs may be closely associated with the regulation of gene expres-
sion in the roots. 

 
Figure 5. Transcriptional profiles of RsHsfs in different tissues. B, buds; TL, tender leaves; ML, ma-
ture leaves; TS, tender stems; MS, mature stems; F, flowers; R, roots. Gene expression in buds was 
regarded as control. Data are mean ± standard deviation (SD), calculated from three biological rep-
licates. Vertical lines represent standard deviation. * and ** indicate significant difference at p < 0.05 
and p < 0.01, respectively. 

Figure 5. Transcriptional profiles of RsHsfs in different tissues. B, buds; TL, tender leaves; ML,
mature leaves; TS, tender stems; MS, mature stems; F, flowers; R, roots. Gene expression in buds
was regarded as control. Data are mean ± standard deviation (SD), calculated from three biological
replicates. Vertical lines represent standard deviation. * and ** indicate significant difference at
p < 0.05 and p < 0.01, respectively.

Transcriptome data were utilized to analyze the transcriptional profiles of RsHsfs
under heat and melatonin treatments (Figure 7). Most genes showed changes in their
transcript levels under these treatments. Under heat stress, nine genes were up-regulated,
four were down-regulated, and nine were not expressed or expressed at very low levels.
Interestingly, transcripts of four genes, RsHsf2, RsHsf5, RsHsf10 and RsHsf11, were not
detected under normal conditions. However, these genes were strongly regulated under
heat stress. Melatonin (N-acetyl-5-methoxypteramine, MT) is an important exogenous
growth regulator in plants that mitigates the deleterious effects of various stresses [28,29].
We found that 10 genes were differentially expressed after exogenous application of mela-
tonin under heat stress, compared with their respective transcript levels in melatonin-free
rhododendron plants.
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Figure 6. Expression profiles of RsHsfs under drought treatment. The detection of transcript levels
was performed in leaves. Gene expression at 0 h was normalized to “1”. Data are mean ± standard
deviation (SD), calculated from three biological replicates. Vertical lines represent standard deviation.
* and ** indicate significant difference at p < 0.05 and p < 0.01, respectively.

2.8. Subcellular Localization Analyses

To investigate the distribution of RsHsfs in cells, three genes (RsHsf15, RsHsf16 and
RsHsf19) were selected for transient expression analyses (Figure 8). The recombinant
plasmids were transiently expressed in tobacco leaves, with 35S-GFP as the control. The
35S-GFP signal was distributed throughout leaves uniformly, while fluorescence signals
from the target gene products were presented in the nucleus. This confirmed that RsHsf15,
RsHsf16 and RsHsf19 localized to the nucleus.
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3. Discussion

Heat shock transcription factors are key transcription factors in plants involved in
signaling and response to stress [12]. Analyses of Hsf families have been conducted for
more than 20 plant species to date [30]. There are 21 Hsf-encoding genes in A. thaliana [8],
24 in tomato [4], 25 in pepper [31], 27 in potato [32], and 25 in C. sinensis [33]. The number
of Hsf family genes differs widely in different species. To date, no previous studies have
identified or functionally characterized Hsfs in Rhododendron. In this study, 22 genes
were identified in the R. simsii genome, similar to the numbers reported in the plants
mentioned above. This may be related to the fact that they are dicotyledonous plants
with close genetic relationships and conserved evolution. Subcellular localization showed
that RsHsf15, RsHsf16 and RsHsf19 were all located in the nucleus, which was consistent
with the reported research results of TaHsfA1 in wheat [34], FtHsf18 and FtHsf19 in Tartary
buckwheat [35].

The sequences of plant Hsfs vary greatly, but the basic structure and promoter recogni-
tion mode are conserved. Hsfs normally contain five functional domains: a DNA-binding
domain (DBD), an oligomerization domain (OD), a nuclear localization signal (NLS), a
nuclear export signal (NES), and a C-terminal short activator peptide motif (AHA) [36].
Among these domains, the DBD is usually located at the N-terminal, which is the most
conserved region and an essential characteristic of Hsf proteins. The DBD structure is a key
identifying character of an Hsf protein. Only proteins with the complete conserved DBD
structure are classified as Hsf family members [37].

Based on the differences in DBD and OD domains and their connecting parts, Hsf
proteins can be classified into three major groups. In this study, the 22 RsHsfs were divided
into three groups and 14 subgroups. Those in the same group were similar, but there were
obvious differences among subgroups. In this study, the clustering method of RsHsfs was
the same as that of AtHsfs [8]. Group A had the most members, and group C had the
fewest. The lack of A7, A10, and C2 subgroups in R. simsii indicates that Hsf proteins
have a common ancestor, but have constantly evolved in different species. Moreover, our
results show that several subfamilies of RsHsf family are larger than that of AtHsf family,
including subgroups A2, A5, B1, B4, implying that after the differentiation of these two
species, the gene family has expanded more in R. simsii than in A. thaliana [38].

The signaling pathways in plants form a complex intertwined network, and the same
transcription factors can participate in multiple signal transduction events. Cis-acting
elements located in gene promoter regions are a crucial part of the signal transduction
process, and such elements synergistically regulate gene expression to achieve particular
physiological outcomes [39]. In this study, we detected a variety of cis-acting elements in
the promoter regions, including ABREs, TCA-elements, and P-box elements. These findings
indicate that RsHsfs may be regulated by several kinds of phytohormones. In addition, the
presence of MBS, P-box, LTR, and other elements indicates that RsHsfs may be regulated
by various abiotic factors. Numerous studies have demonstrated that Hsfs can enhance
resistance to stress conditions, such as high temperature [40], salt [41], strong light [42] and
oxidation [43]. Interestingly, no HSE elements were detected in these promoter regions,
implying that these RsHsfs might not be directly induced by heat stress [27].

Exploration of gene expression patterns can shed light on the biological functions of
their encoded products [44]. Therefore, we determined the transcript levels of 9 RsHsfs in
different tissues. Several RsHsfs showed tissue-specific transcript profiles. For example,
there were relatively high transcript levels of RsHsf18 in mature leaves and stems, and of
RsHsf19 in flowers. This result indicated that Hsfs are extensively involved in the growth
and development of different tissues and organs. Notably, the transcript levels of all RsHsfs
were higher in the roots than in other tissues, consistent with their expression patterns in
other plants. For example, in alfalfa, MsHsf06 and MsHsf15 were found to be expressed
at higher levels in the roots than in other tissues [45], and the same expression pattern
was detected in tea tree [46]. StHsf19, StHsf20, StHsf21, StHsf22, StHsf23 and StHsf24
of potato [32] were also found to be highly expressed in the roots, buds and tubers of
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vegetative organs, indicating that their encoded products participate in vegetative growth.
In cassava, MeHsf18 transcript levels were found to be 10–20 times higher in the roots than
in the leaves [47]. We speculated that the high transcript levels in roots may be because the
roots are the first organ to be affected by changes in soil conditions.

We analyzed the transcript levels of nine genes under drought treatment, and found
that seven of them (all except RsHsf1 and RsHsf21) were up-regulated. All these genes had
MBS (drought-responsive) elements in their promoter regions. Co-expression of HaHsfA4a
and HaHsfA9 genes in tobacco was shown to synergistically enhance the tolerance of trans-
genic seedlings to drought and oxidative stress [48]. Another study showed that HsfA1b
controls certain aspects of drought tolerance and water balance in A. thaliana [49]. Notably,
RsHsf2, RsHsf11 and RsHsf21 in the A2 subgroup appeared to be strongly induced by heat
stress in the present study. HsfA2 is one of the most important heat shock transcription
factors in heat tolerance, and it is expressed only under stress conditions [50]. It accumu-
lates continuously during heat shock and recovery, and it can significantly improve heat
resistance both in A. thaliana and tomato [51]. In maize, heat stress induces the expression
of HsfA2-type genes; ZmHsf-01, ZmHsf-04 and ZmHsf-17 [10]. In the present study, the
transcript levels of RsHsf2, RsHsf13, RsHsf17 and RsHsf18 increased under drought stress,
implying that these genes participate in both heat and drought stress responses.

Melatonin is a multifunctional molecule involved in signaling. It is found widely
throughout the biosphere. In plants, it has a crucial role in stress resistance and diurnal
regulation. Exogenous application of melatonin or accumulation of endogenous melatonin
can mitigate damage caused by biotic or abiotic stresses [52], such as high temperature [53],
strong light [54], and salt [55]. Recently, we reported that exogenous melatonin can improve
the heat tolerance of Rhododendron [29]. Photosynthesis is highly sensitive to heat stress.
Exogenous melatonin can ameliorate the expression of photosynthetic pathway genes
(RhPGR5A, RhATPB, RhLHCB3 and RhRbsA) in heat-stressed plants. In the present study,
application of exogenous melatonin limited the increase in the transcription of several genes
under heat stress, including RsHsfs2, RsHsf10 and RsHsf20. The differential expression of
RsHsfs under phytohormone and abiotic conditions highlights their extensive and diverse
roles in environmental adaptation.

4. Materials and Methods
4.1. Plant Materials and Treatments

Two-year-old plants of R. simsii and the rhododendron cultivar “FengGuan” growing
at Jiyang College of Zhejiang A&F University, Zhejiang, China (29◦45′ N, 120◦14′ E) were
used as the experimental materials in this study. Specifically, “FengGuan” was used for
qRT-PCR analyses and R. simsii was used for gene cloning experiments. The plants were
grown in growth chambers for 2 weeks to adapt to the environmental conditions. The
parameters of the growth chambers were set as follows: 14 h light/10 h dark photoperiod,
with light supplied at 80 µmol m−2 s−1, temperature 25 ◦C day/18 ◦C night, and 70%
relative humidity. Plants of uniform size were treated with heat, drought and melatonin.
For the drought treatment, irrigation was withheld for 10 days, and samples were taken at
0 h, 4 h, 12 h and 240 h of treatment. The methods of heat and melatonin treatment were as
described in our previous report [29].

4.2. Gene Identification and Physicochemical Properties of Putative Proteins

The protein and nucleotide sequences were obtained from R. simsii genome database [26].
The conserved DBD domain of Hsf (Pfam: PF00447) was used as the query in a BLASTP
search of the R. simsii proteome. PFAM and SMART excluded the proteins that did not
incorporate DBD domain and HR-A/B domain. Finally, 22 RsHsf genes were obtained.
ProtParam (http://web.expasy.org/protparam, accessed on 8 June 2023) was used to pre-
dict the physicochemical properties of the putative proteins, including the isoelectric point,
molecular weight, and number of amino acids. The hydrophilicity and hydrophobicity of

http://web.expasy.org/protparam
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proteins were analyzed using Protscale (http://web.expasy.org/protscale/, accessed on 8
June 2023).

4.3. Chromosome Location

Information for mapping the 22 RsHsfs onto chromosomes was obtained from the anno-
tation file of the R. simsii genome database [26]. MG2C (http://mg2c.iask.in/mg2c_v2.0/, ac-
cessed on 10 June 2023) was employed to visualize the distribution of RsHsfs on
12 chromosomes.

4.4. Construction of Phylogenetic Tree

The AtHsfs proteins in A. thaliana and CsHsfs proteins in C. sinensis were obtained
from Phytozome (http://www.phytozome.net/, accessed on 11 June 2023) and Tea Plant
Information Archive (TPIA) (http://tpia.teaplant.org/, accessed on 11 June 2023), respec-
tively. These sequences and those of RsHsfs were used to generate a phylogenetic tree with
the maximum-likelihood (ML) method using MEGA 11.0 software. The bootstrap method
was selected, and the bootstrap repetition was set to 1000. Default values were used for
other parameters. Subsequently, the phylogenetic tree was visualized at the iTOL website
(https://itol.embl.de/, accessed on 12 June 2023).

4.5. Gene Structures and Motifs, and Analysis of Gene Promoter Regions

The gene structures, including intron/exon distribution, were predicted on the website
of GSDS (http://gsds.gao-lab.org/, accessed on 15 June 2023). Conserved motifs of RsHsfs
were detected and analyzed with MEME (https://meme-suite.org/meme/, accessed on
15 June 2023). The number of motif parameters was set to 10, and other parameters were
used with default values. The promoter sequences 2 kb upstream of the initiation codon
of RsHsfs were extracted from R. simsii genome data, and the cis-acting elements were
detected by PlantCare (http://bioinformatics.psb.ugent.be/, accessed on 16 June 2023).
The results were visualized using Tbtools software (accessed on 20 June 2023).

4.6. Detection of RsHsf Transcript Levels by qRT-PCR

The transcript levels in stressed plants were performed in the leaves of “FengGuan”.
Total RNA was isolated and reverse-transcribed using the EASYspin Plus Complex Plant
RNA Kit and TRUEscript RT Master Mix (Aidlab, Beijing, China) according to the man-
ufacturer’s protocols. The obtained RNA and cDNA products were kept at −80 ◦C until
use. Primer Premier5 was used to design gene-specific primers, which were synthesized
by Tsingke (Beijing, China) (Table S1). In the qRT-PCRanalyses, the 10 µL reaction mixture
consisted of 5 µL MonAmpTM SYBR® Green qPCR Mix, 3 µL cDNA, 0.5 µL Primer-R,
0.5 µL Primer-F, and 1 µL ddH2O. The PCR cycling program was as follows: 10 min at
95 ◦C, 40 cycles of 15 s at 95 ◦C, 15 s at 59 ◦C, and 10 s at 72 ◦C. The glyceraldehyde
3-phosphate dehydrogenase (GAPDH) gene was used as an internal control [56], the Ct
values were calculated on the Roche LightCycler 480 II instrument (Roche Diagnostics,
Germany) automatically. The gene transcript levels were calculated using the 2−44CT

method [57]. Data were analyzed via two-tailed Student’ s t-test with p < 0.05 (*) and
p < 0.01 (**) set as the thresholds for determining significance. Charts were constructed
using Graphpad prism 9.0. Three independent biological replicates were analyzed for
each sample.

4.7. Subcellular Localization Analyses

The coding sequences of RsHsfs without the stop codon were amplified from the cDNA
of R. simsii. Each product was ligated into the binary vector (pCAMBIA1300-35S::GFP) to
produce a Pro35S::RsHsf::GFP construct, which was then transformed into Agrobacterium
tumefaciens strain EHA105. The transformed A. tumefaciens was used to infiltrate the leaves
of 4-week-old tobacco plants [58]. At 48–72 h after infiltration, GFP signals were observed
using Nikon Eclipse Ni-U microscope (Nikon, Tokyo, Japan).

http://web.expasy.org/protscale/
http://mg2c.iask.in/mg2c_v2.0/
http://www.phytozome.net/
http://tpia.teaplant.org/
https://itol.embl.de/
http://gsds.gao-lab.org/
https://meme-suite.org/meme/
http://bioinformatics.psb.ugent.be/
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5. Conclusions

In this study, 22 RsHsf genes were identified from genomic data of R. simsii for the
first time. The gene structures, phylogenetic relationships and conserved motifs of RsHsf
family members were determined. Transcriptional profile analyses revealed that RsHsfs
display significant specificity of expression in different tissues, and play important roles in
responses to abiotic stress. The results of this study provide basic information about RsHsfs,
and give new insights into the function of Hsf genes in abiotic stress resistance in R. simsii.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12223917/s1, Figure S1: The specific sequence information
of 10 motifs. Table S1: Primers of the RsHsfs for qRT-PCR.
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