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Abstract: Due to the worldwide water supply crisis, sustainable strategies are required for a better
use of this resource. The use of magnetic water has been shown to have potential for improving
irrigation efficacy. However, a lack of modelling methods that correspond to the experimental results
and minimize error is observed. This study aimed to estimate the replacement rates of magnetic
water provided by irrigation for lettuce production using a mathematical model based on fuzzy logic
and to compare multiple polynomial regression analysis and the fuzzy model. A greenhouse study
was conducted with lettuce using two types of water, magnetic water (MW) and conventional water
(CW), and five irrigation levels (25, 50, 75, 100 and 125%) of crop evapotranspiration. Plant samples
for biometric lettuce were taken at 14, 21, 28 and 35 days after transplanting. The data were analyzed
via multiple polynomial regression and fuzzy mathematical modeling, followed by an inference of
the models and a comparison between the methods. The highest biometric values for lettuce were
observed when irrigated with MW during the different phenological stage evaluated. The fuzzy
model provided a more exact adjustment when compared to the multiple polynomial regressions.

Keywords: Lactuca sativa; growth; uncertain; precision; curves

1. Introduction

Lettuce (Lactuca sativa) is one of the most consumed vegetables worldwide, with
highlighted economic and social impact due to production and commercialization by small
farmers. Recently, the consumption of lettuce has increased due to extensive use in fast-food
restaurants as an ingredient [1] and due to its nutritional properties as a source of vitamins
and minerals [2,3], with a low calorie content.

In terms of production, lettuce needs a large water supply for the whole cycle to
guarantee adequate development, as lettuce is highly sensitive to water deficiency. Thus,
in regions with marked water scarcity, techniques such as reuse of wastewater have been
used and have provided satisfactory results [4]. Water deficit stress reduces the root and
shoot biomass, causing a reduction in the photosynthesis process, hence compromising
sugar metabolism, which is the main energy source for plant development and ATP
formation [5,6].

On the other hand, in regions with irrigation availability, techniques for optimizing
irrigation have been researched to reduce wastage [7,8], to avoid the misuse of water
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resources [9], and to adjust the amount of electricity for the pressurization of the system.
Studies using magnetically treated water in irrigation systems have demonstrated incre-
mental improvement in the soil moisture, a reduction in the volume of water applied and
incremental improvement in plants’ nutrient uptake, resulting in yield gains for many
crops [10,11]. Additionally, in high-tech areas, the implementation of precision irrigation
generates high efficiency and extremely low waste [12]. In China, Zhang et al. [13] observed
a possible reduction of about 20% in total water consumption irrigation with improvement
in efficiency.

To this end, models have been used to predict the actual effects of irrigation systems on
crops, supported by experimental assays to reduce error. Multiple polynomial regression
analysis emphasizes the explanation of each variable to the model [14]. This is a widespread
technique and frequently applied to agricultural sciences. However, the responses of
equations derived from statistical analysis may generate built-in error [15,16]. Therefore,
further studies with mathematical models are required to reduce error and enhance the
accuracy of the models.

Among the mathematical models, the fuzzy model, in which the truth values of
the variables can be any real number between 0 and 1, has been highlighted to predict
inaccurate phenomena with greater accuracy, such as potato yield prediction [17], the
vitality of orchids [18], the automatization of water flow control in pipes [19], precision
sensors [20] and control of agricultural spraying [21,22]. Additionally, fuzzy models present
a variety of applications in expert systems that search for algorithm knowledge conversion,
such as the selection of wheat genotypes [23] and management of cotton crops [24].

Fuzzy modeling applied to the evaluation of irrigation system performance has been
verified and better responses reported compared to standard models [25–28], such as
multiple polynomial regression analysis. Based on this, Giusti and Marsili-Libelli [29] have
developed a support system based on fuzzy logic for irrigation and water conservation in
agriculture.

The present study aims: (i) to estimate, using a mathematical model based on fuzzy
logic, values between the maximum and minimum for the rates of magnetically treated
water replacement provided via irrigation for lettuce production and (ii) to compare the
results of multiple polynomial regression analysis and the fuzzy model results.

2. Materials and Methods
2.1. Experiment Description

The experiment was conducted at the Department of Agricultural Engineering at Sao
Paulo State University (UNESP), located in Botucatu, São Paulo, from January to April 2012.

The experiment was set up in the ground of a greenhouse, with soil classified, accord-
ing to Santos et al. [30], as Nitossolo Red Dystrophic latosolic, with moderate clay structure
and physical and chemical characteristics (0 to 20 cm depth) as presented: pHCaCl2 5.9; or-
ganic matter 24 g dm−3; P (Resin) 191 mg dm−3; H + Al 17 mmol dm−3; K 4.8 mmol dm−3;
Ca 68 mmol dm−3; Mg 25 mmol dm−3; sum of base (SB) 97 mmol dm−3; cation exchange
capacity (CEC) 114 mmol dm−3; base saturation index (V%) 85%; B 0.51 mg dm−3; Cu
4.8 mg dm−3; Fe 14 mg dm−3; Zn 8 mg dm−3; sand 37%; silt 51%; clay 12%; and soil density
1.21 g cm−1.

Two crop cycles (35 days long), namely the 1st and 2nd cycle, of lettuce (variety
Veronica) were performed. The lettuce cultivation occurred in ten flowerbeds, each with a
1.2 m length and a 1.0 m width, totaling 3.6 m2 in area. The spacing used was 0.25 between
lines and 0.25 between plants, totaling 40 plants.

Moreover, a randomized block design was adopted, in a 5 × 2 factorial: five irrigation
levels (25, 50, 75, 100 and 125% crop evapotranspiration—ETc), during the whole of both
cycles; and two sources of water: either magnetically treated water (MW) or conventional
water (CW) with no treatment.

The estimation of evaporation of the culture was obtained using the class-A tank
coefficient of the culture (Kc) and the tank coefficient (Kp), which disregarded wind speed.
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To determine the lettuce ETc, a class-A tank was installed inside of the greenhouse, and
an automatic weather station collected and stored data regarding daily temperature and
humidity (Figure 1).
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Figure 1. Monitoring of (A) evaporation (mm); (B) temperature (◦C); and (C) humidity (%) for the
duration of the 1st cycle and 2nd cycle of lettuce plants, in a greenhouse.

To obtain the MW, a magnetizer (Sylocymol Rural), with the capacity to magnetize
5 m3 of water every 30 min, was inserted into the MW reservoir (500 L capacity).

Two independent dripping irrigation systems were implemented, one for each type of
water (MW and CW). The water amount varied according to the lettuce cycle (Figure 2).

Four samplings were performed throughout each lettuce cycle, at 14, 21, 28 and 35 days
after transplanting (DAT), respectively, following biometric parameters, with 4 replicates,
disregarding the plants located on the borders of the plots. In these samplings, the roots
and shoots of lettuce plants were separated using a stylus. The leaf number (LN) was
counted. Fresh shoot and root biomass, FSB and FRB, respectively, were obtained using a
digital balance. Dry shoot and root biomass, DSB and DRB, respectively, were obtained
after keeping the samples in an oven (65 ◦C) until constant weight was reached. Afterwards,
each sample was weighed.

2.2. Preliminary Analysis of Data

A test of normality was performed on each data set using the Anderson–Darling test.
For the data set with homoscedasticity, the constant variance of the data error was analyzed
using the equation of variance test and Bartlett’s test [31]. For the data sets without normal
distribution and/or with differences in variance, a Box–Cox test was used [32], and the
data were normalized with Equation (1):

yi =
xλ

i − 1
λ

, λ 6= 0 (1)

wherein x1, . . . , xn are the original data; yi is the approximate data to the normal distribu-
tion and λ is the parameter of data transformation.

2.3. Multiple Polynomial Regression Analysis

A model was predicted using known independent variable data (x1, x2, x3, . . . , xk)
to estimate the value of the dependent variable (y) [33,34], wherein the general model can
be given by Equation (2):

y = β0 + ax1 + a1x2 + a2x2
2 + a3x3

2 (2)

wherein β0 is the linear coefficient; x1 is the type of water treatment (x1 = 0, for CW and
x1 = 1 for MW), x2 is the percentage of ETc, adopted as irrigation level (x 2 ∈ [25; 125%]).
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Figure 2. Method of determining evapotranspiration and method adopted for calculating water
depth and irrigation time.

After calculating the adjustment equation for the dependent variables (y) (biometric
responses) in the function of the independent variables (x1 and x2), the coefficient of
determination

(
R2) was calculated to determine the adjustment intensity.

The F test (F statistic) was performed to verify if the equation presents a certain degree
of confidence and if the relationship established between the dependent variable (x) and
the independent variables (y) is relevant. The p value for each equation was obtained to
verify the significance of the model [14,35].

2.4. Elaboration of a Model Based on the Fuzzy Logic

The proposed fuzzy mathematical modeling used intervals at the factor levels, namely
[25k%, 25(k + 1)%], 1 ≤ k ≤ 4. At level 25, k% 1 ≤ c ≤ 4 was evaluated throughout the
samplings (14, 21, 28 and 35 DAT), using analogous modeling for each cycle, for leaf number
(LN), fresh shoot biomass (FSB), fresh root biomass (FRB), dry shoot biomass (DSB), and dry
root biomass (DRB), as in the agronomic characteristics model: f : X1 × X2 ⊂ R2 → R5 ,
where X1 is water type (MW or CW) and X2 is irrigation level (25, 50, 75, 100 and 125% of
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ETc), with y = f (x ), wherein R is the set of real numbers; x =( x1, x2); x1 = irrigationlevel,
with x1 ∈ X1 = {25, 125}; x2 = days after transplanting, with x2 ∈ X2 = [35] and
y = (y1, . . . ., y5) defined by the mean values of the biometric characteristics, namely
y1 = LN, y2 = FSB, y3 = FRB, y4 = DSB and y5 = DRB.

This system was based on fuzzy rules and follows the function F[25, 125]× [14, 35]→
R5, F(x, y) = ( f1(x, y), f2(x, y), f3(x, y), f4(x, y), f5(x, y)), where the Cartesian product that
represents the area of the evaluations during the cycle (14 to 35 DAT) and irrigation levels
(25 to 125% of ETc), and the codomain R5 represent the five response variables evaluated in
the experiment.

The data sets were analyzed in two responses surfaces; one for each type of water
(MW and CW) and another one for each lettuce cycle (1st and 2nd) for the graph function
as follows:

• Group 1: F0
1 : [14, 35]× [25; 125]→ R, F0

1 (0, y) = f1(0, y) , wherein the codomain of F0
1

is relative to the leaf number; F1
1 : [14, 35]× [25; 125]→ R, F1

1 (0, y) = f1(1, y) , wherein
the codomain of F1

1 is related to leaf number;
• Group 2: F0

2 : [14, 35]× [25; 125]→ R, F0
2 (0, y) = f2(0, y) , wherein the codomain of F0

2
is related to the fresh shoot biomass; F1

2 : [14, 35]× [25; 125]→ R, F1
2 (0, y) = f2(1, y) ,

in which the codomain of F1
2 is related to fresh shoot biomass;

• Group 3: F0
3 : [14, 35]× [25; 125]→ R, F0

3 (0, y) = f3(0, y) , wherein the codomain in
F0

3 is related to dry shoot biomass; F1
3 : [14, 35]× [25; 125]→ R, F1

3 (0, y) = f3(1, y) , in
which the codomain of F1

3 is related to dry shoot biomass;
• Group 4: F0

4 : [14, 35]× [25; 125]→ R, F0
4 (0, y) = f4(0, y) , wherein the codomain in

F0
4 is relative to the fresh root biomass F1

4 : [14, 35]× [25; 125]→ R, F1
4 (0, y) = f4(1, y) ,

wherein the codomain of F1
4 is related to fresh root biomass;

• Group 5: F0
5 : [14, 35]× [25; 125]→ R, F0

5 (0, y) = f5(0, y) , wherein the codomain of
F0

5 is related to fresh root biomass; F1
5 : [14, 35]× [25; 125]→ R, F1

5 (0, y) = f5(1, y) ,
wherein the codomain of F1

5 is related to dry root biomass.

For the input variable “irrigation level”, five fuzzy sets (Li) were considered, denoted
as Li, i = 1, 2, 3, 4, 5, following the five dimensioned irrigation levels used according to
ETc: (25i)%, i = 1, 2, 3, 4, 5 in the lettuce cultivation. Pertinence trapezoidal functions were
adopted from the sets Li, in accordance with Yet [36], due to the best model adjustments in
the answer model for a set of data presenting a continuous variable. These functions were
defined as if any irrigation rate had a pertinence grade equal to 1 set, so that each ratio of
ETc (%) had a degree of pertinence equal to the corresponding fuzzy set

(
uLi (25i%) = 1

)
and uLi (x) = 1, xi−1 ≤ x ≤ xi+1, with xi+1 − xi−1 = k, to a certain k, in which 9k = 100%,
according to the adopted relevance function (Figure 3).
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Thus, Equation (3) was used to determine the delimiters’ relevance (k), aiming a
symmetrical variation between the delimiters:

k =
xmax − xmin

2n− 1
⇒ k =

125%− 25%
9

= 11.11% (3)

wherein xmax is the maximum rated point; xmin is the estimated minimum point; and n is
the number of fuzzy sets.

From the five fuzzy sets relating to the irrigation level, a variation of 11.11% was ob-
tained. The sizing of each delimiter was represented generically by 25 + n.k, n = 0, 1, . . . , 9,
where for the lower and upper delimiter, the subtraction of k on the bounding x1 of the
first fuzzy set and the addition of k in the enclosing x4 of the last fuzzy set were adopted.
Therefore, nine delimiters needed to be calculated, in which the variation was 11.11%.

For the input variable “samplings; days after transplanting—DAT”, four fuzzy sets
(P i) were considered, denoted as Pi, i = 1, 2, 3, 4, referring to the four sampling times

during the lettuce cycling: 14 + 7i, i = 0, 1, 2, 3. The pertinence functions of the trapezoidal
type were implemented for the sets Pi. Thus, the functions determined for each sampling
(DAT) had a degree of pertinence equal to 1 for their fuzzy sets (Figure 4).
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after transplanting (DAT). P1: fuzzy set of DAT 14; P2: fuzzy set of DAT 21; P3: fuzzy set of DAT 28;
P4: fuzzy set of DAT 35.

Equation (4) was used for determining the delimiters from the pertinence (k) to obtain
a symmetrical variation between the delimiters:

k =
xmax − xmin

2n− 1
⇒ k =

35− 14
7

= 3 (4)

wherein xmax is the maximum rated point; xmin is the estimated minimum point; and n is
the number of fuzzy sets.

Therefore, the use of five variables (LN, FSB, FRB, DSB and DRB), for both lettuce
cycles (1st and 2nd) led to setting up ten fuzzy sets (C i): Cn, m = 1, 2, . . . , 10, with
trapezoidal pertinence functions. Nineteen delimiters were adopted as the percentage of
the measured data sets of each output variable to enable the set of trapezoidal shape of the
ten sets of relevance. This percentage, denoted as P(x%), depends on the constant k, since
the required delimiters are in the form P(mk) 0 ≤ m ≤ 18 (Figure 5).

The constant k was calculated by Equation (5):

k =
xmax − xmin

2m− 1
⇒ k =

100%− 0%
19

= 5.26% (5)
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wherein xmax is the maximum peak observed for the output variables; xmin is the minimum
point observed for the output variable; and m is the number of fuzzy sets.
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Figure 5. Degree of membership functions defined for ten fuzzy sets (Ci) for the input variable: leaf
number (LN); fresh shoot root biomass (FSB); fresh root biomass (FRB); dry shoot biomass (DSB) and
dry root biomass (DRB). C1–C10: refers to the generic pertinence sets for the output variables that
have been modeled using fuzzy logic.

Therefore, for definition of relevant and output variable function, 19 percentiles with
a range of 5.26% were used, creating pertinence function for the output variables in the
proposed methodology, where for the x1 in the fuzzy set, C1 was subtracted from the k
value and the x4 delimiter fuzzy C10 set was added to the k value.

The development of the fuzzy system assumed the fuzzy base rule:

• If “premise (antecedent)” then “conclusion (consequent)”;

From the input variables, twenty pairs of rules (5 irrigation level × 4 samplings) were
created and associated with five output variables (LN, FSB, FRB, DSB and DRB) (Table 1).
The base rule created for the proposed fuzzy model was determined according to the
methodologies proposed by Putti, Cremasco et al. and Gabriel Filho et al. [18,37,38].

Table 1. Combinations of input variables with membership degree of 1 associated with fuzzy sets to
build the base rule.

Irrigation Level (IL) Days after Transplanting (DAT)

Fuzzy Sets Point with 1 Degree of
Membership Associated

Fuzzy
Sets

Point with 1 Degree of
Membership Associated

DAT 1 14 IL 1 25%
DAT 1 14 IL 2 50%
DAT 1 14 IL 3 75%
DAT 1 14 IL 4 100%
DAT 1 14 IL 5 125%
DAT 2 21 IL 1 25%
DAT 2 21 IL 2 50%
DAT 2 21 IL 3 75%
DAT 2 21 IL 4 100%
DAT 2 21 IL 5 125%
DAT 3 28 IL 1 25%
DAT 3 28 IL 2 50%
DAT 3 28 IL 3 75%
DAT 3 28 IL 4 100%
DAT 3 28 IL 5 125%
DAT 4 35 IL 1 25%
DAT 4 35 IL 2 50%
DAT 4 35 IL 3 75%
DAT 4 35 IL 4 100%
DAT 4 35 IL 5 125%
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Associations of the output variable (S) fuzzy sets were used to calculate the output
variable values with relevance degree 1. Due to the need to calculate 19 delimiters, the
percentiles of level 0% (minimum) and 5.36.i, with i = 1, 2, . . . , 18, 19 of the output variables
data (S) were determined, enabling the subsequent classification of the output variable
from the points with pertinence degree 1, characterized by the base rule of fuzzy systems:

• If S ≤ P(5.26%) so VS is “C1”;
• If P(10.52%) ≤ S ≤ P(15.78%) so VS is C2;
• If P(21.04%) ≤ S ≤ P(26.3%) so VS is C3;
• If P(31.56%) ≤ S ≤ P(36.82%) so VS is C4;
• If P(42.08%) ≤ S ≤ P(47.34%) so VS is C5;
• If P(52.6%) ≤ S ≤ P(57.86%) so VS is C6;
• If P(63.12%) ≤ S ≤ P(68.38%) so VS is C7;
• If P(73.64%) ≤ S ≤ P(78.9%) so VS is C8;
• If P(84.16%) ≤ S ≤ P(89.42%) so VS is C9;
• If VS ≥ P(94.68%) so VS is C10,

Wherein P (x %) is the percentage level of all calculated output variables values and
S is the output variable, with S ∈ {LN, FSB, FRB, DSB and DRB}.

2.5. Inference of the Fuzzy Method

Once the propositions of the antecedent and consequent of the proposed model are
fuzzy, an inference method can be used as proposed by Mamdani and Assilian [39], and
according to Ross [40], this is the most common method cited in literature. For this, the air
center or centroid method [40–50] was used with Equation (6):

y =
∑x µa(x)x
∑x µa(x)

(6)

wherein xmax is the maximum peak observed for the output variables; xmin is the minimum
point observed for the output variable; and n is the number of fuzzy sets.

2.6. Analysis of the Fuzzy Model Association Intensity

To determine the intensity degree of the models obtained in the lettuce experiment,
three tests were used:

2.6.1. Medium Square Error

MSE =
n

∑
i=1

(
yobserved − y f uzzy

)2

n
(7)

2.6.2. Pearson’s Correlation (r)

r =
∑n

i=1

(
y f uzzy − y f uzzy

)
(yobserved − yobserved)[

∑n
i=1

(
y f uzzy − y f uzzy

)2(
y f uzzy − y f uzzy

)2
] 1

2
(8)

2.6.3. The Willmott et al. [51] Index

d = 1−

 ∑n
i=1

∣∣∣y f uzzy − yobserved

∣∣∣2
∑n

i=1

(∣∣∣y f uzzy − y
∣∣∣+ |yobserved − y|

)2

 (9)

wherein y is the average of values and n is the number of fuzzy sets.



Plants 2023, 12, 3811 9 of 17

These methodologies allowed us to compare the adjustment curves established in this
study, determined via multiple polynomial regression analysis and the proposed model
based on fuzzy logic. To determine the maximum score, a simulation within the established
fuzzy system was carried out, with variations steps of 0.1 for irrigation levels and sampling
(DAT), to confirm the condition that resulted in the best performance.

2.7. Software Used

Matlab software, version 8.4 (2014), was used for the development of the systems
based on fuzzy rules and for the simulation of variable responses. The simulated data were
plotted in a spreadsheet using Excel software 2016 (Microsoft Office). Minitab statistical
software, version 17.0 (2014), was used for calculating the multiple regression model.

3. Results
3.1. Multiple Polynomial Regression Adjustment

The setting equations using multiple polynomial regression adjustment, in general,
occurred as 3rd degree equations (Table 2).

Table 2. Coefficients of regression and determination of the multiple polynomial equations for
growing lettuce parameters: leaf number (LN); fresh shoot biomass (FSB); dry shoot biomass (DSB);
fresh root biomass (FRB) and dry root biomass (DRB), sampled at 14, 21, 28 and 35 days after
transplanting—DAT, for two cycles (1st and 2nd). Lettuce was submitted to different irrigation levels
(25, 50, 75, 100 and 125% of crop evapotranspiration—Etc), and two types of water (magnetically
treated water (MW) and conventional water (CW).

Variable Cycle
y=β0+

2
∑
j=1

3
∑
i=1

aijxi
j

R2

β0 ax1 ax2
1 ax3

1 a1x2 a2x2
2 a3x3

2

LN-MW
1st 30.33 * −0.184 * 0.002 * −0.000006 −0.184 * 0.1 * 0.00068 0.98 *
2nd −23.71 * 0.47 * 0.0074 * −0.000033 * 4.92 * −0.19 * 0.0027 * 0.89 *

LN-CW
1st 30.4 * −0.224 * 0.0027 * −0.00000092 −2.75 * 0.1 * −0.00059 0.94 *
2nd −43.23 * 6.86 * 0.12 −0.31 −0.002 * 0.005 * 0.000001 * 0.94 *

FSB-
MW

1st −133.8 * −4.58 * 0.082 * −0.00039 * 35.59 * −2.17 * 0.0443 * 096 *
2nd −122.75 * 0.523 −0.0151 * 0.000098 22.36 * −1.41 * 0.03 * 0.84 *

FSB-CW
1st 56.59 * 12.7 * 0.2 −0.00089 22 * −1.171 * 0.024 0.95 *
2nd −159.35 * 1.77 * −0.031 * 0.00016 * 21.89 * −1.25 0.026 0.91 *

DSB-
MW

1st 9.16 * −0.19 0.0032 * 0.00014 −0.75 * 0.019 * −0.000015 0.92 *
2nd 10.08 * −0.47 * 0.0073 * −0.000032 −0.35 * 0.0083 * 0.0002 * 0.89 *

DSB-
CW

1st 2.11 * 0.019 * −0.00065 0.00000460891 −0.21 * −0.001 * 0.00035 0.94 *
2nd 9.84 * 0.094 −0.0016 0.0000084 * −1.68 * 0.0718 −0.00074 * 0.88 *

GRB-
MW

1st −23.66 * −0.13 * 0.0023 * 0.0033 * 4 * −0.2 * −0.000011 * 0.94 *
2nd −13.69 * −0.24 * 0.0043 * −0.00002 * 2.71 * −0.13 * 0.0023 * 0.92 *

GRB-
CW

1st −9.74 * 0.093 −0.0015 0.0000082 * 1.19 * −0.061 0.0011 * 0.85 *
2nd −6.37 * 0.065 * −0.0011 0.0011 0.94 * −0.054 * 0.0000059 0.85 *

DRB-
MW

1st −3.43 * −0.022 0.00035 * −0.0000016 * 0.62 * −0.032 * 0.00054 * 0.86 *
2nd 2.27 * −0.029 * 0.00046 −0.0000021 −0.15 * 0.0032 * 0.000013 0.84 *

DRB-
CW

1st −1.43 * 0.0019 −0.00000274 * 0.00000017 0.22 * −0.012 0.00023 * 0.93 *
2nd −0.44 * 0.017 * −0.00023 0.000001 0.10 * −0.009 0.0002 * 0.73 *

x1: irrigation levels (Etc %); x2: samplings (days after transplanting—DAT); * significant for α = 5%.

3.2. Developed Model Based on the Fuzzy Logic

The pertinence functions associated the highest degree of pertinence for each evalua-
tion of the lettuce crop, when submitted to irrigation levels (25, 50, 75, 100 and 125% of crop
evapotranspiration—Etc), with two types of water, MW and CW, sampled four times (14,
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21, 28 and 35 days after transplanting—DAT) were defined as similar for each cycle (1st and
2nd). Then, the fuzzy set of biometric variables was developed. The following statements
represent the relationships found in the construction model with other analogous outputs.

• If (DAT is “P1”) and (irrigation level is “L1”), then (NL is “C2”, FSB is “C3”, DSB is
“C3”, FRB is “C3” and DRB is “C2”);

• If (DAT is “P1”) and (irrigation level is “L2”), then (NL is “C2”, FSB is “C3”, DSB is
“C3”, FRB is “C6” and DRB is “C2”);

• If (DAT is “P1”) and (irrigation level is “L3”), then (NL is “C3”, FSB is “C3”, DSB is
“C3”, FRB is “C8” and DRB is “C3”).

The rules presented above are the commands for the fuzzy controller, which, with
reference to the DAT and Irrigation Blade, will perform the calculation to predict the results
of the biometric components.

The construction methodology of the output fuzzy model function enables the vertex
determination of the graphic (Figure 6).

The analysis of the leaf number shows that the lettuce irrigated with magnetically
treated water (MW) showed higher plant development compared to the plants irrigated
with conventional water CW (Figure 6). A larger number of accumulated leaves occurred
during the 1st cycle, when the lettuce was irrigated with MW, and with irrigation rates at
75% and 100%, where the lettuce leaf number was lower, with similar pattern between the

1st and 2nd cycle (Figure 6a,b). On the other hand, when the lettuce was irrigated with CW,
less development over the cycle was noted, with plants accumulating 32 leaves at the end
of the 1st cycle (Figure 6c), and a weaker development over the 2nd cycle was observed,
producing a maximum of 26 leaves when subjected to irrigation at 125% of Etc.
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Figure 6. Lettuce leaf number in response to different irrigation levels (IL) (25, 50, 75, 100 and 125%
of crop evapotranspiration—ETc), and two types of water magnetically treated water (MW) and
conventional water (CW), sampled at 14, 21, 28 and 35 days after transplanting—DAT, for two cycles
(1st and 2nd): (a) 1st cycle—MW; (b) 2nd cycle—MW (c) 1st cycle—CW (d) 2nd cycle—CW.
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For fresh shoot biomass (FSB), in general, high values were observed in response to
irrigation with MW (Figure 7). When the 1st cycle was analyzed, when lettuce was irrigated
with MW, weaker development occurred, with a high FSB value occurring close to the
replacement rate of 100% of ETc (Figure 7a). When lettuce plants were irrigated with CW, a
lower FSB was observed in comparison to plants irrigated with MW. The maximum FSB,
with CW, occurred near the irrigation rates of 125 and 75% of ETc (Figure 7b). During the
2nd cycle, the same pattern was observed. The highest FSB was observed when lettuce
plants were irrigated with MW, at the irrigation rate of around 125% of ETc (Figure 7b).
When the lettuce was irrigated with CW, an effect similar to that of the 1st cycle was
observed, with greater accumulation of FSB at replacement rates of 75 and 125% of ETc
(Figure 7d).
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Figure 7. Lettuce fresh shoot biomass in response to different irrigation levels (IL) (25, 50, 75, 100 and
125% of crop evapotranspiration—ETc), and two types of water (magnetically treated water (MW)
and conventional water (CW), sampled at 14, 21, 28 and 35 days after transplanting—DAT, for two
cycles (1st and 2nd): (a) 1st cycle—MW; (b) 2nd cycle—MW; (c) 1st cycle—CW; (d) 2nd cycle—CW.

Fresh root biomass (FRB) showed higher values when lettuce was subjected to irriga-
tion with MW, with similar trend over both cycles. Irrigation with MW presented the best
FRB accumulation when plants were irrigated at rates of 75% and 100% of ETc during both
cycles (Figure 7a,b).

Like FSB, the accumulation of dry shoot biomass (DSB) followed a trend where the
highest values were observed in plants irrigated with MW. In both cycles (1st and 2nd),
large increments occurred with replacement irrigation rate close to 100% of ETc (Figure 8a,b).
When lettuce was irrigated with CW, a similar effect in both cycles was observed, where
the replacement rate of 50% of ETc differed from the other rates at the end of the cycles
(Figure 8c,d).

Regarding irrigation with CW, the behavior was the same over both cycles, where
regions close to the replacement rates of 75% and 100% of ETc obtained the highest accu-
mulations of dry shoot biomass (Figure 8c,d). Dry root biomass (DRB) followed the same
trend as FRB (Figure 7).
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It is possible to infer that in the 1st cycle, when plants were submitted to irrigation
with MW, higher accumulation occurred close to the replacement rates of 50 and 100%
of ETc (Figure 8a). As for the 2nd cycle, the highest increase occurred when plants were
irrigated at the replacement rate of 50%, 100% and 125% of ETc (Figure 8b).
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Figure 8. Lettuce fresh shoot biomass in response to different irrigation levels (25, 50, 75, 100 and
125% of crop evapotranspiration—ETc), and two types of water (magnetically treated water (MW)
and conventional water (CW), sampled at 14, 21, 28 and 35 days after transplanting—DAT, for two
cycles (1st and 2nd): (a) 1st cycle—MW; (b) 2nd cycle—MW (c) 1st cycle—CW (d) 2nd cycle—CW.

Irrigation with CW had a similar effect over both cycles, in which we can highlight the
higher development obtained when replacement rates were between 75% and 125% of ETc
(Figure 8c,d).

3.3. Analysis of the Models Association Intensity

The developed fuzzy model and the multiple polynomial regression equations used in
this study permitted us to verify the degree of association in the models with the collected
data from the lettuce experiment, which were used as parameters for correlation analysis
via mean square error (MSE), Pearson’s correlation (r), and the Willmott et al. [51] index (d)
(Table 3).

The correlation results suggests that the fuzzy models were more accurate than multi-
ple polynomial regression, as fuzzy models showed greater correlation for the data from
the lettuce experiment and more accurate adjustments.
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Table 3. Association intensity analysis using three criteria: medium square error (MSE); Pearson’s
correlation (r) and the Willmott et al. [51] index (d) of fuzzy models and multiple polynomial
regression (MPR) for growing lettuce parameters: leaf number (LN); fresh shoot biomass (FSB); dry
shoot biomass (DSB); fresh root biomass (FRB) and dry root biomass (DRB), sampled at 14, 21, 28 and
35 days after transplanting—DAT, for two cycles (1st and 2nd). Lettuce was submitted to different
irrigation levels (25, 50, 75, 100 and 125% of crop evapotranspiration—ETc), and two types of water
(magnetically treated water (MW) and conventional water (CW)).

Growing
Lettuce

Parameters

Variable

Model

Cycle

Water Type
1st 2nd

MSE r d MSE r d

LN

MW
fuzzy 1.20 0.99 * 0.986 1.86 0.96 * 0.999
MPR 1.46 0.98 * 0.773 2.15 0.94 * 0.998

CW
fuzzy 4.44 0.98 * 0.947 7.53 0.95 * 0.998
MPR 5.61 0.83 * 0.932 50.67 0.73 * 0.978

FSB

MW
fuzzy 385.68 0.98 * 0.967 912.11 0.96 * 0.955
MPR 423.46 0.96 * 0.523 944.75 0.93 * 0.090

CW
fuzzy 248.56 0.98 * 0.999 993 0.95 * 0.998
MPR 426.06 0.96 * 0.212 1053.7 0.93 * 0.753

DSB

MW
fuzzy 1.03 0.97 * 0.771 0.97 0.98 * 0.975
MPR 1.09 0.96 * 0.764 1.02 0.96 * 0.9

CW
fuzzy 0.24 0.97 * 0.89 0.49 0.98 * 0.97
MPR 0.25 0.94 * 0.03 0.80 0.96 * 0.13

FRB

MW
fuzzy 1.26 0.98 * 0.87 0.74 0.98 * 0.74
MPR 1.77 0.94 * 0.09 1.62 0.96 * 0.23

CW
fuzzy 1.01 0.96 * 0.94 0.56 0.97 * 0.92
MPR 1.06 0.84 * 0.50 0.58 0.95 * 0.08

DRB

MW
fuzzy 0.10 0.96 * 0.99 0.01 0.94 * 0.99
MPR 0.14 0.92 * 0.51 0.02 0.92 * 0.41

CW
fuzzy 0.02 0.96 * 0.97 0.04 0.95 * 0.92
MPR 0.03 0.93 * 0.94 0.05 0.90 * 0.89

* significant with α = 5%.

4. Discussion

The biometric parameters of lettuce observed in the experiment enables us to infer that
the use of magnetically treated water promoted a better development of the lettuce. Once
water is submitted to a magnetic field, changes to its properties are observed, such as in-
creased in water absorption in surfaces [52], solubility of some minerals [53–56], surface ten-
sion [57], crystallization and precipitation of salts [58,59]. Additionally, Mostafazadeh et al.
and Khoshnevisan et al. [10,17] observed incremental changes in soil moisture by using
magnetized water compared to nonmagnetic water. All these changes together generate
benefits to different crops.

The increase in production parameters found in lettuce irrigated with magnetically
treated water corroborates several surveys that describe technology with a high potential
of reducing the volume of water applied, such as in the cultivation of celery, green beans
and peas [60]; chickpeas [61]; castor beans [62]; corn [63]; tobacco [64]; peas [65]; toma-
toes [66,67]; wheat [68]; and pepper [69]. Putti et al. [70] also reported the beneficial effects
of magnetically treated water on lettuce plants due to improvement in nutritional status
and yield.
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However, when lettuce was irrigated with magnetically treated water, among the
parameters analyzed, the leaf number and fresh shoot biomass showed a significant re-
duction along the crop cycle, reaching the same values when lettuce was irrigated with
conventional water.

Furthermore, simulated values were estimated based on data obtained experimentally
within the predetermined interval for each input variable, namely water depth (25 to 125%
of ETc) and days after transplanting (14 to 35 DAT), and modelled with fuzzy logic.

Based on the correlation analysis using the data, the proposed fuzzy model showed
higher correlation with the data and higher accuracy compared to the multiple polynomial
regression analysis. According to Zhang [13], the fuzzy model obtained the most accurate
results in the determination of phosphorus uptake by plants. In the same way, Carozzi
et al. [71] determined the performance of cropping systems, using corn as case study, and
found lower error using fuzzy modeling in comparison to regression analysis. Applications
with fuzzy modeling in agriculture have shown results with greater precision, as in the
energy savings in a rotary dryer calculated with a fuzzy multivariable control application,
which reduced biomass consumption by 9% [72]. With respect to the sustainability of
resources in agriculture, precision agriculture has been used by producers to make decisions
and optimize resources, and the use of fuzzy logic has made it possible to optimize the
combination of these resources in decision-making [73].

In order to optimize the use of irrigation water, fuzzy controllers have been developed
to achieve more sustainable management of agricultural areas [74].

The fuzzy models have a higher degree of association with the collected data from the
field than multiple polynomial regressions. We were unable to verify these results based
on the statistical tests applied, which have otherwise been proved in this setting. For the
value of the mean square error, we noticed that for both types of water over the two cycles,
the lowest values occurred.

The correlation coefficient was closer to 1 and therefore closer to the collected data.
The value of the model’s accuracy also showed the highest value when the value of “d”
was calculated according to Wilmott. p value was also determined to verify the significance
of the models. In all analyzed cases, p value < 0.005.

Carozzi et al. [71] used the fuzzy model for the determination of corn response pro-
ducing and found that the least error occurred when compared with regression analysis.

According to Zhang et al. [75], the fuzzy model obtained the most accurate results in
determining phosphorus absorption by plants.

Polat et al. [76] found that the application of fuzzy logic allowed them to determine
more precisely the areas with contamination risks. Weber et al. [77] observed that the fuzzy
model applied to the determination of corn hardness yielded results that are more accurate.

5. Conclusions

Irrigation using magnetically treated water produced higher development in lettuce
over two cycles in comparison to irrigation with conventional water.

A possible reduction in the volume of water consumption to achieve the same pro-
duction was estimated when lettuce was irrigated with untreated water. In this way, this
technology may lead to an increase in food production.

The developed fuzzy model showed a better statistical model adjustment when com-
pared to the multiple polynomial regression based on its association with the data obtained
experimentally, with a reduction in the medium square error and an increase in Pearson’s
correlation (r) and in the Willmott index (d). Fuzzy modeling provides less adjustment error
for curves, presented as a model of behavior analysis of the experimentally tested variables
in the field of agricultural sciences. The model developed was adjusted to the conditions of
the proposed experiment, so a limitation of the model is that values outside the intervals of
the fuzzy sets cannot be used to make inferences about the effects on the lettuce crop. As
an agronomic conclusion, the model can help make decisions about irrigation management
and the type of water used.
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