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Abstract: Identifying a congenially targeted production environment and understanding the effects
of genotype by environmental interactions on the adaption of chickpea genotypes is essential for
achieving an optimal yield stability. Different models like additive main effect and multiplicative
interactions (AMMI 1, AMM2), weighted average absolute scores of BLUPs (WAASB), and genotype
plus genotype–environment (GGE) interactions were used to understand their suitability in the
precise estimation of variance and their interaction. Our experiment used genotypes that represent
the West Asia–North Africa (WANA) region. This trial involved two different sowing dates, two
distinct seasons, and three different locations, resulting in a total of 12 environments. Genotype
IG 5871(G1) showed a lower heat susceptibility index (HSI) across environments under study. The
first four interactions principal component axis (IPCA) explain 93.2% of variations with significant
genotype–environment interactions. Considering the AMMI stability value (ASV), the genotypes
IG5862(G7), IG5861(G6), ILC239(G40), IG6002(G26), and ILC1932(G39), showing ASV scores of
1.66, 1.80, 2.20, 2.60, and 2.84, respectively, were ranked as the most stable and are comparable
to the weighted average absolute scores of BLUPs (WAASB) ranking of genotypes. The which–
won–where pattern of genotype plus genotype–environment (GGE) interactions suggested that the
target environment consists of one mega environment. IG5866(G10), IG5865(G9), IG5884(G14), and
IG5862(G7) displayed higher stability, as they were nearer to the origin. The genotypes that exhibited
a superior performance in the tested environments can serve as ideal parental lines for heat-stress
tolerance breeding programs. The weighted average absolute scores of BLUPs (WAASB) serve as an
ideal tool to discern the variations and identify the stable genotype among all methods.

Keywords: AMMI; WAASB; GGE; chickpea; heat susceptibility index

1. Introduction

Chickpea (Cicer arietinum L.) is an important grain legume crop with a high protein
content, implying its significance in sustaining food and nutritional security for inhabitants
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of arid and semiarid regions [1–3]. Chickpea-growing regions are predominantly located in
arid and semiarid areas, making them susceptible to high-temperature stress, mainly during
the reproductive and grain-filling stages [4–8]. The impact of heat stress on chickpea yield
and production has become a matter of significant concern in recent times. The paradigm
shift in chickpea cultivation is driving factors including a shift in major cropping areas from
cooler long-season climates to shorter warm-season climates, the expansion of late-sown
chickpea areas due to higher cropping intensities, and also the overall rise in seasonal
temperatures caused by global climate change [9–11]. From germination to the vegetative
and reproductive phases, all stages of chickpea growth are hindered by temperatures
exceeding the normal range [12–17]. During the terminal stage of chickpea growth, which
encompasses the reproductive phase, heat stress can have significant consequences for both
crop yield and quality. This critical stage involves the formation of flowers and pods and
the development of seeds [18–20].

There is an urgent need to identify stable sources of donors that can be utilized into a
breeding program [21,22]. The identification of landraces known for their acclimatization
under harsh and hardy environments is a basic prerequisite. Testing their response to
Indian agroclimatic conditions for normal and late-sown conditions can provide crucial
clues about genotypes with inherent heat-stress-tolerant capacities [23,24]. Genotype–
environment interaction (GEI) occurs when different genotypes show varying responses to
changing environments with fluctuations in crop yield. Researchers rely on stable statis-
tical measures that include both univariate and multivariate techniques. These methods
encompass cluster analysis, pattern analysis, and principal component analysis (PCA) or
biplots. Biplots, in particular, are highly effective graphical tools used to represent the rela-
tionships between genotypes and environments visually to analyze genotype–environment
interactions (GEIs). Two widely utilized biplot models are the AMMI biplot (additive
main effects and multiplicative interaction) and the GGE biplot (genotype-plus-genotype ×
environment) [25–29]. Researchers commonly employ genotype-plus-genotype by environ-
ment (GGE) biplots for various purposes [30–32], such as classifying mega environments,
assessing genotype rankings, and selecting discriminative and representative environments.
Best linear unbiased prediction (BLUP) had a higher predictive accuracy than any AMMI
family member in analyzing multi-environment trials (METs) with a random analysis of the
genotype–environment interaction (GEI) effect using a linear mixed-effect model (LMM).
The weighted average absolute scores of BLUPs (WAASB) can reliably estimate stability in
a bidimensional plot with multiple interactions on the principal component axes (IPCAs),
which is essential for ranking genotypes. The simultaneous selection index WAASBY is
useful when different weights are needed for performance and stability [33–36].

In this study, we used multi model analysis to identify high-yielding, stable chickpea
genotypes across diverse environments using various stability analyses.

2. Results

According to Fischer and Maurer (1978) [37], the HSI (heat susceptibility index) has
served as the predominant criterion for identifying tolerant genotypes. In our study, HSI
was calculated using timely and late-sown data of three locations for two consecutive
years. Results showed that IG 5871 (0.12, 0.12, 0.18, 0.07, 0.1, 0.08) had a lower HSI across
environments and across locations, along with ILC 8666, IG 5905, and IG 5868, which
exhibited lower yield dips under more than four environments (Supplementary Table S1).

2.1. Variance Analysis for Yields

The combined analysis of variance (Table 1) revealed highly significant differences
(p ≤ 0.001, p ≤ 0.01) for yield per plot among different factors: locations, genotypes, and
the genotype–location (G × E) interaction.
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Table 1. Estimation of significant level for yield and yield contributed traits of 42 C. arietinum
accessions revealed by ANOVA.

Source of
Variation Df Sum Sq Mean Sq F Value Pr (>F) Proportion Accumulated

ENV 11 4,159,096 378,099.6 *** 9.99863 1.66 × 10−6

REP(ENV) 24 907,563.5 37,815.15 *** 8.84942 1.25 × 10−28

GEN 41 3,644,107 88,880.67 *** 20.79967 1.24 × 10−105

GEN: ENV 451 4,795,863 10,633.84 *** 2.488509 1.5634 × 10−32

PC1 51 1,699,822 33,329.84 *** 7.8 0 35.4 35.4
PC2 49 1,383,687 28,238.5 *** 6.61 0 28.9 64.3
PC3 47 1,041,098 22,151.02 *** 5.18 0 21.7 86
PC4 45 344,720.9 7660.464 *** 1.79 0.0013 7.2 93.2
PC5 43 158,258.7 3680.435 0.86 0.726 3.3 96.5
PC6 41 62,198.48 1517.036 0.36 0.9999 1.3 97.8
PC7 39 49,545.98 1270.41 0.3 1 1 98.8
PC8 37 22,607.39 611.0104 0.14 1 0.5 99.3
PC9 35 16,737.69 478.2197 0.11 1 0.3 99.6
PC10 33 9285.812 281.3882 0.07 1 0.2 99.8
PC11 31 7901.49 254.8868 0.06 1 0.2 100

Residuals 984 4,204,807 4273.178
Total 1962 22,507,299 11,471.61

Overall Mean 174.5151
CV 37.45783

Df, degree of freedom; * significant at p ≤ 0.05; ** significant at p ≤ 0.01; *** highly significant at p ≤ 0.001;
ns = nonsignificant, p > 0.05.

Yield variations result from evolving environments and genetic diversity. Each violin
plot (Figure 1) consists of two mirrored distributions, one for normal-sown conditions (blue
color) and the other (green color) for late-sown conditions.
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plots illuminate differences in central tendencies, spread, and distribution shapes, offering 
valuable insights into the impact of late conditions on crop yields. Genotype performance 
variation was prominent among locations, with 18.47% attributed to location, 4.03% to 
replication, 16.19% to genotype, and the highest, 21.30%, to genotype–environment inter-
action across locations. Moreover, qualitative (crossover type) interaction was demon-
strated where the rank order of genotypes changed across environments (Supplementary 
Figure S1A and Table S2), indicating the presence of substantial genotype–environment 

Figure 1. Violin plots of yield trait of each individual environment are distributed for both normal
(blue color) and late (green color) conditions.

The width of each violin corresponds to the density of data points, with broader
sections indicating higher data density and narrower sections indicating lower density. The
plots illuminate differences in central tendencies, spread, and distribution shapes, offering
valuable insights into the impact of late conditions on crop yields. Genotype performance
variation was prominent among locations, with 18.47% attributed to location, 4.03% to
replication, 16.19% to genotype, and the highest, 21.30%, to genotype–environment interac-
tion across locations. Moreover, qualitative (crossover type) interaction was demonstrated
where the rank order of genotypes changed across environments (Supplementary Figure S1A
and Table S2), indicating the presence of substantial genotype–environment interactions. The
overall average yield recorded 174.5 g/plot, with the minimum value of 110 g/plot in the 2021
Dharwad late-sown condition, and the maximum yield value of 257 g/plot recorded in the
2022 Delhi timely-sown condition (Supplementary Figure S1B). Annichiarico environmental
index was used to predict favorable and unfavorable environments along with the most
suitable genotype for the particular environment (Supplementary Table S3). Descriptive
statistics, variance components, and genetic parameters for grain yield of all the genotypes
evaluated across the year and locations are provided in Supplementary Table S4, where
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overall heritability (broad sense) across environments was reported to be 72.54%. To ana-
lyze genotype–environment interaction (GEI), a principal component analysis (PCA) was
executed (Table 1). The ordination method using an approximate F-statistic showcased
significant distinctions across PC1 (35.4%), PC2 (28.9%), and PC3 (21.7%), totaling 86%
variation. Inclusion of PC4 (7.2%) led to a cumulative 93.2% explanation of variability, with
a significant (p < 0.001) effect.

2.2. AMMI Biplot Analyses
2.2.1. Additive Main Effects and Multiplicative Interaction: AMMI 1

The biplot displays the first principal component (PC1) term on the abscissa and
significant trait influence on the ordinate. Environments E3, E9, and E10, representing plot
yield, showed PCA1 scores closer to zero, parallel to the average yield line. This suggests
the strong performance of all genotypes in these environments. E6, E5, and E1 had vectors
parallel to PC1 (35.4%), indicating a higher contribution to overall variation. E4, E2, E8,
E1, E7, E9, and E3 had higher average yields than E10, aligned with the average yield line.
E12, E6, E5, and E11 were below-average environments (Figure 2A). Certain genotypes
like IG5862(G7) and ILC1312(G36) consistently excelled across all environments, with high
mean yields near the axis origin. Genotypes ILC1312(G36), IG5856(G4), IG5904(G18), and
IG5980(G21) also had higher mean yields, while IG5858(G5) and ILC1313(G37) had lower
yields, aligning with zero scores on the first PCA1 axis. These genotypes were less affected
by environmental variations.
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Figure 2. (A) The “AMMI 1” biplot depicts the primary effects of traits, and the first principal
component (PC1) impacts of both genotype and environment. (B) The “AMMI 2” biplot visualizes
the combined effects of the first two principal components (PC1 and PC2) for genotypes along with
the genotype-environment interaction impact of 42 genotypes across two seasons and three locations,
considering yield per plot (g/plot).

2.2.2. Additive Main Effects and Multiplicative Interaction: AMMI 2

The extent of interaction is reflected by the distance of the environment and genotype
vectors from the biplot’s origin. Shorter vectors closer to the origin suggest less interaction,
serving as a reliable indicator for selecting genotypes with consistent performance and adapt-
ability. For example, E6, E9, E7, E5, and E1 align parallel to PC1 (35.4%). Notably, E5 and E6
are closely related with a smaller angle in the negative quadrant, while E1, E9, and E7 are cor-
related in the positive quadrant. Dashed lines in the biplot highlight genotype contributions
to specific environments. Genotypes IG6000(G24), IG6001(G25), ILC184 (G38), IG5904(G18),
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IG5856(G4), and IG5980(G21) are associated with E1, while IG6002(G26), IG5909(G20), and
ILC239(G40) exhibit shorter vectors, contributing to E9. In the positive quadrant of PC1, E7
correlates with genotype IG6006(G28). Conversely, in the negative quadrant of PC1, E6 and E5
connect with genotypes ILC1932(G39), ILC8666(G41), IG5868(G11), G2, ILC0(Austria)(G29),
IG5896(G17), IG5874(G12), IG5861(G6), ILC0(Greece)(G31), and IG5858(G5). E1’s vectors
demonstrate negative interactions compared to E5 and E6. PC2 variation (28.9%) attributes
influence to E10, E11, E4, E2, and E6, aligning parallel to the PC2 axis (Figure 2B). No-
tably, genotypes IG5866(G10), IG5865(G9), and IG5862(G7) exhibit superior performance,
particularly in E11. IG5862(G7) aligns with the negative quadrant of PC2 alongside E10.
E11 negatively correlates with E3, E8, E2, E4, and E10, while E3, E10, E4, E2, and E8 have
positive relationships contributing to PC2. Genotypes clustered near the biplot origin, such
as IG5862(G7), IG5863(G8), IG5997(G23), ILC1312(G36), ILC0(Italy)(G32), IG5886(G15),
and IG5884(G14), demonstrate consistent responses across environments. Conversely,
genotypes positioned far apart, like ILC10771(G35), IG5905(G19), and ILC1932(G39), ex-
hibit distinct environmental responses. Genotypes located farther from the origin display
heightened sensitivity to environmental interactions. The angle between environment
and genotype vectors signifies the correlation coefficient and interaction degree. A right
angle implies no correlation (E1 to E4, E11 to E6), while obtuse and acute angles suggest
negative (E11 to E10, E4, E2, E8) and positive correlations (E3, E9, E7, and among E2, E4,
E8, E10), respectively. In the PC1 vs. PC3 biplot (Supplementary Figure S2A), genotypes
IG5862(G7), ILC1312(G36), IG5866(G10), and IG5863(G8) cluster near the origin. Shortest
vectors contributing to PC1 belong to E2, E9, and E8. Meanwhile, E10, with the shortest
vector, contributes to PC3, demonstrating more variation against E3, with involvement of
genotypes IG5866(G10), IG5884(G14), and IG5865(G9). In the PC2 vs. PC3 biplot, geno-
types IG5896(G17), ILC0(Italy)(G32), IG5862(G7), and IG5874(G12) cluster near the origin
(Supplementary Figure S2B). Environments E6 and E1 showcase stability with the shortest
vector length.

2.3. WAASBY-Based Genotype Ranking for Stability and High Performance

WAASBY values used fixed weights of 65% for grain yield (GY) and 35% for stability
(WAASB). The highest WAASBY values belong to genotypes ILC239(G40), IG6002(G26),
IG5862(G7), ILC0(Czech)(G30), IG5861(G6), ILC1932(G39), IG5997(G23), ILC8666(G41),
IG5856(G4), G5895(G16), IG6003(G27), JG14(G42), IG5865(G9), IG6000(G24), IG5858(G5),
ILC184(G38), IG5993(G22), IG5863(G8), and ILC0(Russia)(G34). These genotypes are po-
sitioned in quadrant IV, indicating both high productivity and stability (Figure 3A). In
contrast, changing genotype rankings based on assigned weights are visualized in Supple-
mentary Figure S3A. The left side presents ranks based solely on stability, while moving
from left to right and from top down increases the weight for productivity by 5% in each
scenario. The right-most side corresponds to genotype ranking for grain yield. Clus-
ter analysis in this study tries to identify IG5856(G4) and groups with similar stability
and productivity performance. In Cluster 1, genotypes ILC1312(G36), ILC10771(G35),
ILC0(Latvia)(G33), ILC0(Greece)(G31), ILC0(Austria)(G29), IG6006(G28), IG5980(G21),
IG5909(G20), IG5905(G19), and IG5884(G14) exhibit poor productivity and instability,
consistently ranking low in all WAASB/GY ratios. In Cluster 2, genotypes ILC239(G40),
ILC1932(G39), ILC184(G38), ILC1313(G37), ILC0(Italy)(G32), IG6001(G25), IG6000(G24),
IG5997(G23), IG5993(G22), IG5904(G18), IG5886(G15), IG5863(G8), and IG5861(G6) demon-
strate productivity but instability, ranking well with low WAASB/GY ratios. Cluster 3 in-
cludes genotypes JG14(G42), ILC8666(G41), ILC0(Czech)(G30), IG6003(G27), IG6002(G26),
IG5895(G16), IG5865(G9), IG5862(G7), and IG5856(G4), which exhibit high productivity
and broad adaptability, indicating greater stability with lower WAASB values. In Cluster
4, genotypes ILC0(Russia)(G34), IG5896(G17), IG5878(G13), IG5874(G12), IG5868(G11),
IG5866(G10), IG5858(G5), IG5852(G3), and IG5842(G2) are stable but low in productivity,
ranking well with high WAASB/GY ratios (Supplementary Figure S3B).
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Figure 3. (A) The biplot presents the relationship between grain yield and the weighted average of
absolute scores for the best linear unbiased prediction of genotype–environment interaction (WAASB)
for 42 genotypes tested across 12 environments. A black circle in the IV quadrant represents a
theoretical genotype with both high productivity and broad adaptability. Horizontal and vertical black
arrows indicate the directions of yield increase and stability improvement, respectively. (B,C) The
comparative predictive precision of the AMMI (additive main effects and multiplicative interaction)
family and best linear unbiased prediction (BLUP) methods for the yield of 42 C. arietinum genotypes
are depicted. The distribution of 1000 estimates of root mean square prediction difference (RMSPD)
is visualized through boxplots.

2.4. Comparison of BLUP and AMMI Family Models

The evaluation determines the superior model in a given context. Based on our diverse
datasets exhibiting various genotype–environment interaction (GEI) patterns, our analysis
suggested that best linear unbiased prediction (BLUP) emerged as the most predictively
precise model (Figure 3B). Furthermore, we observed that AMMI0 demonstrated the highest
accuracy within the AMMI models. Among the best linear unbiased prediction (BLUP)
models of environment, genotypes, and genotypes by environment, in conjunction with
AMMI (0–10 and AMMIF), our observations point to the best linear unbiased prediction
(BLUP) by genotypes as the most accurate model.

2.5. GEI Biplot Considering WAASB and ASV

The collective variance captured by the initial three interaction principal component
analyses (IPCAs) in the chickpea trial amounted to 86% (Table 1). Figure 4 offers a lucid
representation of the “which–won–where” pattern. An illustrative example involves
JG14(G42) emerging as the prevailing performer across all studied environments in the
first IPCA. Its supremacy is attributed to the highest yield (360.86 g/plot) and the lowest
IPCA1 score (2.76) among the tested genotypes (Supplementary Table S6). Notably, a
correlation exists between Figure 4 and Figure S3. For instance, genotypes IG5896(G17),
ILC8666(IG5874(G12)), IG5895(ILC8666(G41)), and IG5874(IG5895(G16)) showcase the most
elevated predicted means (207.9, 233.7, 228.7, 200.1) (Figure 4), consequently earning the
distinction of “universal winners” due to their minimal IPCA1 scores (−5.59, −4.77, −4.36,
and −3.9) (Supplementary Table S6). When examining genotype ranking based on the
number of retained interaction principal component axes (Figure 4A–C), eleven interaction
principal component axes (IPCAs) were considered for the chickpea dataset (Supplementary
Table S6). It is apparent that the genotype ranking was significantly impacted by the
number of interaction principal component axes (IPCAs) employed in weighted average
absolute scores of BLUPs (WAASB) estimation, particularly up to four interaction principal
component axes (IPCAs). Clear groups of genotypes with akin stability performance are
discernible by the color variations on the left side. For instance, genotypes ILC239(G40),
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IG6002(G26), IG5862(G7), ILC0(Czech)(G30), and IG5861(G6) showcase the lowest WAASB
values (0.77, 0.93, 1.03, 1.10, and 1.21) when considering four or more interaction principal
component axes (IPCAs) (Supplementary Table S6). They are consecutively ranked as the
first, second, third, fourth, and fifth most stable. Parallel rankings are observed with the
WAAS index for these genotypes (0.98, 1.27, 1.35, 1.46, and 1.54) in the first cluster (dark
blue gradient) as we observed a correlation between ASV and weighted average absolute
scores of BLUPs (WAASB) (Supplementary Figure S4). However, when accounting for
ASV, genotypes IG5862(G7), IG5861(G6), ILC239(G40), IG6002(G26), and ILC1932(G39)
receive ASV scores of 1.66, 1.80, 2.20, 2.60, and 2.84, respectively. We observed significant
correlation among stability models (Supplementary Figure S4). Consequently, ILC1932(G39)
would be ranked as the fifth most stable (Supplementary Figure S3), although in actuality,
it belongs to the second cluster of genotypes (red color) with the highest stability.
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Figure 4. (A) The heatmap illustrates the rankings of 42 chickpea genotypes based on the utilization
of interaction principal component axes (IPCAs) in the weighted average of absolute scores for the
best linear unbiased predictions (BLUPs) of genotype–environment interaction (WAASB) estimation.
(B) Circos plot showing genotypes contribution to individual IPCAs. (C) Circos plot of individual
genotypes contribution to yield and respective IPCAs.
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2.6. GGE Biplot Based Analysis
2.6.1. “Which–Won–Where” Pattern

The “which–won–where” pattern of multi-environment trials (METs) vividly illus-
trates genotype–environment interaction (GEI) by correlating genotypes and environments.
It also aids in evaluating genotypes stability versus mean performance across environments
and assessing test environments for representativeness and discrimination (Figure 5A).
The polygon view depicting the “which–won–where” pattern showcases the combined
impact of genotype main effects, with the genotype ILC8666(G41) and IG5896(G17) posi-
tioned along the line connecting JG14(G42) and ILC1932(G39) affirmed the ranking order
JG14(G42) > ILC8666(G41) > IG5896(G17) > ILC1932(G39) across all environments. These
equality lines partitioned the biplot into sectors, with the leading genotype for each sec-
tor located at the corresponding vertex. In this instance, the twelve environments were
grouped into one sector. JG14(G42) emerged as the universal winner, particularly in E9 and
E10, while ILC1932(G39) exhibited subpar performance in these environments displaying
the crossover (Figure 5A,B).
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Figure 5. (A) The environment vector perspective of the GGE biplot illustrates the resemblances
among test environments. (B) The GGE biplot polygon view depicting the “which-won-where”
pattern showcases the combined impact of genotype main effects and G × E interaction for 42 C.
arietinum genotypes across two seasons and three locations in terms of yield per plot. These biplots
were generated using centering = 2, SVP = 3, and scaling = 0 settings.

2.6.2. The Assessment of Stability across Environments Using the “Mean vs. Stability”
Analysis of the GGE Biplot

The assessment of stability across environments using the “mean vs. stability” analysis
of the genotype plus genotype by environment (GGE) biplot is an effective approach. In
Figure 6A, the abscissa of the average-environment coordination (AEC) indicates a higher
mean yield across various environments. Genotypes such as JG14 (G42), IG5871(G1),
and IG5868(G11) exhibit the highest mean yields, while closely trailing are IG5895(G16),
IG5865(G9), IG5852(G3), and others. IG5980(G21) demonstrates a mean yield similar to the
grand mean, in contrast to ILC1932(G39), which exhibits the lowest mean yield. The AEC
ordinate, represented by the vertical line, signifies greater variability (indicative of poorer
stability) in either direction. Notably, IG5980(G21) and ILC1932(G39) are characterized by
high instability, while IG5866(G10), IG5865(G9), IG5884(G14), and IG5862(G7) showcase
considerable stability. The instability of ILC1932(G39) stems from its unexpectedly lower
yield in several environments (E1, E7, E8, E2, E4, E9, E3, and E10) juxtaposed with higher-
than-anticipated yield in E12, E11, E6, and E5.
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Figure 6. (A) The GGE biplot’s depiction of the “mean vs. stability” pattern. (B) The GGE biplot
“genotypes ranking” pattern for genotype comparison with ideal genotype showing G + G × E
interaction effect of 42 genotypes under two seasons and three locations for yield per plot. The biplots
were created based on centering = 2, SVP = 2, and scaling = 0.

2.6.3. Genotype Ranking

The genotype ranking biplot, as depicted in Figure 6B, serves as a valuable tool for dis-
cerning superior-performing genotypes in comparison to others. Notably, genotypes such
as JG14(G42), IG5871(G1), IG5868(G11), IG5866(G10), IG5865(G9), IG5884(G14), IG5858(G5),
IG5895(G16), ILC8666(G41), and IG5874(G12) stand out as top contenders due to their close
proximity to the arrowhead within the circle. The ranking of genotypes based on yield per
plot follows the order JG14(G42) > IG5866(G10) > IG5871(G1) > IG5868(G11) > IG5865(G9)
> IG5884(G14) > IG5874(G12) > IG5895(G16) > IG5878(G13) > IG5858(G5) > ILC8666(G41)
> IG5896(G17) > ILC10771(G35). Environmental rankings, on the other hand, exhibit the
sequence E9 > E10 > E9 > E12 > E11 > E4 > E2 > E8 > E7 > E1. The distance between
genotypes on the biplot corresponds to the Euclidean distance, reflecting disparities in
mean yield (g) and/or interactions with environments. Longer vectors denote superior
(e.g., IG5895(G16)) or inferior (e.g., ILC0 (Austria)(G29), ILC239(G40)) performance, as
well as heightened instability (e.g., ILC1932(G39)). Acute angles (e.g., IG5866(G10) vs.
IG5865(G9)) imply similar responses with proportional variations across all environments,
while obtuse angles (e.g., JG14(G42) vs. ILC1932(G39)) indicate inverse responses, sig-
nifying instances where one genotype excels while another falters. Right angles signify
independent reactions to environments (e.g., IG5866(G10) vs. ILC1313(G37)), underscoring
differences that predominantly influence GE. Comparison between any two genotypes can
be contrasted using a connecting line (Supplementary Figure S5A). Performance superiority
is towards the side of the equality line. For instance, JG14(G42) excelled in E9, E10, E4, E2,
E8, E7, and E1, while ILC1932(G39) outperformed in the remaining environments (E12,
E11, E6, and E5), revealing a “crossover” interaction. Variation in genotype disparity across
environments correlates with the environment’s distance from the equality line. Differences
between JG14(G42) and ILC1932(G39) were notable in E1 and E5 but minor in E9.

2.6.4. The GGE Biplot’s “Discriminativeness vs. Representativeness”

The genotype plus genotype by environment (GGE) biplot’s “discriminativeness vs.
representativeness” pattern serves as a crucial tool for discerning the most suitable test
environments to select superior genotypes. The pattern discriminates among genotypes
(discriminativeness), and, secondly, faithfully represents the overall set of evaluated en-
vironments (representativeness). In Figure 7A, our focus was on yield evaluations across
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distinct research locations (E9, E8, E2, E11, and E7). The concise vectors associated with
these environments offer a clear insight into their discriminative potential. Environments
characterized by expansive vectors, such as E5 and E6, exert a stronger discriminatory
influence due to their larger variability. For instance, as depicted in the case of environment
two (E10, E3, E12, E9) for yield, a subtle angle alongside an extended vector indicates an
environment’s heightened representativeness and discriminativeness. Moving to Figure 7A,
environment rankings distinctly identify E10 and E3 as prime candidates for yield-focused
genotype selection. Conversely, E5, E6, E7, and E1 are relegated to weaker positions,
suggesting limited suitability for this purpose. In our evaluation of the three assessed
locations, Dharwad emerges as the optimal choice, followed by Amlah and then Delhi. Our
analysis of the angles between the AEC abscissa and the test environment vector further
accentuates the differentiation between favorable and less ideal environments. Smaller
angles, exemplified by environments like E10, E3, E9, E4, E12, E11, and E2, signify more
advantageous conditions for genotype selection. Conversely, wider angles, observed in
environments such as E5, E6, E1, E8, and E7, imply reduced potential for accurate genotype
discrimination. Finally, the length of each environment vector provides a visual representa-
tion of its discriminatory capacity. Longer vectors, such as those associated with E5, E6, and
E1, are more effective at distinguishing genotypes, emphasizing their significance in the
selection process. Conversely, shorter vectors like E3, E10, and E12 display a diminished
discriminatory ability.
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Figure 7. (A) GGE biplot “discriminativeness vs. representativeness” pattern compares genotypes,
highlighting the ideal genotype with G + G × E interaction. (B) GGE biplot “Env. Ranking” pattern
compares environments, highlighting ideal environment with G + G × E interaction for 42 genotypes,
2 seasons, and 3 locations, using yield per plot. Biplots: centering = 2, SVP = 2, and scaling = 0.

2.6.5. Test Environment Discrimination and Representation

Figure 7B illustrates distances among test environments for all traits. Concentric circles
in the biplot visualize environment vector lengths, proportional to standard deviations
within environments, reflecting environment discrimination capability. E5 and E6 are
most informative, whereas E10 and E9 are least discriminative. Representativeness of test
environments: E10 is highly representative, unlike E5 and E6 which are less so. Envi-
ronments that are both discriminative and representative, like E10, suit broad genotype
selection. Nonrepresentative yet discriminative test environments (e.g., E5, E6) aid specific
megaenvironment genotype selection. From Figure 7B rankings, preferred target environ-
ments are E10 > E3 > E4 > E12 > E9 > E11 > E2 > E8 > E1 > E7 > E6 > E5. When focusing
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on a single mega environment, discriminative but nonrepresentative test environments
(e.g., E5) effectively eliminate unstable genotypes. With regard to optimal environments
for selecting broadly adapted genotypes, in a singular mega environment context, E10
emerges as the premier choice due to its proximity, while E5 and E6 prove suboptimal
for region-wide cultivar selection. Notably, E5 and E6, sourced from Delhi_2021 timely-
and late-sown seasons, contrast with E10 from Dharwad_2022 late-sown environment.
Interrelationships among test environments (Supplementary Figure S5B) portray connec-
tions between test environments. E10, E3, E9, E2, E8, and E1 exhibit positive correlation
(acute angle), unlike E5 and E1, with no apparent correlation (right angle). The distance
between environments quantifies their distinctiveness in genotype differentiation. Nine
environments cluster into two groups: E12, E11, E6, and E5 in one, and the remaining in an-
other. Covariance, influenced by vector length and angle cosine, defines similarity between
environments. Genotype assessment and ranking (Supplementary Figure S6A) utilizes
genotype plus genotype by environment (GGE) biplots to evaluate genotype performance
in specific settings. Genotype and environment vectors are depicted, with a 90◦ angle
signifying above-average genotype performance in a specific environment. IG5874(G12)
underperforms (obtuse angles) across all environments, while IG5863(G8) excels (acute
angles) in all but E7. Genotype ranking for E10 places JG14(G42), IG5866(G10), IG5871(G1),
IG586(G11), and IG5865(G9) sequentially. Notably, IG5866(G10) and IG5865(G9) maintain
yields close to the average, differing from others yielding higher. JG14(G42) shines in E5,
whereas ILC239(G40) ranks lowest. Environment performance evaluation (Supplementary
Figure S6B) assesses test environments based on IG5871(G1) performance. A line through
the biplot origin and genotype marks the axis, depicting environment rankings. IG5871(G1)
yields results below average in E10, E3, and E9, near average in E10 and E12, and above
average in remaining environments.

3. Discussion

The integration of analysis of variance and principal component analysis (PCA) has
yielded valuable insights into the substantial impacts of location, genotype, and their inter-
actions on yield per plot. Our study underscores the pivotal role of genotype–environment
interactions in achieving optimal yields across diverse conditions. The first three PCs ex-
plain 86% of the variability, surpassing the minimum reliability threshold of 70% [38,39]. In
our comprehensive analysis, which accounts for four PCs, the explanatory power extends
to 93.2%, demonstrating significant reliability [40–42]. The AMMI 1 analysis, depicted
in the results, provides intricate insights into genotype–environment interactions. This
approach facilitates the identification of genotypes excelling in specific environments and
those showcasing consistent performance across diverse conditions. Notably, ILC1312(G36)
and IG5862(G7) emerge as appealing choices for breeders due to their combined high yield
and stability [43–45]. AMMI 2, a graphical representation using PC1 and PC2 scores, holds
distinct advantages over joint-regression-based analysis. It offers a concise overview of
complex genotype–environment interactions (GEIs) across multiple settings, elucidating
86% of the G + G × E interaction variation for yield per plot. Thus, the interaction of
the 42 genotypes across 12 environments is encapsulated by these three principal compo-
nents of genotype and environment [46,47]. By studying various scenarios, researchers
can evaluate how genotype rankings shift with varying weights assigned to productivity
and stability. This approach yields valuable insights for genotype selection in breeding
programs. To predict yield, a judicious selection between best linear unbiased predic-
tion (BLUP) and additive main effects and multiplicative interaction (AMMI) models is
crucial; our findings align with those of Piepho (1994) [48–51], who concluded that best
linear unbiased prediction (BLUP) surpasses any member of the additive main effects
and multiplicative interaction (AMMI) family in yield prediction within the context of
multi-environment trials (METs) considering intrinsic factors specific to each trial [52–55].
The “which–won–where” pattern suggests diverse cultivar selection according to mega
environments. The biplot origin represents an average genotype across environments, with
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proximity indicating minor G and GE contributions. Longer vectors signify higher G or GE
contributions. Noteworthy genotypes with extended vectors (e.g., JG14(G42), IG5866(G10))
exhibit superior performance, while others (e.g., IG5980(G21), ILC1932(G39)) show lower
stability [56,57]. The angle between genotype vectors and the AEA reflects G and GE com-
ponents. Certain environments, like E9, E10, and E3, possess notable representativeness
and discrimination [58]. In this study for genotype selection, we observed associations
between test environments, suggesting potential genotype information reduction, leading
to cost-effective testing [59]. Correlations between closely correlated test environments over
time enable the omission of one without significant data loss [60]. Our genotype ranking
biplot offers critical insights into performance variations across diverse environments,
considering mean yield and interactions. This approach holds potential for substantial
genotype information reduction, ultimately reducing testing expenses [61,62].

4. Materials and Methods
4.1. Plant Materials

Forty-one landraces representing the WANA (West Asia and North Africa) region
were obtained from the Chickpea Molecular Biology Laboratory, Division of Genetics, IARI,
New Delhi (Supplementary Table S7), with one variety, JG14, used as a heat-tolerant check.
We cumulatively sowed 160 landraces on the same locations and seasons for heat-tolerance
screening (data not presented) and stability analysis, but for better representations of biplots
we studied 42 genotypes by using the heat susceptibility index (HSI). The chosen 42 profile
genotypes were determined by evaluating grain yield per plot while taking into account
the heat susceptibility index (HSI) among all the tested landraces.

4.2. Environments and Intercultural Practices

Phenotypic evaluation spanned three locations: ICARDA—Amlaha (23.14711◦ N,
76.92035◦ E, MSL 502 m) with medium black and alluvial soil, IARI-Regional Research
Station—Dharwad (15.45890◦ N, 75.00780◦ E, MSL 678 m), with tropical black clays derived
from the weathering of metavolcanic rocks as block cotton soil, and IARI—New Delhi
(28.08◦ N, 77.12◦ E, MSL 228.61 m), with very deep, somewhat excessively drained alluvial
soils. Locations with genotypic code along with latitude, longitude, altitude, year as
seasons, date of sowing, and date of harvesting are given in the Supplementary Table S7,
with two sowing dates, two seasons (30 days apart), and three locations (2 × 2 × 3)
cumulatively representing 12 environments, as coded by E1 to E12. A total of 41 landraces
with JG214 check underwent field trials over 2021–2022, including normal and late sowing
(30 days apart), and temperature and precipitation of each location and season are given
in Supplementary Table S8. An alpha lattice design was used, with three replications per
location. Randomized lines/checks occupied 2 m plots. Plants were spaced at 30 cm, rows
at 50 cm, plots at 1.5 m, and replications at 2.0 m. Standard agronomic practices were
diligently adhered to at each respective location. The background effect of drought was
minimized by giving an adequate amount of water by artificial irrigation at all the critical
stages of the chickpea crop plant.

4.3. Data Collection and Statistical Analysis

The seed yield was recorded after weighing the seeds from a two-meter row plot for
each genotype; mean yield with their standard deviations are given in Supplementary
Table S9. This study aimed to assess the heat susceptibility index (HSI) and categorize
genotypes based on their tolerance to heat stress [37], using heat susceptibility index
calculated by (S): (1 − Yh/Yn)/(1 − Xh/Xn), where Yh: yield of genotype under heat
stress, Yn: yield of genotype under normal condition, stress intensity = 1 − Xh/Xn, Xh:
average yield of all genotypes under heat stress, and Xn: average yield of all genotypes
under normal condition. The high-heat-tolerant (HSI < 0.50), heat-tolerant (HSI: 0.51–0.75),
moderately heat-tolerant (HSI: 0.76–1.00), and heat-susceptible (HSI > 1.00) scores of all
the genotypes were estimated (Fischer and Maurer 1978) using Microsoft Excel. Quantita-
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tive traits underwent ANOVA to assess variations among genotypes, locations, seasons,
and genotype–environment interactions (genotype by location, genotype by season, and
genotype by location by season).

The Annicchiarico method, developed in 1992 [63], relies on the recommendation
index (ωi(g)), which measures both stability and genotypic adaptability.

Multivariate stability and G × E interaction analysis was performed by using genotype
plus genotype by environment (GGE) biplots and AMMI in R Studio (a simplified version
of R). Metan facilitated genotype plus genotype by environment (GGE) biplots, while
metan managed AMMI analysis [64–66], highlighting biplots, and percent of GE interaction
was computed from total sum of squares. Genotype plus genotype by environment (GGE)
biplots and AMMI graphically showcased G × E interaction and genotype ranking based
on mean and stability. Broad-sense heritability was estimated (H2 = VG/VP) for plot yield
using BLUP values across the locations and seasons by dividing genotypic variation to
total variation [67]. When dealing with high-dimensional data in biplot analysis, both
the AMMI and GGE approaches rely on principal component analysis (PCA). However,
as the number of components required to capture a significant portion of the original
variance increases, it can become challenging to visually interpret the results. In such
situations, researchers may need to create multiple biplots to effectively understand the
underlying variability in the original genotype–environment interaction (GEI) data (https:
//power.larc.nasa.gov/data-access-viewer/ (accessed on 10 October 2023)).

5. Conclusions

Unveiling genotype adaptability and stability using multi-environment trials (METs)
of chickpea genotypes provided crucial insights into their adaptability and stability un-
der varying environmental conditions. Notably, the significance of both genotype and
interaction effects was remarkably pronounced (p < 0.001). In particular, the evaluation
of genotypes ILC239(G40), IG6002(G26), IG5862(G7), ILC0(Czech)(G30), and IG5861(G6)
unveiled their remarkable adaptability, with the lowest weighted average absolute scores of
BLUP (WAASB) values (0.77, 0.93, 1.03, 1.10, 1.21) observed when considering four or more
interaction principal component axes (IPCAs). These genotypes demonstrated resilience
across a spectrum of scenarios, as affirmed by the multifaceted statistical results derived
from genotype plus genotype by environment (GGE) and AMMI biplots. Comparatively,
best linear unbiased prediction (BLUP) outperformed any member of the AMMI family in
accuracy. The multi-environment trials (METs) approach unraveled the intricate dynamics
of chickpea genotypes, illuminating their versatility and robustness. This study lays a solid
foundation for informed genotype selection and breeding advancements, aiming towards
bolstered chickpea yields and resilience in the face of varying environmental challenges.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12213691/s1, Figure S1: Plots showing the pictorial repre-
sentation of genotype and overall mean performance of studied traits at each environment under
study; Figure S2: (A) AMMI 2 biplots of PC1, PC2, and PC3; Figure S3: Calculated values of weighted
average of stability (WAASB) and mean performance (Y) (WAASBY); Figure S4: (A) Heatmap of
genotypes × environmental interactions, (B) correlation between stability indices; Figure S5: (A)
Comparative analysis of JG14 (G42) and ILC1932 (G39) across diverse environments (SVP = 3),
(B) genotype plus genotype × environment (GGE) biplot “environment × genotype relationship”
view; Figure S6: (A) Genotype ranking according to performance in a specific environment (E10),
(B) ranking trial environments based on the relative performance of genotypes G1 and G2; Figure
S7: Field pictures of the heat tolerant testing; Figure S8: Graph of monthly average temperature of
chickpea growing season of 2021 to 2023. Table S1: List of selected genotypes used in this study with
their heat susceptibility index values of individual environment; Table S2: Genotype rankings in
respective tested environments; Table S3: Annichiarico environmental index; Table S4: Descriptive
statistics, variance components, and genetic parameters for grain yield of 42 genotypes evaluated
across the year and locations; Table S5: Genotype code and their yield across environments with their
IPCA scores; Table S6: Genotypes mean yield with different stability indices for ranking genotypes

https://power.larc.nasa.gov/data-access-viewer/
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under multi-environmental condition; Table S7: Environmental description of the experimental sites;
Table S8: Mean monthly temperature and precipitation data of all the locations; Table S9: Mean ±
standard deviation of yield traits of individual locations and seasons.
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