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Abstract: Adventitious rooting is a process of postembryonic organogenesis strongly affected by
endogenous and exogenous factors. Although adventitious rooting has been exploited in vegetative
propagation programs for many plant species, it is a bottleneck for vegetative multiplication of
difficult-to-root species, such as many woody species. The purpose of this research was to understand
how N,N′-bis-(2,3-methylenedioxyphenyl)urea could exert its already reported adventitious rooting
adjuvant activity, starting from the widely accepted knowledge that adventitious rooting is a hor-
monally tuned progressive process. Here, by using specific in vitro bioassays, histological analyses,
molecular docking simulations and in vitro enzymatic bioassays, we have demonstrated that this urea
derivative does not interfere with polar auxin transport; it inhibits cytokinin oxidase/dehydrogenase
(CKX); and, possibly, it interacts with the apoplastic portion of the auxin receptor ABP1. As a conse-
quence of this dual binding capacity, the lifespan of endogenous cytokinins could be locally increased
and, at the same time, auxin signaling could be favored. This combination of effects could lead to a
cell fate transition, which, in turn, could result in increased adventitious rooting.

Keywords: ABP1 auxin receptor; adventitious rooting; CKX inhibitor; urea derivative

1. Introduction

Adventitious roots are induced postembryonically from tissues other than those from
which roots usually originate, due to the plasticity of plant cell development. This physio-
logical process is either affected by endogenous factors related to the plant (i.e., genotype,
maturation of the mother plant, nutritional conditions, hormonal balance), or is stimulated
by stressful environmental conditions, such as wounding, flooding, etiolation, and nutrient
deficiency, among others [1–9]. This natural ability allows individual plants with their
own root system to be obtained from explants of stems and/or branches, so it has been
commercially exploited for in vivo and/or in vitro vegetative propagation of ornamental,
horticultural and forest tree species [10,11]. However, not all plant species readily form
adventitious roots. Two main categories have been proposed, those that are easy and those
that are difficult to root [12,13]. Thus, adventitious root formation is currently known as a
bottleneck in the large-scale clonal propagation of many plant species, especially woody
plants [14]. Many studies have been conducted on the basic nature of the process, and
several horticultural practices have been developed to overcome this crucial step. From a
physiological point of view, adventitious root formation is a progressive process that has
been divided into induction (or de-differentiation), initiation (or re-differentiation) and,
finally, expression phases, each with specific hormonal requirements [15–17]. Auxin is
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recognized as a key factor that stimulates and regulates adventitious root formation and
development in competent cuttings of Gymnosperms and Angiosperms [17,18]. Other
hormones, such as ethylene, gibberellic acid, jasmonates, abscisic acid, or cytokinins, are
variously involved in the three successive and interdependent phases of adventitious
rooting, some of them showing stimulating, and others inhibitory, effects [4,19]. It has
been often thought that cytokinins counteract the adventitious-rooting process, but a more
nuanced negative implication should be considered, as their effect differs according to
the rooting stage. In fact, it has been reported that these cell division-promoting factors
may favorthe formation of meristemoid niches, which are sensitive to the auxin stimulus,
thus positively affecting the adventitious rooting process in an auxin/cytokinin crosstalk
perspective [14,15,20].

Wounding or excision seems to be involved in the formation of local auxin maxima at
the level of the wounded zone through basipetal polar auxin transport (PAT), thus creating
the conditions for competent plant cells to respecificate their fate, de-differentiate, and,
subsequently, re-differentiate to form a root meristem through coordinated cell divisions.
As a result, a very common horticultural practice to stimulate adventitious root formation
in the propagation of stem cuttings from difficult-to-root species is the basal application
of exogenous auxin, usually indole-3-butyric acid (IBA) [6,21–25]. However, exogenous
auxin supplementation alone can cause undesirable side-effects, such as the formation
of extensive callus and/or the extrusion of stunted or malformed roots that hardly allow
further successful in vivo acclimatization [14,26]. To reduce these deleterious effects and,
at the same time, to improve adventitious rooting, different chemicals have been combined
with auxin in exogenous supplementation [27–29]. In this regard, and as a continuation
of previous publications [30–36], we report here new data obtained either via different
in vitro bioassays or via computational studies of docking simulations on the adjuvant
activity of N,N′-bis-(2,3-methylenedioxyphenyl)urea (2,3-MDPU, Figure 1) in the formation
of adventitious roots.
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Figure 1. Molecular structure of the urea derivative used in this study.

The investigations carried out are the first attempt to verify if and how 2,3-MDPU
interacts with the complex crosstalk between auxins and cytokinins that naturally regulates
the adventitious-rooting process. To test whether its activity might be due to some type
of interference with auxin efflux, Malus pumila Mill. slices and cuttings were treated with
different combinations of auxin and/or 2,3-MDPU, either simultaneously or after supple-
mentation with N-1-naphthylphthalamic acid (NPA). NPA is a well-known inhibitor of
polar auxin transport, which blocks auxin efflux movement between cells, perturbs plant
development and prevents the formation of the auxin maxima necessary for adventitious
rooting [37–41]. In addition, apple cuttings supplemented initially with NPA, and, sub-
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sequently, with exogenous auxin and/or 2,3-MDPU were histologically analyzed to test
whether the de novo organization of root meristems occurs as extremely localized areas
of cell division due to the presence of 2,3-MDPU in the rooting medium, as previously
reported in a distantly related woody Gymnosperm [32].

To further investigate and highlight the nature of the adjuvant activity of 2,3-MDPU
on adventitious rooting, two approaches were followed.

First, an interaction with auxin receptor systems has been hypothesized. As 2,3-MDPU
has not yet been shown to enter cells, our research has focused on auxin binding protein
1 (ABP1), whose apoplastic fraction favorably binds auxin at the acidic pH of the cell
wall (ABPI localizes even in the endoplasmic reticulum, where the pH is unsuitable for
auxin binding) [42–44]. ABP1 involvement in transcriptional developmental responses is
still under debate [45–47], as it has not been fully demonstrated or refuted, but, since its
discovery, knowledge about ABP1 has considerably improved. In fact, it has been reported
that the secreted apoplastic portion of ABP1 binds auxin on the cell surface, forming a
complex that does not enter the cell but, rather, associates with its specific partner, the
transmembrane kinase 1 (TMK1). This signaling tripartite module (ABP1–auxin–TMK1)
mediates fast auxin responses, as the regulation of the plasma membrane ion fluxes medi-
ating cell elongation and swelling and/or phosphorylation of a huge number of proteins
involved in several cellular processes [48–51]. As it has been also demonstrated that ABP1
is required for auxin-dependent lobe formation of jigsaw-puzzle leaf pavement cells, this
model system was used to investigate a hypothetical involvement of 2,3-MDPU in the
spatial coordination of epidermal cells [52,53]. Subsequently, docking simulations were
performed between 2,3-MDPU and the crystal structure of ABP1 [54] to unravel possible
atomic interactions that could support the biological data.

Second, an interaction with cytokinin oxidase/dehydrogenase (CKX, EC 1.5.99.12),
which irreversibly inactivates adenine-type cytokinins by the cleavage of their N6-side
chains, has been hypothesized. This could be consistent with the inhibition activity of CKX
of Zea mays (ZmCKX1) [55] and Arabidopsis thaliana (AtCKX7) [56] exerted by two urea
derivatives, namely 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and 1,3-di(benzo[d]oxazol-6-
yl)urea (6-BDPU), of which 2,3-MDPU is the lead compound [57]. Therefore, at first, docking
simulations were performed with 2,3-MDPU and the crystal structures of ZmCKX1 and
AtCKX7 to predict an effective binding mode, then, in vitro enzyme inhibition bioassays
were carried out to verify if 2,3-MDPU could inhibit ZmCKX1 as well.

2. Results
2.1. Adventitious Rooting of Apple Slices

No roots were formed when the slices were cultured in the presence of different NPA
concentrations, as expected (Figure 2). When the slices were incubated in the simultaneous
presence of 1 µM IBA plus different NPA concentrations, the number of rooted slices
significantly decreased as the NPA concentration increased (Figure 2). When the slices were
incubated in the simultaneous presence of 1 µM IBA plus 1 µM 2,3-MDPU, the number of
rooted slices was significantly higher than that obtained in the presence of 1 µM IBA alone;
when different NPA concentrations were added in the presence of the previous compounds,
once again the number of rooted slices significantly decreased as the NPA concentration
increased (Figure 2).
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Figure 2. Effect of increasing concentrations of NPA alone or in the simultaneous presence of 1 µM
IBA, or in the simultaneous presence of 1 µM IBA plus 1 µM 2,3-MDPU, on adventitious rooting
of apple stem slices. The mean number of rooted slices was calculated after 14 days of culture.
Means ± SE, different letters indicate significant differences among treatments according to Duncan’s
test (p ≤ 0.01) (n = 150).

2.2. Adventitious Rooting of Apple Cuttings after Basal NPA Treatment

First type. The basal cut surfaces of apple cuttings were incubated into a micropropa-
gation medium supplemented with NPA for 2 days. When cuttings were then transferred
to a hormone-free (HF) medium or into a micropropagation medium supplemented with
2,3-MDPU, adventitious rooting was almost completely absent (NPA-HF-HF and NPA-
2,3MDPU-HF conditions in Figure 3A, percentage of adventitious rooting). By contrast,
when the cuttings were transferred into a micropropagation medium supplemented with
IBA or with IBA plus 2,3-MDPU, adventitious root formation was greatly enhanced, but
without any difference between these two rooting-inducing treatments (NPA-IBA-HF and
NPA-(IBA+2,3MDPU)-HF conditions in Figure 3A, percentage of adventitious rooting).

Second type. The basal cut surfaces of apple cuttings were incubated into a micro-
propagation medium simultaneously supplemented with NPA plus IBA or NPA plus
2,3-MDPU, or NPA plus IBA plus 2,3-MDPU [(NPA+IBA)-HF or (NPA+2,3MDPU)-HF or
(NPA+IBA+2,3MDPU)-HF conditions in Figure 3B, percentage of adventitious rooting].
Adventitious rooting was achieved only when IBA was present in the medium (NPA plus
IBA or NPA plus IBA plus 2,3-MDPU), being slightly higher as to number of roots per
rooted cuttings when even 2,3-MDPU was present in the mixture (Figure 3C, number of
roots/rooted cuttings).
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Figure 3. (A) Effect of the first type of NPA basal treatment on adventitious rooting of apple cuttings,
results are expressed as percentage of rooted cuttings; (B,C) effect of the second type of NPA basal
treatment simultaneously supplemented with IBA or 2,3-MDPU, or IBA plus 2,3-MDPU, results are
expressed as percentage of rooted cuttings in (B), as mean root number per rooted cuttings in (C)
(n = 30).

2.3. Adventitious Rooting of Apple Cuttings after Upside Down NPA Treatment

When the cuttings were incubated upside down with the apex immersed in the
micropropagation medium supplemented with NPA, their subsequent capacity to form
adventitious roots, after transferring them to an HF medium with the correct polarity, was
inhibited. A similar result—no adventitious roots—was obtained when the cuttings were
transferred to a micropropagation medium supplemented with 1 µM 2,3-MDPU, as this
urea derivative is not able to induce adventitious root formation per se. By contrast, when
the cuttings were transferred to a micropropagation medium supplemented either with
1 µM IBA or with 1 µM IBA plus 1 µM 2,3-MDPU, adventitious rooting was achieved in
both the experimental conditions (90% each, NPA-IBA-HF and NPA-(IBA+2,3MDPU)-HF
conditions in Figure 4). Adventitious rooting was enhanced in the presence of the mixture,
i.e., IBA plus 2,3-MDPU, as the root number obtained was significantly higher than that
obtained using IBA alone (Figure 4).
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Figure 4. Effect of NPA apical treatment on adventitious rooting of apple cuttings. The mean
number of roots was calculated after 4 weeks of culture. Means ± SE, column labeled with asterisk is
significantly different according to Student’s t-test (p ≤ 0.01) (n = 20).

2.4. Histology of Apple Cuttings

Apple cuttings after upside down NPA treatment were used for histological analy-
sis (Figure 5). Cross sections of the bases of 10 µM NPA-treated cuttings, subsequently
transferred in the presence of either 1 µM IBA, or 1 µM 2,3-MDPU, or 1 µM IBA plus 1 µM
2,3-MDPU, were analyzed over time. A cross section of an apple cutting consisted of mostly
primary tissue; the cambium was fully developed into a continuous ring, with interrup-
tions only at the primary leaf-axillary bud traces, and an initial ring of xylem and phloem
was developed. Primary phloem fibers were also visualized (Figure 5A). No significant
modifications were observed in untreated cuttings or in cuttings treated with 2,3-MDPU
after 8 days. However, an increased rate of cambial, ray parenchyma or phloem initial
proliferation was induced in cuttings treated with IBA or IBA plus 2,3-MDPU (Figure 5B,C).
Adventitious roots were induced from cambial or phloem initials, and clusters of small
clumps of densely stained cells with meristematic traits were observed in the outer phloem
of these cuttings (Figure 5B–D). The primordia eventually developed into a functional
adventitious root with a vascular connection to the stem base.
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Figure 5. Histological analysis during the adventitious root formation in apple cuttings after upside
down NPA treatment. (A) Cross section of an apple cutting at the excision (time 0). (B) Cross section
of the base of a 10 µM NPA (apical supplementation) plus 1 µM IBA-treated cutting after 8 days.
(C) Cross section of the base of a 10 µM NPA (apical supplementation) plus 1 µM IBA plus 1 µM
2,3-MDPU-treated cutting after 8 days. (D) Detail of a root primordia induced in the base of a 10 µM
NPA (apical supplementation) plus 1 µM IBA plus 1 µM 2,3-MDPU-treated cutting after 8 days.
(A) axillary bud, (C) cambium, (F) phloem fibers, (P) phloem, (RP) root primordia, (X) xylem.

2.5. Analysis of Arabidopsis Pavement Cell Shape

Exogenous supplementation of 1 µM 2,3-MDPU to the germination medium did not
promote an evident morphological modification of the shape of Arabidopsis pavement cells.
In fact, the number of lobes of cotyledon pavement cells belonging to plants grown in
the presence of this urea derivative was similar to that of plants grown under HF culture
conditions. On the other hand, when plants were grown in the presence of exogenously
supplemented auxin (i.e., 1 µM IBA), the number of lobes was significantly higher than that
of plants grown under HF culture conditions. Finally, plants grown in a culture medium
supplemented with 1 µM IBA plus 1 µM 2,3-MDPU showed a significantly higher number
of lobes, not only than that of plants grown under HF culture conditions, but also than that
of plants grown in the presence of 1 µM IBA (Figures 6 and S1, Supplementary Materials,
shows the representative phenotypes obtained via the different treatments).
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2.6. Docking Simulations on ABP1 Receptor

As ABP1 receptor is found in the endoplasmic reticulum and, in smaller quantities,
in the apoplastic region [42–44,58], it could be reasonably more accessible to 2,3-MDPU
binding, therefore it was chosen for our docking simulations.

The ABP1 protein is dimeric in solution as in the crystal [54]. Auxin is quite buried
inside the binding pocket, even if its position in the binding cavity is clearly visible, lined
by the N- and C-terminal extension and the C and J β-strands of the jellyroll barrel.

To check for the presence of aspecific binding sites for 2,3-MDPU on the protein surface,
a blind docking was firstly performed with a coarse mesh grid all around the dimer (see
Section 4 Materials and Methods). The larger clusters of docked structures indicated a site
(and its symmetric one) located at the edge of the monomers interface, while a second site
was found, with a little higher binding energy, in a position close to the entrance of the
auxin-binding site.

Subsequently, fine-tuned docking simulations were made around the two sites, and
two more defined positions were found. The first, at the monomers’ interface, has an
Ei = −6.9 kcal/mol and is located between the N-terminal extension of one protein chain
and the F and G strands of the other chain. However, the aspecific binding of 2,3-MDPU
in this position at the interface is unlikely to interfere with the known auxin pathways of
ingress or egress [59].

The second site is more interesting from this point of view. It is at the auxin-binding
site entrance, where 2,3-MDPU finds a cleft just in front of the auxin molecule (Figure 7A),
with Ei = −6.07. In this position, the 2,3-MDPU forms a H-bond between the oxygen of the
methylenedioxy ring of MDPU and the Gln52 sidechain nitrogen and several hydrophobic
contacts with the protein—in particular, a pi–pi-stacking with Phe149—and with auxin
itself (Figure 7B). Noteworthily, Phe149 belongs to the C-terminal region, whose movement
was reported to be a gate for auxin binding and which was also hypothesized to be involved
in the auxin signaling pathway [59]. On the contrary, in this site 2,3-MDPU does not directly
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interfere with the three protein tunnels that were identified as egress pathways for auxin in
ABP1 (ibid.).
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Figure 7. 2,3-MDPU docked at the surface of ABP1 receptor. The “second” site, at the auxin-binding
site entrance, is shown. (A) The ligand is inserted in a cleft in the protein surface (in red) in front
of the auxin molecule (in cyan and VdW representation). The surface of the C-terminal region of
the monomer is highlighted in pink. Only one monomer is shown for clarity. (B) The same ligand
position in the protein in a cartoon representation (here also the second monomer is shown, in lime),
to highlight the hydrophobic residues around 2,3-MDPU (see Phe149 in stacking) and Gln52 forming
a H-bond (dashed line) with the ligand.

2.7. Docking Simulations on CKX Enzymes

The structure of ZmCKX1 (2QKN) in complex with the competitive inhibitor N-
phenyl-N′-(2-chloro-4-pyridyl)urea (CPPU), was chosen due to the urea-type chemical
structure of the ligand, similar to that of 2,3-MDPU, and previously tested as a reference for
docking simulations [57]. In this complex, the preferred orientation shows the 2-chloro-4-
pyridyl ring of CPPU in stacking with the isoalloxazine ring of the cofactor flavin-adenine
dinucleotide (FAD) [60], while urea backbone nitrogen atoms form hydrogen bonds with
the side chain of Asp169, the residue involved in the catalytic mechanism. Another H-bond
is formed between Glu381 and the nitrogen of the pyridyl ring of CPPU. The calculated
intermolecular interaction energy (Ei) was −8.49 kcal/mol [57].

Both ZmCKX1 and AtCKX7 (2EXR) crystal structures were used to study, via dock-
ing simulations, the possibility of being inhibited by 2,3-MDPU. In both structures, 2,3-
MDPU recovers the position of CPPU, behaving in a very similar way to the two pre-
viously studied urea derivatives, namely 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and
1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU) [57].

In the ZmCKX1 complex, in the largest docked cluster (44.5% of the conformations),
2,3-MDPU shows the double rings of one methylenedioxyphenyl group in stacking with
the FAD isoalloxazine ring (Figure 8), just like CPPU. The H-bond of the urea backbone
nitrogen with Asp169 is maintained and another one between Ser456 and the methylene-
dioxy ring oxygen is formed. The Ei = −7.71 kcal/mol is a little higher than the one of
CPPU (−8.49 kcal/mol) and BDPUs (−8.44 and −8.57 kcal/mol) molecules. Interestingly,
the second largest cluster (38.5% of the conformations), which is not negligible both for
numerosity and intermolecular energy (−7.59 kcal/mol), shows the ligand in a position
near the entrance of the binding site, close to the Glu381 that is reported to be a key residue
for the enzyme specificity towards some kind of cytokinins [61].
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Figure 8. 2,3-MDPU (in lime, with polar atoms colored by type) docked inside the ZmCKX1 binding
site. The representative (best energy) conformation of the largest cluster is shown. The stacking
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highlighted and colored by atom type.

In the AtCKX7 complex, both the best energy and the most numerous docked clusters
(together corresponding to 100% of the conformations) show the ligand in almost identical
positions, with methylenedioxyphenyl rings in stacking with FAD (Figure 9). The only
difference between the two clusters’ conformations is the flipping of the second, not
stacked, double-ring group. Also, in the case of AtCKX7, the H-bond between the urea
backbone nitrogen of 2,3-MDPU and the Asp162 of the protein (corresponding to Asp169
in ZmCKX1) is conserved, and another H-bond is formed between an oxygen atom of the
second methylenedioxy ring and Ser366, that does not correspond to Ser456 of ZmCKX1 but
it is positioned at the opposite side of 2,3-MDPU. Interestingly, the position of 2,3-MDPU
at the entrance of the binding site is not found for Arabidopsis, probably due to a shift in
the sequence that causes the protrusion of the sidechain of Glu367 (analogous to Glu381 of
maize) at the opposite side of the α-helix to which they belong.
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The Ei of 2,3-MDPU in the largest cluster is −8.84 kcal/mol, better than in the Zm-
CKX1 complex.

2.8. In Vitro Inhibition of ZmCKX1

To assess the inhibition of ZmCKX1 by 2,3-MDPU in vitro, we preliminarily evaluated
the dependence of the reaction rate on the concentration of its substrate trans-zeatin (tZ),
yielding a Km of 6.8 ± 1.3 µM (Figure S2A, Supplementary Materials). A tZ concentration
of 75 µM was deemed sufficient to reach the Vmax for subsequent experiments at a fixed
substrate concentration. We then measured the apparent Michaelis–Menten kinetics in the
presence of 5 and 10 µM 2,3-MDPU. The corresponding Lineweaver–Burk plots exhibited
the same intercept on the y-axis, a behavior indicative of competitive inhibition (Figure S2B,
Supplementary Materials). Compound 2,3-MDPU was then assayed as an inhibitor of
ZmCKX1 at concentrations ranging from 0 to 333 µM—and at a fixed tZ concentration
of 75 µM, yielding an IC50 of 19.0 ± 4.3 under our experimental conditions (Figure 10A).
A corresponding Ki of 1.6 µM was estimated by applying the Cheng–Prusoff equation
for competitive inhibition [62]. For comparison, N-phenyl-N′-(1,2,3-thiadiazol-5-yl)urea
(thidiazuron, TDZ), a well-known CKX competitive inhibitor [55,63] was assayed under
the same conditions, yielding an IC50 of 16.9 ± 2.6 µM and a Ki of 1.4 µM (Figure 10B).
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333 µM and (B) TDZ, ranging from 0 to 500 µM. The experimental points (black circles) are the mean
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isotherms. The r2 are 0.90 and 0.96, for 2,3-MDPU and TDZ, respectively. All measurements were
carried out at 30 ◦C.

3. Discussion

Adventitious rooting is a complex post-embryonic developmental process affected by
exogenous or endogenous factors. Either in native plants affected by catastrophic events,
such as flooding or wounding, or in vegetatively propagated plants, adventitious rooting
looks like a stress-induced reprogramming of shoot cell fate in which a new root system
will necessarily arise from tissues other than the primary root. In this scenario, obtaining
a high number of rooted cuttings and/or a high number of adventitious roots per rooted
cutting is the goal towards which experimental efforts should be directed.

Here, based on our previous studies, we have analyzed the relationship between
auxin, cytokinins and N,N′-bis-(2,3-methylenedioxyphenyl)urea (2,3-MDPU) to better
understand the involvement of this synthetic urea derivative in the process of excision-
induced adventitious rooting.

3.1. Interaction with ABP1

For the first time, an interaction between 2,3-MDPU and the auxin receptor ABP1 has
been hypothesized and investigated both from biological and computational perspectives.
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It is well-known that auxin promotes the lobe formation of jigsaw-puzzle leaf pavement
cells and our data are in accordance with this previous information. Furthermore, our
results demonstrate that the number of lobes increases significantly when Arabidopsis plants
are cultured in the presence of IBA plus 2,3-MDPU. Since the association between auxin and
ABP1 is essential for the subsequent signal transduction steps leading to lobe formation, we
propose that 2,3-MDPU might somehow affect the binding between auxin and its receptor.
Docking simulations support this hypothesis, since one of the two aspecific binding sites for
2,3-MDPU on the surface of ABP1 protein that have been found is particularly interesting.
This site is located in a cleft at the auxin-binding site entrance where 2,3-MDPU lies in front
of an auxin molecule already embedded within its own pocket. The presence of 2,3-MDPU
could therefore interfere with auxin–ABP1 binding, possibly enhancing the auxin-driven
developmental processes regulated by this receptor.

3.2. Interaction with CKX Enzymes

The second kind of interaction investigated was that between 2,3-MDPU and the cy-
tokinin oxidase/dehydrogenase enzyme, again with an experimental and a computational
approach. This type of interaction was assumed to result from the chemical structure of 2,3-
MDPU, which resembles that of other urea derivatives that inhibit CKX, and in particular
from the previously demonstrated inhibition of CKX exerted by the 1,3-di(benzo[d]oxazol-
5-yl)urea (5-BDPU) and the 1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU), of which 2,3-MDPU
is the lead compound [57]. The docking simulations performed with the crystal structures
of ZmCKX1 and AtCKX7 predict a binding mode very similar to that of the other urea-type
inhibitors, especially CPPU and BDPUs, keeping the same key interactions and comparable
energies. The in vitro enzymatic bioassay confirmed that 2,3-MDPU is able to inhibit the
ZmCKX1 activity, with an estimated Ki comparable to that of TDZ, a potent CKX inhibitor.

Through the biological analyses and the docking simulations performed on both the
auxin receptor ABP1 and the cytokinin oxidase enzyme, CKX, we can speculate on the
nature of the interaction that can be established between auxin, 2,3-MDPU and cytokinin
that could underlie the enhancement of adventitious rooting.

3.3. Adventitious Rooting of Apple Slices

This bioassay has been developed to obtain a rapid and reproducible rooting response
highly dependent on the medium composition. Concerning hormonal endogenous content,
slices are considered as empty explants due to their small thickness (HF-cultured slices
do not change their shape and/or morphology during the culture period, rather they turn
brown). The experimental system reflects the correct apical–basal orientation of the cuttings,
with the medium components flowing down from the apical to the basal side of the slices,
as the apical side adheres to the medium surface and the dishes are incubated upside
down. In this experimental condition, the supplementation of IBA to the culture medium
makes it resemble the apex, and adventitious roots arise from the basal side of the slices
(Figure 2). In the simultaneous presence of IBA plus 2,3-MDPU, the number of rooted slices
is significantly higher (Figure 2). This enhancement has been already reported as a direct
consequence of the simultaneous presence of auxin (IBA) and 2,3-MDPU in the rooting
medium [64], but now we demonstrate that auxin availability at a cellular level is essential
for adventitious roots to emerge from the slices. Indeed, when increasing concentrations of
NPA are added to the culture medium in the simultaneous presence of IBA alone, polar
auxin transport is blocked and, consequently, the number of rooted slices is significantly
reduced, as expected. Since such a reduction occurs even when increasing concentrations of
NPA are added to the culture medium in the simultaneous presence of IBA plus 2,3-MDPU,
it can be assumed that 2,3-MDPU neither counteracts nor reverses the blocking of polar
auxin transport exerted by NPA. In fact, the rooting-enhancing effect usually exerted by
2,3-MDPU is less noticeable (Figure 2). Therefore, we can also infer that a threshold auxin
concentration is required in the simultaneous presence of 2,3-MDPU for an enhancement
in adventitious rooting to occur.
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Indeed, here we report that 2,3-MDPU binds either to the surface of the auxin receptor
ABP1, at the entrance of the auxin-binding site, thus interfering with its release by reducing
the flexibility of the C-terminal tail, and, possibly, favoring the association with TMK1; or
to CKX, blocking its activity of irreversible inactivation of adenine-type cytokinins. Under
these experimental conditions, in which stem slices can be considered as empty explants,
it is reasonable to consider that the improvement in the number of rooted slices depends
more on the binding of 2,3-MDPU to the auxin receptor ABP1 than on the inhibitory activity
of CKX. While the latter is theoretically possible, cytokinins are not present in the culture
medium and their endogenous content in stem slices can be reasonably considered close
to zero.

3.4. Adventitious Rooting of Apple Cuttings

This bioassay was frequently performed, either to verify the rooting capacity of
the cuttings, or to analyze the effectiveness of different compounds on the adventitious
rooting process. In the latter case, NPA was added to the base of the cuttings before
or simultaneously with the adventitious-rooting treatments, as described in Section 4
Materials and Methods. This synthetic inhibitor of polar auxin transport (PAT) not only
binds to members of ATP-binding cassette B (ABCB)-type transporters, such as ABCB1
and ABCB19, but even to PIN-formed (PIN) family members, thus blocking auxin efflux
movement as recently demonstrated [40,41]. In both cases of basal NPA supplementation,
the natural downward auxin flow from the apex is not blocked or even disturbed, but it can
be hypothesized that the movement of endogenous auxin efflux from the cells of the basal
zone of the cuttings, approximately 1 cm subjected to NPA exposure, is blocked, auxin
redistribution fails, and, consequently, adventitious rooting is inhibited. In fact, reversal
of this inhibition by NPA is only achieved when cuttings are exogenously supplemented
with IBA or IBA plus 2,3-MDPU, as expected. In the latter culture condition, the enhancing
effect of 2,3-MDPU in the presence of exogenous IBA is at least partially lost (Figure 3A–C).
We can tentatively explain this result by assuming a locally exerted disruptive effect of
NPA that (i) blocks the ABCB19 transporter that has been shown to be responsible for
the formation of local auxin maxima necessary for adventitious root formation [65], or
(ii) might mimic the effect of cytokinin [66]. These effects are in addition to the inhibition of
cytokinin dehydrogenase/oxygenase activity by 2,3-MDPU, as indicated by both docking
simulations and inhibition of ZmCKX1, so that the local auxin/cytokinin crosstalk is
probably highly unbalanced in favor of endogenous cytokinins. Furthermore, the low
local auxin concentration and/or redistribution makes the possible interaction between
2,3-MDPU and the apoplastic portion of the auxin receptor ABP1 irrelevant to the responses
to auxin that ABP1 naturally mediates [43].

On the contrary, with apical NPA supplementation, PAT is completely blocked; thus,
endogenous auxin cannot reach the basal cutting surface and adventitious rooting is inhib-
ited. But, since the basal cells of the cuttings are not affected by apical supplementation of
NPA (which probably does not move away from the supplementation zone and accumu-
lates there), they are sensitive to exogenously applied auxin stimulation. Indeed, exogenous
auxin supplementation results in adventitious root formation, which is significantly en-
hanced when IBA plus 2,3-MDPU are applied simultaneously (Figure 4). Under these
experimental conditions, the inhibitory activity exerted by 2,3-MDPU on CKX prevents the
inactivation of natural adenine-type cytokinins, and consequently, increases the lifespan
of cytokinins in plants. Furthermore, the possible interaction between 2,3-MDPU and the
apoplastic portion of the auxin receptor ABP1 could modify the auxin-driven responses
that ABP1 mediates naturally [43], which could be related to other developmental processes
in general, and to adventitious root formation in particular. Thus, cytokinins could locally
induce a high amount of cell division of naturally auxin-sensitive cells, leading to the
formation of an equally high number of root primordia. The histological analyses confirm
that this process really occurs. In this study, a high rate of cambial, ray parenchyma or
phloem initial proliferation was induced and clusters of small clumps of densely stained
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cells with meristematic traits were observed in the outer phloem of the cuttings (Figure 5).
These extremely localized clusters of cell divisions resemble those already seen in Gym-
nosperm hypocotyls when supplemented with IBA plus 2,3-MDPU [32]. Subsequently,
root primordia are formed, from which functional adventitious roots develop, according
to the typical multiphase progressive process. Interestingly, this situation resembles that
recently reported about de novo root formation using Arabidopsis whole leaves. In fact,
in those model explants, it has been recognized a sequence of four developmental stages:
an endogenous micro-callus formation due to intensive cell proliferation, a specification
of some of these cells towards the formation of adventitious root founder cells, then root
primordia formation and, lastly, adventitious root formation and emergence. These de-
velopmental stages are under auxin/cytokinin crosstalk control, as specific auxin- and
cytokinin-signaling factors are required for the unfolding of the individual stages [67].
Therefore, it is likely that 2,3-MDPU interferes with the auxin/cytokinin crosstalk, favor-
ing the modulation of an adventitious rooting process, i.e., an auxin-triggered de novo
organogenesis [66].

In conclusion, here we shed light on the mechanism related to the peculiar adventitious
rooting adjuvant capacity of 2,3-MDPU. While this urea derivative is unable to reverse PAT
inhibition caused by NPA, it has a very interesting dual activity. Indeed, it binds to the
ABP1 receptor, promoting auxin signal transduction at the cellular level, and it also inhibits
CKX activity, increasing the cytokinin lifespan in plants. These two interactions, which
may or may not occur simultaneously, may overlap the auxin/cytokinin crosstalk and,
probably, explain the adventitious rooting adjuvant activity exerted by 2,3-MDPU under
specific experimental conditions. Additional experiments are necessary to elucidate the
possible involvement of 2,3-MDPU either in other auxin-driven processes through the ABP1
receptor, like auxin canalization in vasculature formation, or in important cytokinin-driven
effects as leaf senescence delay and stress resistance.

4. Materials and Methods
4.1. Chemicals

The N,N′-bis-(2,3-methylenedioxyphenyl)urea (2,3-MDPU), synthesized as previously
reported [30], was of analytical grade. The 2,3-MDPU and the naphthylphthalamic acid
(NPA) were dissolved in dimethylsulfoxide (DMSO) and the final concentration of DMSO
in the medium did not exceed the one considered toxic (0.2%) [68]. The aqueous solutions
of benzylaminopurine (BAP) and indole-3-butyric acid (IBA) were sterilized by filtration
using 0.2-µm pore-size sterile disposable filter units (Schleicher and Schuell).

4.2. Plant Material and In Vitro Culture Conditions for Apple

In vitro shoot cultures of Malus pumila Mill. rootstock M26 were maintained as
previously described [30] with minor modifications. The cuttings, deprived of apices,
were propagated in tubes on a micropropagation (MP) medium (MS salts, [69], plus
0.4 mg/L thiamine HCl, 0.5 mg/L nicotinic acid, 0.5 mg/L pyridoxine HCl, 100 mg/L
myo-inositol, 10 g/L sucrose, 20 g/L sorbitol, 0.65% Phyto Agar (Duchefa), 5.8 pH).
The MP medium was supplemented with 1.3 µM benzylaminopurine (BAP) and 0.25 µM
indole-3-butyric acid (IBA). After a 6-week incubation stage at 23± 1 ◦C, at a light intensity
of 27 µmol m−2 s−1 under 16 h photoperiod (standard conditions from now on), clusters
consisting of 4–6 shoots were formed by axillary branching. The newly formed individual
shoots (1.5–2 cm in length, on average) were used either for further micropropagation of
for adventitious-rooting experiments.

Rooting experiments included apple slices and cuttings; the variables investigated
included the concentrations and combination of NPA, IBA and 2,3-MDPU, as well as the
timing and polarity of the application of these substances.
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4.3. Adventitious Rooting of Apple Slices

Leaves were removed from the M26 shoots and 1 mm thick stem slices were cut using
a razor blade [70]. Adjacent slices from the same shoot were distributed over different
rooting treatments, to prevent any weak rooting-capacity correlation [71].

- Groups of 25 slices were cultured in Petri dishes with the apical side on a nylon mesh
put on an MP medium supplemented with 0.01, 0.1, 1 or 10 µM NPA and with 1 µM
IBA as control.

- Groups of 25 slices were cultured in the simultaneous presence of 0.01, 0.1, 1 or 10 µM
NPA plus 1 µM IBA, while 1 µM IBA alone was used as control.

- Groups of 25 slices were cultured in the simultaneous presence of 0.01, 0.1, 1 or 10 µM
NPA plus 1 µM IBA plus 1 µM 2,3-MDPU, while 1 µM IBA plus 1 µM 2,3-MDPU was
used as control.

All the plates were incubated upside down in the darkness at 23 ± 1 ◦C for 6 days.
Then, the nylon mesh, with the slices attached, was transferred intact to a hormone-free
(HF) MP medium and the plates were incubated upside down at standard conditions.

All the experiments were performed in triplicate, repeated twice with similar results
and the mean number of rooted slices was calculated after 14 days.

4.4. Adventitious Rooting of Apple Cuttings after Basal NPA Treatment

First type. Apple cuttings were incubated with the correct apex–base polarity and
their basal portion (approximately 1 cm) was immersed in an MP medium supplemented
with 10 µM NPA for 2 days at standard conditions. Then the cuttings were transferred into
MP medium in the presence of 1 µM IBA, 1 µM 2,3-MDPU, 1 µM IBA plus 1 µM 2,3-MDPU
or in hormone-free (HF) medium as a control condition and incubated at 23 ± 1 ◦C in the
darkness. Again, after 6 days, the cuttings were transferred into MP medium without any
further supplementation (HF) and incubated in standard conditions. After 4 weeks from
the beginning of the experiment, the number of rooted cuttings were counted. The results
are expressed as a percentage of rooted cuttings (i.e., the number of cuttings with emerged
adventitious roots on the total microcuttings per treatment). The experiment was repeated
three times and 10 cuttings were used in each treatment.

Second type. Apple cuttings were incubated with the correct apex–base polarity and
their basal portion (approximately 1 cm) was immersed in an MP medium supplemented
with 10 µM NPA plus 1 µM IBA, or 10 µM NPA plus 1 µM 2,3-MDPU or 10 µM NPA plus
1 µM IBA plus 1 µM 2,3-MDPU in the darkness at 23 ± 1 ◦C. After 6 days, the cuttings
were transferred to MP medium without any further supplementation (HF) in standard
conditions. After 4 weeks from the beginning of the experiment, the number of rooted
cuttings and the number of roots per rooted cutting were counted. The results are expressed
as a percentage of rooted cuttings (i.e., number of cuttings with emerged adventitious roots
on the total microcuttings per treatment) and as the number of roots/rooted cuttings. The
experiment was repeated two times with similar results and 10 cuttings were used in
each treatment.

4.5. Adventitious Rooting of Apple Cuttings after Upside Down NPA Treatment

Forty apple cuttings were incubated upside down with the apex completely immersed
in MP medium supplemented with 10 µM NPA for 2 days at standard conditions. Then the
cuttings were transferred with the correct polarity in MP medium in the presence of 1 µM
IBA, 1 µM 2,3-MDPU, 1 µM IBA plus 1 µM 2,3-MDPU or in hormone-free (HF) media as
a control condition and incubated at 23 ± 1 ◦C in the darkness. Again, after 6 days, the
cuttings were transferred to MP medium without any further supplementation (HF) in
standard conditions. After 4 weeks from the beginning of the experiment, the number of
rooted cuttings and the number of roots per rooted cutting were counted. The experiment
was repeated twice, with similar results.
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4.6. Histology of Apple Cuttings

For histological analysis of adventitious root formation under upside down NPA
treatment, basal 5 mm segments of cuttings were fixed in formalin-acetic acid-alcohol
(FAA), dehydrated in a tertiary butyl alcohol series, gradually embedded in paraffin,
transversely sectioned at 10 µm thickness with a rotary microtome (AutoCut Microtome
2040, Reichert–Jung, Schönwalde-Glien, Germany) and stained with safranin fast green [72].
Apple cuttings were randomly sampled at the beginning of the rooting experiment (day 0),
after 4 and 8 days for each treatment. The histological images were taken in digital form
with a Leica digital camera (DMC 2900, Leica Microsystems, Wetzlar, Germany) connected
to a Leica DM4000B microscope (Leica Microsystems, Wetzlar, Germany).

4.7. Analysis of Arabidopsis Pavement Cell Shape

Arabidopsis thaliana ecotype Columbia (Col-0) seeds were surface-sterilized in 70%
ethanol for 1 min, followed by 10 min in 50% commercial bleach (equivalent to 2.5% NaOCl),
then washed five times in sterile distilled water. They were sown on a germination medium
(1/4 strength MS salts [68] plus 1% (w/v) sucrose, 0.8% (w/v) Phytoagar (Duchefa), 5.8 pH)
supplemented with 1 µM IBA or 1 µM 2,3-MDPU or 1 µM IBA plus 1 µM 2,3-MDPU. After
a cold treatment at 4 ◦C for 3 days in the darkness, the plates, containing 25 seeds each, were
incubated in a growth chamber at 23 ± 1 ◦C at a light intensity of 27 µmol m−2 s−1 under
a 16 h photoperiod. Control conditions were performed by seeds grown in hormone-free
(HF) germination medium. Seven days after sowing (DAS), the effects of the different
supplementations on cotyledon pavement cell shape were evaluated by confocal laser
scanning microscopy, as previously described [53], with minor modifications. Arabidopsis
cotyledons were mounted in water. Slides were observed with the CLSM system Stellaris
5 (Leica Microsystems, Wetzlar, Germany) using a HC PL APO CS2 63× oil immersion
objective (NA 1.4). The acquisition of the autofluorescent signal was carried out, adopting
a configuration protocol that required excitation to 405 nm LL (UV laser line) and a spectral
detection range of 444–522 nm for cell-shape visualization. The degree of interdigitation
in pavement cells was determined by counting the number of lobes of 6 cells, repeating
the count for 5 different images collected from cotyledons belonging to different plants
(n = 30), using ImageJ 1.52h software. The same evaluating procedure was performed for
plants grown in the different culture conditions. The experiments were repeated twice,
with similar results.

4.8. Inhibition Assays of ZmCKX1

ZmCKX1 expression and purification were reported elsewhere [73] and the enzyme
assays were carried out as reported before [74,75], with minor modifications. Briefly, the
assay mixture contained 1 mM ethylenediaminetetraacetic acid (EDTA), 75 µM dichlorophe-
nolindophenol (DCPIP), 3.3% dimethyl sulfoxide (DMSO) and 4 nM ZmCKX1 in a 100 mM
sodium phosphate buffer at pH 7.0. The reaction was started by adding the ZmCKX1
substrate tZ from a 180 mM stock solution in DMSO. The decrease in absorbance at 600 nm
associated with the reduction of DCPIP was followed with a Cary 4000 UV-vis spec-
trophotometer (Agilent technologies, Santa Clara, CA, USA). For the determination of the
Michaelis–Menten kinetics, the enzyme was assayed at concentrations of tZ ranging from
5 to 100 µM, either in the absence or presence of 2,3-MDPU at 5 or 10 µM concentration.
To evaluate the 2,3-MDPU binding parameters, the inhibitor was pre-incubated at concen-
trations ranging from 5 µM to 333 µM with ZmCKX1 for 10 min before the addition of
75 µM tZ to the assay mixture. As a positive control, the ZmCKX1 competitive inhibitor
thidiazuron (TDZ) was tested under the same experimental conditions in the 5–500 µM
concentration range. The TDZ stock solution was at 180 mM concentration in DMSO. The
assays were carried out at 30 ◦C. The IC50s were calculated by fitting the experimental
points with a hyperbolic equation. The Kis were assessed from the IC50s by applying the
Cheng–Prusoff equation for competitive inhibition [62], considering an experimentally
determined Km for tZ of 6.8 µM, close to the value of 14 µM reported in the literature [76].
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All plots and data analysis were performed using the section OriginPro, Version 2023
(OriginLab Corporation, Northampton, MA, USA).

4.9. Molecular Docking Simulations

The docking simulations were performed with the Autodock 4.2 software package,
after preparing the input files with the aid of the AutoDockTools 1.5.7 (ADT) interface [77].
The Lamarckian Genetic Algorithm [78] was used for all docking calculations.

A conformational cluster analysis was performed on the docked conformations [78]
with a rmsd cluster threshold of 2 Å, and structural analysis of the binding modes was
made using ADT 1.5.7, VMD 1.5.3 [79] and Swiss-PdbViewer 4.1.0 [80] softwares.

4.9.1. ABP1 Receptor

The only crystal structure of an ABP1 receptor available in the Protein Data Bank [81]
was the one from Zea mays, sharing a 63% sequence identity with Arabidopsis thaliana
(the model plant used in the pavement cell-shape bioassay), and reaching 88% if we also
consider conservative residues. Even if the structure of Arabidopsis thaliana is available as an
AlphaFold prediction, for a docking simulation—in particular a blind docking—the use of a
crystal structure is recommendable. Therefore, the ABP1 dimeric structure, complexed with
auxin and zinc and containing a glycosylated amino acid (Asn95), was chosen for docking
simulations (PDB ID: 1LRH [54]). The A–D chains were extracted from the crystal, keeping
the auxin molecules, the zinc atoms and the glycosylated residues, and deleting only water
molecules. By means of ADT 1.5.7 software [77], the atom types of non-protein molecules
were checked and Gasteiger partial charges were assigned [82]. Histidine residues were
kept in the neutral form.

To find aspecific binding sites on the protein surface, a blind docking with a coarse
mesh grid 0.653 Å spaced was performed. The grid box was 104 × 82 × 94 points
large, comprehending the whole dimer surface. 1000 runs were performed, each with
25 × 106 energy evaluations, 250 individuals in the initial population, and 27,000 gener-
ations. The cluster analysis allowed the study to identify the two most favored binding
regions on the surface: one at the dimer interface, the other one close to the auxin-binding
site entrance (see the Section 2 for details). Both sites were selected for a deeper analysis,
performed around the two identified regions new docking simulations with a finer mashed
grid (0.375 Å) and smaller boxes (74 × 56 × 74 points for the site at the interface and
54 × 64 × 66 points for the site close to the auxin entrance path). Again, 1000 runs were
performed for each box, with 5 × 106 energy evaluations, 200 individuals in the initial
population, and 27,000 generations.

4.9.2. CKX Enzymes

For docking simulations with cytokinin oxidase/dehydrogenase enzymes, both Zea
mays (ZmCKX1) and Arabidopsis thaliana (AtCKX7) crystal structures (PDB ID: 2QKN [55]
and 2EXR [56], respectively) were selected and prepared as reported in our previous
work [57]. The same grid parameters were also set following that previous research.

4.9.3. MDPU Ligand

The structure of 2,3-MDPU for docking simulations was built by means of a PRODRG
server [83] and minimized by Avogadro 1.2.0 Software [84] with the MMFF94 force field [85].
Gasteiger partial atomic charges were used for docking [82]. Only the two torsions around
the bonds between the N atoms and the aromatic substituents were kept free to rotate.

4.10. Statistical Analyses
4.10.1. Adventitious Rooting of Apple Slices

Analyses of variance (ANOVA) was performed and the significantly different values
among the mean number of rooted slices were identified via a post hoc Duncan’s test
(p ≤ 0.01), using the statistical software package IBM SPSS 26 (Figure 2).
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4.10.2. Adventitious Rooting of Apple Cuttings after Upside Down NPA Treatment

The mean number of roots per rooted cuttings was calculated and the significant
difference was determined using Student’s t-test (p ≤ 0.01) (Figure 4).

4.10.3. Analysis of Arabidopsis Pavement Cell Shape

Analyses of variance (ANOVA) was performed and the significantly different values
among the mean number of lobes were identified by a post hoc Duncan’s test (p ≤ 0.05),
using the statistical software package IBM SPSS 26 (Figure 6).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12203610/s1. Figure S1: Representative phenotypes of
Arabidopsis pavement cells obtained under different treatments: (A) hormone free (HF) as control
condition; (B) 1 µM 2,3-MDPU; (C) 1 µM IBA; (D) 1 µM IBA plus 1µM 2,3-MDPU. The pictures were
taken 7 days after sowing by confocal laser scanning microscopy; Figure S2: (A) Dependence of the
reaction rate of ZmCKX1 on trans-zeatin (tZ) concentration in the 0–100 µM range. The fitting of
the data points (n = 3 at each concentration) to the Michaelis–Menten equation (solid line) yielded a
Km of 6.8 µM. (B) Lineweaver–Burk plots of the kinetics measured in the absence and presence of
2,3-MDPU at 5 and 10 µM concentration.
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