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Abstract: Multiple abiotic stresses negatively impact wheat production all over the world. We need to
increase productivity by 60% to provide food security to the world population of 9.6 billion by 2050; it
is surely time to develop stress-tolerant genotypes with a thorough comprehension of the genetic basis
and the plant’s capacity to tolerate these stresses and complex environmental reactions. To approach
these goals, we used multivariate analysis techniques, the additive main effects and multiplicative
interaction (AMMI) model for prediction, linear discriminant analysis (LDA) to enhance the reliability
of the classification, multi-trait genotype-ideotype distance index (MGIDI) to detect the ideotype, and
the weighted average of absolute scores (WAASB) index to recognize genotypes with stability that
are highly productive. Six tolerance multi-indices were used to test twenty wheat genotypes grown
under multiple abiotic stresses. The AMMI model showed varying differences with performance
indices, which disagreed with the trait and genotype differences used. The G01, G12, G16, and
G02 were selected as the appropriate and stable genotypes using the MGIDI with the six tolerance
multi-indices. The biplot features the genotypes (G01, G03, G11, G16, G17, G18, and G20) that were
most stable and had high tolerance across the environments. The pooled analyses (LDA, MGIDI, and
WAASB) showed genotype G01 as the most stable candidate. The genotype (G01) is considered a
novel genetic resource for improving productivity and stabilizing wheat programs under multiple
abiotic stresses. Hence, these techniques, if used in an integrated manner, strongly support the plant
breeders in multi-environment trials.

Keywords: genetic stability; heatmap; ideotype; multiple abiotic stresses; MGIDI; WAASB index

1. Introduction

Wheat is a main staple food crop cultivated all over the world covering more than
220 million hectares and satisfying about 20% of daily diet protein necessities [1]. Despite
increased wheat areas planted, we still need to increase productivity by 60% to feed the
projected population of 9.6 billion globally by 2050 under the adverse effects of climate
change [1,2]. Heat and drought are the major abiotic stresses detrimental to plant de-
velopment of wheat at various stages of growth, leading to major damage and loss of
productivity and quality due to a considerable decline in the activities of antioxidant en-
zymes and photosynthesis [3–5]. Plants adapt various tolerance mechanisms and practices
that are complementary to each other at the morpho-physio-biochemical and molecular
levels in response to abiotic stresses [1,3,6]. Abiotic stresses also promote the production of
reactive oxygen species (ROS) that damage various cellular functions such as chlorophyll
degradation and lipid peroxidation [7]. A common stress response involves enzymes for
the scavenging of ROS (which are main factors in assessing stress tolerance level in plants)
including superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase [1,7–9].
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Thus, improving yield is a major challenge in confronting food insecurity under the ad-
verse effects of climate change, the limited resources available, and the steady increase
in the population. Efforts are therefore made to strengthen wheat genotypes through
breeding programs targeting agronomic trials to stressed environments and/or simulating
them to have more capacity to be adaptable to abiotic stresses and possess high-yielding
characteristics [2,10–12].

The agronomic trials’ purpose was to examine the impact of factor level/s on plant
characteristics to describe, understand, and analyze natural processes under
study [13–15]. Toward the end of the trial, the scholars often have more columns (one
for each trait), which need analysis to come up with and make inferences on the factor
(rows) performance. The analysis of data firstly involves ANOVA (analysis of variance)
for each studied attribute aiming at hypothesis testing the effects of the factor/s and sec-
ondly identifying which factor is significantly different from which other [16–18]. The
main objective was to determine the superior factor (this is good for one trait), but it was
incredibly difficult to rank the factors according to their performance with multiple traits.
Scholars with expertise often take into consideration a combination of plant traits that an
“ideal” factor (be it treatments and/or cultivars) should provide. For wheat, for example,
plant breeders search for cultivars that have early precocity, a high rate of production, and
are adapted to changed environments and stress types [19,20]. Breeding improvement
strategies for genotypes rely upon an integrative approach across different morpho-physio-
biochemical (at the level of leaves and/or the entire plant) traits [21–24], aimed at providing
regular and timely science-based information to support plant scholars in pinpointing the
adaptive behavior of plants, especially with environmental stress. So, the combination
of most authoritative traits and high-powered computer modeling of multidimensional
data is required to gain a deeper understanding of the complicated mechanisms of the
relationships between traits [21,25–27]. For that purpose, it is strongly suggested to use
multivariate techniques to take into consideration the type of correlation between traits.
Multivariate techniques such as the coefficients of stepwise multiple linear regression
(SMLR) analysis, cluster analysis (CA), principal component analysis (PCA), and LDA have
been extensively used in plant trials. Despite SMLR and CA’s importance, one weakness
is the collinearity often observed across a range of assessed traits leading to unfavorable
results or bias if not handled correctly [15,28,29]. PCA and LDA have been thoroughly used
for dimensionality minimization and visual convergence of a two-way table combining
treatments and traits [30,31]. Even though all of the above analyses can provide a holistic
view of the relationships between traits, treatments’ classification depending on the trait
data continues to be a challenge. Hence, novel multivariate techniques are urgently needed
to figure out the best ranking of the treatments depending on the multi-trait stability index
(MTSI). Olivoto and Nardino [20] proposed the MGIDI, which was designed to select
superior genotypes depending on multiple traits and has been successfully used by plant
breeders [20,29,32–34]. It can distinguish the strengths and weaknesses of the selected su-
perior genotypes depending on multiple traits [20,34]. Therefore, it is a very powerful tool
to select the donors’ parents in future hybridization programs to obtain new recombination
by integrating all traits into an ideotype. Using the MGIDI in studies evaluating stability
can lead to avoiding unnecessary accounts and better strategic decisions, which facilitates
making recommendations for excellent cultivars [15,20,29].

Due to variations in the environmental conditions, the genotype performance may
vary from strength to weakness and vice versa. This indicates a genotype × environ-
ment interplay (GEI) of the crossover type, which means that we need special strate-
gies for improving crops [12,29,35,36]. The genotypes should have stable yield rates
through various seasons and abiotic stresses until they are considered satisfactory by
farmers [12,37,38]. The GEI impact is critical for plant breeders because of its negative ef-
fects (phenotypic value differs from genotypic value), which adversely impact the selection
of adequate genotypes for the environment/s (variety for each region/s) [12,39]. Hence,
the use of stability and adaptability analyses is great for selecting preferred genotypes
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(ideotypes) in multi-environment/multiplicative trials with the AMMI model [12,40,41].
This model combines PCA and ANOVA in a single analysis [12,21,34,42]. The AMMI
model has been used extensively in multi-site trial (MST) analysis as it gives a more
precise estimate of the GEI with appealing biplot tools [38]. However, it is inefficient when
analyzing the structure of the linear mixed-effect model (LMM). For this reason, Olivoto
et al. [35] suggested a novel model called the WAASB. The WAASB results from the singular
value decomposition of the BLUP (best linear unbiased prediction) matrix for GEI effects
generated by an LMM to describe ideal genotypes that bring together stability and high
performance [35]. This model joins the distinct attributes of the AMMI and BLUP models
into a unique model, which helps plant scholars choose the best genotypes (stable and
high performance) in many crops [14,34,43,44]. The BLUP improves the accuracy of the
prediction and gives credible estimates of random effects [35,45,46]; even though these two
are statistically different, they possess the ability to differentiate the GEI pattern from the
random error. The WAASB biplot quantifies the superior genotypes (stable and highly
productive) with a two-dimensional plot, which takes into account all of the interplay
principal component axes (IPCAs) of the model for GEI effects [14,29,34], so the WAASB
gives more reliable results. There are many multivariate analysis techniques such as SMLR,
CA, LDA, factor analysis (FA), MGIDI, AMMI, WAASB, and biplots that are actively in-
volved in the effective and reliable detection of wheat ideotypes under multiple abiotic
stresses and complex interplays [12,20,26,32,35]. The absolute values of evaluated traits do
not express the tolerance performance of the genotype under stress conditions. Thus, the
use of tolerance indices can give more precise and reliable estimates of these outcomes [29].
Compared with our earlier study, herein we aimed to (i) assess six tolerance multi-indices
(drought and heat) to 20 wheat genotypes during three cropping seasons and the effects of
the GEI; (ii) to check the validity of categories and the prediction of new cases that have not
been assigned categories; and (iii) identify ideotype(s) for the best performing genotypes
and stability by MGIDI and WAASB techniques via the six tolerance multi-indices.

2. Materials and Methods
2.1. Trial Description and Traits Measurement

We evaluated 20 wheat genotypes—14 doubled haploid lines (DHLs) and 6 varieties
(Tables S1 and S2)—for three winter seasons that were planted under three varying en-
vironmental conditions (optimal conditions, drought stress, and heat stress) with a total
of nine trials. The nine trials were designed in randomized complete blocks [47] with
three replicates. The type of soil, plot area, seedling rate, fertilization rate, weather con-
ditions (Table S3), treatments, planting dates, and seasons were described in detail in
previous studies [12,29]. Five random samples and/or plants (chosen from middle rows
to overcome the environment effects) for each genotype/replicate were taken for twelve
physio-morphological traits (photosynthesis rate (Pn), transpiration rate (E), stomatal con-
ductance (Gs) canopy temperature (CT), leaf water content (LWC), relative water content
(RWC), flag leaf area (FLA), leaf area index (LAI), green leaves area (GLA), polyphenol
oxidase (PPO), catalase (CAT), and peroxidase (POD)) and three agronomic traits (plant
height (PH), number of kernels (NKS), thousand kernel weight (TKW)), as described in
detail in previous studies [12,26]. Five more traits—days to heading (DH) when flowering
50% of plants; days to maturity (DM) when yellowing of peduncles occurs for 50% of
plants; grain-filling duration (GFD), the period between DM and DH; number of spikes
(NS) in one square meter; and grain yield (GY)—were evaluated from three lines with a
length of two meters.

2.2. Stress Tolerance Indices

Based on the data from the foregoing traits, the drought (DTI) and heat (THI) stress
tolerance indices of each of the above traits were calculated to obtain six environmental
indices (E) in Table 1.
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Table 1. Environment code and equation of the tolerance indices.

Environment Code Equation of the Index

E1 DTIij = xij−under drought stress condition in season 2018/19
xij−under optimum condition in season 2018/19

E2 HTIij = xij−under heat stress condition in season 2018/19
xij−under optimum condition in season 2018/19

E3 DTIij = xij−under drought stress condition in season 2019/20
xij−under optimum condition in season 2019/20

E4 HTIij = xij−under heat stress condition in season 2019/20
xij−under optimum condition in season 2019/20

E5 DTIij = xij−under drought stress condition in season 2020/21
xij−under optimum condition in season 2020/21

E6 HTIij = xij−under heat stress condition in season 2020/21
xij−under optimum condition in season 2020/21

DTIij and HTIij are the drought and heat tolerance indices’ values (j) for genotype (i), respectively.

2.3. Statistical Analysis of Evaluated Data
2.3.1. ANOVA and Plotting Performance

The data were checked by the normality test to ensure the data quality, that the data
were free from outliers, and that the data followed a normal distribution as explained by the
Shapiro–Wilk test [48]. Bartlett’s test [49] exhibited the homogeneity of the six environments;
so, we used joint ANOVA (a set of season and abiotic stress) for 20 traits which were
studied and analyzed supposing that genotypes were fixed factors and replications and
environments were random factors. According to a formula, the general linear mixed-
model ANOVA is as follows:

Yijk = µ+ Gi + Ej + Rk(j) + GEij + αijk

where Yijk is the 20 genotypes’ phenotypic value i for the studied trait in the environment j
and block k, µ is the overall mean, Gi is the impact of the 20 genotypes, Ej is the impact of
the six environments, Rk(j) is the impact of three replications, GEij is the interaction impact
of 20 genotypes with six environments, and α is the residual error supposing that values
are normally distributed and independent, with a mean of 0 and a variance of σ2 [35].
Genetic parameters were calculated from the expected mean of squares in ANOVA. The
means resulting from the analysis were used for plotting performance. The AMMI function
was used to predict the response variable of a two-way table based on the number of
multiplicative terms, which regression plots with predicted value lines using singular value
decomposition of the matrix of best linear unbiased predictions (BLUPs) were generated by
a linear mixed model [35].

2.3.2. Stepwise Regression, Cluster, and Discriminant Analyses

The predictive relationships were analyzed for 19 independent traits across all pooled
data for the six environmental indices by SMLR analysis that were used to identify the
main traits that contribute to strengthening and developing the intrigued variable (GY).
The indices of traits were used in the arithmetic of the cluster analysis and the displayed
heatmap drawing of the genetic dissimilarity matrix for genotypes used (Euclidean distance
and Ward’s method of agglomeration) across five tolerance categories. The LDA was used
to re-check the validity of the genotype categories by analyzing trait indices (as quantitative
measures) for the five tolerance categories (as qualitative measures).

2.3.3. MTSI Analyses

The MGIDI was used to categorize the genotypes based on multiple trait values using
singular value decomposition of the matrix of BLUPs for the interaction (G × E) effects
generated by a linear mixed model to quantify the stability of each genotype [20]. The ideal
genotype is calculated based on the ideotype matrix (the Euclidean distance between the
scores of the genotypes and the ideal genotypes) for all traits (with a selection intensity of
~20%). The genotype with the lowest (MTSI) value is closer to the ideotype and therefore
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provides maximum performance and stability to all environments and traits studied. In
the METs, each genotype’s stability is estimated by WAASB scores from the singular value
decomposition of the matrix of the best linear unbiased predictions’ interaction (G × E)
effects generated by incorporating the AMMI and BLUP methods together as proposed by
Olivoto et al. [35]. The genotype selection procedure with simultaneous mean performance
and stability (for the GY trait) with a weighting between them was implemented by
the WAASB index [35]. The used genotypes were categorized into four quadrants by a
storage root number–WAASB biplot helping the joint interpretation of stability and mean
performance across different environmental stresses.

2.3.4. Statistical Software

Most statistical analyses were conducted using package “metan” in RStudio, R version
4.2.2 (R Core Team 2023), as per Olivoto and Lúcio [50], for multi-environment trial analyses,
and the “pheatmap” package was used in dendrogram clustering. The SMLR and LDA
analyses were conducted in the XLSTAT package (vers. 2019.1).

3. Results
3.1. Joint ANOVA and Genetic Parameters

Joint ANOVA for the treatments (environmental indices (E) and genotypes (G)) dis-
played highly significant differences (p < 0.01) for all studied traits, and the interactions
were significant for 12 traits and insignificant for 8 traits (DH, RWC, E, POD, Pn, Gs, PPO,
and CAT) (Table 2). The variance components have been valued to know the importance
of each of them. The phenotypic variation showed values two or three times greater than
genetic values for most of the traits. For the broad-sense heritability (H2), the calculations
that displayed mixed values were equal to or greater than 20.00% in the RWC trait, or
less than or equal to 89.40% in the Gs trait. The genotypic accuracy of selection (As) was
high (>82.50%) for all traits. The genotypic CVs were higher than that obtained from the
residual CVs for most traits, which indicates that the CVs (g/r) ratio was greater than 1,
except for some traits (DH, NS, PH, LWC, RWC, NKS, and TKW), which were less than 1
(Table 2). The genotype–environment correlation (rge) displayed values of more than half
(>0.5) for four traits, a sign that the genotypic influence was instrumental in the heritability
of these traits. The coefficient of determination of the interaction effects (R2gei) showed
equal values (0.0) for five traits and values of less than half (>0.5) for the other traits. The
heritability on the mean basis (h2mg) showed values of >0.7 for all traits (Table 2).

Table 2. Joint ANOVA and genetic parameters for 20 studied traits.

Source Df DH DM GFD NS PH FLA GLA LAI LWC RWC

ENV 5 0.0422 0.1090 0.2570 0.0995 0.0350 0.0232 0.1740 0.3640 0.0117 0.0107
REP(ENV) 12 0.0006 0.0003 0.0015 0.0104 0.0025 0.0042 0.0021 0.0013 0.0011 0.0042
GEN 19 0.0022 0.0036 0.0269 0.0530 0.0147 0.0699 0.0789 0.1350 0.0102 0.0096
GEN:ENV 95 0.0001 0.0007 0.0041 0.0138 0.0034 0.0070 0.0144 0.0133 0.0012 0.0029
Residuals 228 0.0003 0.0002 0.0013 0.0028 0.0015 0.0025 0.0041 0.0012 0.0009 0.0023

Variance components and genetic parameters

GEN 0.0002 0.0003 0.0016 0.0029 0.0007 0.0035 0.0046 0.0069 0.0005 0.0006
GEN:ENV 0.0000 0.0002 0.0010 0.0037 0.0006 0.0015 0.0034 0.0041 0.0001 0.0002
Residual 0.0001 0.0001 0.0010 0.0020 0.0010 0.0025 0.0031 0.0011 0.0009 0.0021
Phenotypic variance 0.0004 0.0004 0.0005 0.0036 0.0086 0.0023 0.0075 0.0111 0.0120 0.0015
Heritability 0.6000 0.4906 0.4491 0.3388 0.2959 0.4685 0.4143 0.5730 0.3253 0.2009
R2gei 0.0000 0.3620 0.2770 0.4220 0.2270 0.2000 0.3110 0.3380 0.0698 0.0697
h2mg 0.8930 0.7930 0.8460 0.7400 0.7720 0.9010 0.8180 0.9010 0.8780 0.7000
Accuracy 0.9450 0.8910 0.9200 0.8600 0.8790 0.9490 0.9040 0.9490 0.9370 0.8370
rge 0.0000 0.5190 0.4340 0.5630 0.2950 0.3750 0.4590 0.7760 0.1030 0.0801
CVg 1.1000 1.3600 4.0300 5.9400 2.7600 6.8600 8.5600 14.700 2.3900 2.1200
CVr 1.6200 1.3300 4.0200 6.7800 4.2300 5.7700 8.0400 6.1000 3.2500 5.2500
CV ratio 0.6790 1.0226 1.0025 0.8761 0.6525 1.1889 1.0647 2.4098 0.7354 0.4038
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Table 2. Cont.

Source Df NKS TKW CT Pn Gs E POD PPO CAT GY

ENV 5 0.1300 0.1450 0.1450 0.1740 0.1610 0.0838 0.0674 0.0558 0.0136 0.1620
REP(ENV) 12 0.0023 0.0018 0.0018 0.0069 0.0071 0.0086 0.0093 0.0079 0.0012 0.0026
GEN 19 0.0284 0.0191 0.0191 0.0974 0.6010 0.3190 4.3100 3.7400 2.2500 0.1170
GEN:ENV 95 0.0089 0.0030 0.0030 0.0015 0.0030 0.0043 0.0018 0.0016 0.0003 0.0217
Residuals 228 0.0031 0.0021 0.0021 0.0056 0.0027 0.0040 0.0022 0.0026 0.0006 0.0027

Variance components and genetic parameters

GEN 0.0031 0.0019 0.0019 0.0058 0.0322 0.0175 0.2000 0.1770 0.0950 0.0073
GEN:ENV 0.0020 0.0003 0.0005 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0063
Residual 0.0011 0.0010 0.0005 0.0044 0.0037 0.0040 0.0421 0.0323 0.0305 0.0007
Phenotypic variance 0.0061 0.0032 0.0029 0.0102 0.0360 0.0216 0.2421 0.2093 0.1255 0.0143
Heritability 0.5057 0.5897 0.6425 0.5674 0.8940 0.8112 0.8262 0.8456 0.7567 0.5091
R2gei 0.3220 0.0983 0.1870 0.0000 0.0022 0.0052 0.0000 0.0000 0.0000 0.4410
h2mg 0.6860 0.8420 0.9350 0.9550 0.9950 0.9870 1.0000 0.9990 1.0000 0.8150
Accuracy 0.8280 0.9180 0.9670 0.9770 0.9980 0.9930 1.0000 1.0000 1.0000 0.9030
rge 0.3920 0.1350 0.4810 0.0000 0.0275 0.0277 0.0000 0.0000 0.0000 0.7000
CVg 3.7100 3.7300 3.7300 9.0600 24.500 16.700 73.600 56.9000 50.8000 9.6500
CVr 6.2200 5.6500 2.1400 8.3600 7.0300 7.9500 6.8600 6.0000 3.3500 6.9100
CV ratio 0.5965 0.6602 1.7430 1.0837 3.4851 2.1006 10.729 9.4833 15.1642 1.3965

Values in bold indicate insignificance and underline indicates significance at p < 0.05.

3.2. Comparison between the Multi-Indices Performance with the Predictable AMMI Model

The AMMI function is used to predict the outcome variable of a two-way table ac-
cording to the AMMI model, judging by the number of multiplicative terms used, which
regression plots were made with predicted value lines. Figure 1 presents the plotting of the
genotypes’ performance comparing the studied values of the indices against the predictions
of the AMMI model. Ten traits (DM, GFD, NS, PH, FLA, GLA, LWC, NKS, TKW, and GY)
showed clear differences between the indices and predicted indices.

The maximum differences were observed in genotypes G05, G15, G17, and G18 in the
DM trait; genotypes G03, G05, G15, G17, G18, and G20 in the GFD trait; genotypes G05,
G06, G07, G12, and G17 in the NS trait; genotypes G05 and G20 in the PH trait; genotypes
G06 and G09 in the FLA trait; genotypes G02, G04, and G12 in the GLA trait; genotypes G04
and G10 in the LWC trait; genotypes G04, G09, G11, and G20 in the NKS trait; genotypes
G01, G09, G16, and G19 in the TKW trait; and genotypes G02, G04, G10, G19, and G20 in
the GY trait. Four traits (DH, LAI, CT, and RWC) showed minor differences between the
indices and predicted indices. The differences were observed in genotypes G01, G04, G06,
and G07 in the DH trait; genotypes G02 and G09 in the LAI trait; genotypes G03, G09, and
G16 in the CT trait; and genotypes G02, G06, G10, G11, G19, and G20 in the RWC trait. On
the contrary, six traits (Pn, E, Gs, PPO, POD, and CAT) did not show any clear distinctions
between the indices and predicted indices (Figure 1).
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Figure 1. Plotting the multi-indices performance and AMMI model predictions of the 20 traits and
genotypes studied as the overall mean during three seasons. Abbreviations are as stated above in the
materials and methods section.

3.3. Identification of Multi-Indices Influential in the Yield Tolerance Multi-Index

All dependent multi-indices data were analyzed with independent multi-indices GY
using SMLR, to know the influential multi-indices and the ratio of influence in GY multi-
index performance (Table 3). The analysis of SMLR showed that only four multi-indices
(Pn, CT, TKW, and DH) from the nineteen were directly influential to the GY multi-index
(R2 was 0.868, p < 0.0001, with a noise value of 0.364), and their contribution ratios were
0.545, 0.190, 0.089, and 0.043, respectively (Table 3). So, these four multi-indices could
be used as influential selection criteria to create the tolerance of wheat genotypes for
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multiple stresses (drought and heat). The regression coefficient (b) had the following
values: for Pn, b = 0.626 ***, SE = 0.108; for CT, b = 0.795 ***, SE = 0.176; for TKW, b = 0.593 *,
SE = 0.250; and for DH, b = −1.599 *, SE = 0.722. According to the equation of the model
(GY, Table 3), GY = 0.408 − 1.599 × DH + 0.593 × TKW + 0.795 × CT + 0.626 × Pn, the
predicted regression GY value differed from 0.617 (G15) to 0.923 (G20). The values of
predicted error and relative error differed from −0.051(G05) to 0.053 (G17) and from −0.071
(G05) to 0.068 (G17), respectively. Evaluation accuracy (%) differed from 92.884 (G05) to
99.900 (G03), with an average value of 96.745 (Table 3).

Table 3. The SMLR analysis was implemented to create an optimal regression equation (GY).

Source
Coefficient Determination Model Parameters

R2 Par. R2 Com. p-Value Regression Coefficient Standard Error p-Value

Intercept 0.408 0.807 0.621
Pn 0.545 0.545 <0.0001 0.626 0.108 <0.0001
CT 0.190 0.735 <0.0001 0.795 0.176 0.000

TKW 0.089 0.824 0.002 0.593 0.250 0.032
DH 0.043 0.868 0.001 −1.599 0.722 0.043

Total R2 0.868
Residual 0.364

Equation of the model (GY) = 0.408 − 1.599 × DH + 0.593 × TKW + 0.795 × CT + 0.626 × Pn

Genotypes
Dependent multi-indices

GY Pred (GY) Predicted
error value

Relative
error value

Evaluation
accuracy (%)DH TKW CT Pn

G01 0.944 0.821 1.095 0.823 0.755 0.770 −0.015 −0.020 98.013
G02 0.963 0.833 1.137 0.846 0.800 0.794 0.006 0.007 99.270
G03 0.959 0.782 1.172 0.867 0.811 0.810 0.001 0.001 99.900
G04 0.972 0.843 1.150 0.870 0.825 0.811 0.014 0.017 98.278
G05 0.950 0.841 1.115 0.801 0.722 0.773 −0.051 −0.071 92.884
G06 0.975 0.796 1.112 0.763 0.673 0.681 −0.008 −0.012 98.798
G07 0.955 0.749 1.188 0.766 0.789 0.748 0.041 0.052 94.848
G08 0.942 0.816 1.165 0.769 0.790 0.792 −0.001 −0.002 99.810
G09 0.960 0.836 1.162 0.669 0.693 0.709 −0.016 −0.023 97.695
G10 0.952 0.791 1.167 0.877 0.868 0.830 0.038 0.044 95.613
G11 0.955 0.794 1.157 0.871 0.839 0.815 0.024 0.029 97.107
G12 0.957 0.766 1.143 0.764 0.684 0.718 −0.034 −0.050 95.021
G13 0.943 0.802 1.113 0.636 0.689 0.658 0.031 0.046 95.435
G14 0.956 0.808 1.122 0.700 0.720 0.687 0.033 0.046 95.419
G15 0.972 0.727 1.088 0.747 0.579 0.617 −0.038 −0.065 93.502
G16 0.934 0.825 1.097 0.834 0.769 0.796 −0.027 −0.035 96.496
G17 0.951 0.822 1.033 0.836 0.770 0.718 0.053 0.068 93.181
G18 0.956 0.811 1.200 0.776 0.795 0.799 −0.004 −0.005 99.479
G19 0.963 0.752 1.082 0.747 0.625 0.641 −0.016 −0.026 97.413
G20 0.939 0.821 1.207 0.913 0.894 0.923 −0.030 −0.033 96.694

Average 96.745

Values in bold indicate significance.

3.4. Cluster Analysis and Linear Discriminant Analysis

The heatmap of the hierarchical clustering genotypes and traits combined with the
dendrogram is summarized in Figure 2. The genotypes and traits were clustered using
the tolerance multi-indices values, and genotypes were categorized into five ranks for
clustering based upon existing differences in the traits. The closely associated wheat
genotypes were grouped into row clusters, which point to the clustering pattern and were
related to genetic similarity, and each cluster consisted of a different number of genotypes
(Figure 2). The HT (highly tolerant) cluster consisted of five genotypes, G02, G03, G05,
G07, and G09; the T (tolerant) cluster consisted of five genotypes, G01, G04, G10, G14, and
G16; the M (moderately tolerant) cluster consisted of two genotypes, G15 and G18; the S
(sensitive) cluster consisted of four genotypes, G06, G08, G19, and G20; and the HS (highly
sensitive) cluster consisted of four genotypes, G11, G12, G13, and G17.
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Figure 2. Hierarchical clustering and heatmap of the associations among 20 wheat genotypes
dependent on the Euclidean distance with 20 different traits. Colors are representative of a relative
scale (−3 to +3) derived from data standardization of the tolerance indices values. HT (highly
tolerant), T (tolerant), M (moderately tolerant), S (sensitive), and HS (highly sensitive). Abbreviations
are as stated above in the materials and methods section.

And, likewise, all traits were categorized into three column clusters, based on the
degrees of similarity between the traits, which differ from one genotype to another. Cluster-
1 consisted of four traits (POD, PPO, LAI, and CAT), and they all are non-related to GY.
Cluster-2 consisted of fifteen traits (three traits—Pn, TKW, and DH—related to GY; eleven
traits—MD, LWC, PH, RWC, FLA, GFD, NKS, Gs, E, GLA, and NS—unrelated to GY; in
addition to one trait—GY). Cluster-3 consisted of one trait only (CT), which was completely
separated from the rest of the traits, as evidenced by the heatmap color (Figure 2).

The prior and posterior classification of the five (HT, T, M, S, and HS) groups was
verified by LDA. In the analysis of all traits studied, compliance in all genotypes was
assessed (% correct = 100%), and the membership probability value = 1, indicating full
compatibility between the prior and posterior classification (Table 4). But cross-validation
showed that compliance was present in only 5 (G01, G08, G11, G13, and G20) genotypes,
and 15 genotypes were misclassified (11 of them were transferred to the nearest group).
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In the case of the analysis of GY and its related traits (Pn, HD, CT, and TKW), there was
compliance in 15 genotypes (% correct = 75%) and misclassification in 5 genotypes (G04,
G07, G12, G17, and G20) (Table 5). The values of the membership probability (>0.5) proved
compatibility for prior and posterior classification, and when it is a value of less than 0.5,
it is transferred to the appropriate classification (Table 5). The cross-validation showed
compliance in only 6 (G03, G05, G06, G08, G11, and G13) genotypes, and 14 genotypes
were misclassified (7 of them were transferred to the nearest group).

Table 4. Posterior probability of membership in heat groupings by LDA with all studied traits.

Genotypes

Classification Cross-Validation

Prior Posterior
Membership Probabilities

Posterior
Membership Probabilities

Pr(HS) Pr(HT) Pr(M) Pr(S) Pr(T) HS HT M S T

G01 T T 0.000 0.000 0.000 0.000 1.000 T 0.000 0.000 0.000 0.000 1.000
G02 HT HT 0.000 1.000 0.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G03 HT HT 0.000 1.000 0.000 0.000 0.000 M 0.000 0.000 1.000 0.000 0.000
G04 T T 0.000 0.000 0.000 0.000 1.000 M 0.000 0.000 1.000 0.000 0.000
G05 HT HT 0.000 1.000 0.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G06 S S 0.000 0.000 0.000 1.000 0.000 M 0.000 0.000 1.000 0.000 0.000
G07 HT HT 0.000 1.000 0.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G08 S S 0.000 0.000 0.000 1.000 0.000 S 0.000 0.000 0.000 1.000 0.000
G09 HT HT 0.000 1.000 0.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G10 T T 0.000 0.000 0.000 0.000 1.000 M 0.000 0.000 1.000 0.000 0.000
G11 HS HS 1.000 0.000 0.000 0.000 0.000 HS 1.000 0.000 0.000 0.000 0.000
G12 HS HS 1.000 0.000 0.000 0.000 0.000 S 0.000 0.000 0.000 1.000 0.000
G13 HS HS 1.000 0.000 0.000 0.000 0.000 HS 1.000 0.000 0.000 0.000 0.000
G14 T T 0.000 0.000 0.000 0.000 1.000 M 0.000 0.000 1.000 0.000 0.000
G15 M M 0.000 0.000 1.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G16 T T 0.000 0.000 0.000 0.000 1.000 M 0.000 0.000 1.000 0.000 0.000
G17 HS HS 1.000 0.000 0.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G18 M M 0.000 0.000 1.000 0.000 0.000 T 0.000 0.000 0.000 0.000 1.000
G19 S S 0.000 0.000 0.000 1.000 0.000 M 0.000 0.000 1.000 0.000 0.000
G20 S S 0.000 0.000 0.000 1.000 0.000 S 0.000 0.000 0.000 1.000 0.000

Letters in bold indicate misclassified wheat genotypes. HT (highly tolerant), T (tolerant), M (moderately tolerant),
S (sensitive), and HS (highly sensitive).

Table 5. Posterior probability of membership in heat groupings by LDA with GY and related traits.

Genotypes

Classification Cross-Validation

Prior Posterior
Membership Probabilities

Posterior
Membership Probabilities

Pr(HS) Pr(HT) Pr(M) Pr(S) Pr(T) HS HT M S T

G01 T T 0.256 0.198 0.000 0.038 0.507 HS 0.364 0.270 0.000 0.044 0.322
G02 HT HT 0.048 0.526 0.000 0.019 0.407 T 0.059 0.352 0.000 0.028 0.561
G03 HT HT 0.098 0.729 0.000 0.010 0.163 HT 0.139 0.610 0.000 0.014 0.236
G04 T HT 0.014 0.662 0.000 0.008 0.316 HT 0.001 0.998 0.000 0.000 0.001
G05 HT HT 0.072 0.819 0.001 0.036 0.072 HT 0.139 0.629 0.005 0.099 0.129
G06 S S 0.008 0.039 0.000 0.721 0.232 S 0.012 0.058 0.000 0.621 0.310
G07 HT T 0.115 0.201 0.000 0.244 0.440 T 0.120 0.037 0.000 0.321 0.522
G08 S S 0.029 0.007 0.000 0.920 0.044 S 0.135 0.015 0.000 0.743 0.106
G09 HT HT 0.163 0.826 0.000 0.001 0.011 HS 0.635 0.359 0.000 0.000 0.005
G10 T T 0.024 0.020 0.000 0.407 0.548 S 0.027 0.017 0.000 0.667 0.289
G11 HS HS 0.691 0.244 0.000 0.007 0.058 HS 0.546 0.363 0.000 0.010 0.081
G12 HS S 0.050 0.093 0.027 0.769 0.061 S 0.000 0.002 0.001 0.996 0.001
G13 HS HS 0.955 0.035 0.000 0.001 0.008 HS 0.877 0.109 0.000 0.002 0.012
G14 T T 0.028 0.046 0.000 0.373 0.553 S 0.035 0.054 0.000 0.476 0.435
G15 M M 0.001 0.002 0.954 0.042 0.001 S 0.022 0.023 0.000 0.936 0.018
G16 T T 0.263 0.102 0.000 0.046 0.589 HS 0.614 0.144 0.000 0.056 0.186
G17 HS T 0.410 0.075 0.000 0.003 0.512 T 0.000 0.012 0.000 0.000 0.988
G18 M M 0.000 0.000 1.000 0.000 0.000 HT 0.000 0.957 0.042 0.001 0.000
G19 S S 0.170 0.135 0.081 0.538 0.076 M 0.268 0.139 0.584 0.001 0.008
G20 S T 0.006 0.027 0.000 0.415 0.551 T 0.003 0.028 0.000 0.020 0.949

Letters in bold indicate misclassified wheat genotypes.
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3.5. MTSI Analyses
3.5.1. Factor Delineation and Selection of Multi-Tolerant Genotypes

PCA showed that the first eight components (eigenvalue > 1) explained 85.90% of the
total variation among the 20 studied traits, and as for GY and its related traits (Pn, HD, CT,
and TKW), the first two components with eigenvalues > 1 explained 60.20% of the total
variation (Table 6). Concerning all studied traits, FA showed that traits DM, GFD, and NS
were compiled in FA1; traits Gs and E were compiled in FA2; traits FLA, GLA, and RWC
were compiled in FA3; traits LWC and CT were compiled in FA4; traits LAI, DH, and POD
were compiled in FA5; traits PH and PPO were compiled in FA6; traits TKW and CAT were
compiled in FA7; and traits NKS, Pn, and GY were compiled in FA8. But as for GY and its
four related traits, FA showed that traits DH, Pn, and GY traits were compiled in FA1, and
traits CT and TKW were compiled in FA2. The MGIDI index was calculated to identify
the multi-tolerant genotypes (drought and heat) when considering all studied traits and
also GY and its four related traits. As for selection gains, the MGIDI revealed that the
number of traits with desired gains was 16 out of 20 traits considering all studied traits and
4 out of 5 traits considering GY and its 4 related traits. These results suggest that MGIDI
provided higher total gains of 80.53% and 7.18% for traits that increased and −1.28% and
−0.253 for traits that decreased for all studied traits and also GY and its four related traits
(Table 7). Among the selected traits, Gs, PPO, and E showed the highest genetic gains
(19.60%, 10.60%, and 6.92%, respectively) for all studied traits, and for GY and its four
related traits, the GY trait had the highest genetic gains (7.12%). The WAASBY index of
the original population (Xo) with all studied traits and with GY and its four related traits
varied from 0.561 and 0.754, the lowest one, for the LAI and GY to 1.14, the highest one, for
the CT, respectively.

Table 6. PCA and FA with factorial loadings obtained using varimax rotation and resulting communalities.

All Traits GY and Related Traits

Principal Component Analysis (PCA) Principal Component Analysis (PCA)

PCA PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC1 PC2 PC3 PC4
Eigenvalues 3.76 2.81 2.70 2.21 2.06 1.39 1.21 1.03 0.736 0.533 1.78 1.23 0.98 0.61
Variance (%) 18.8 14.1 13.5 11.1 10.3 6.97 6.06 5.13 3.68 2.67 35.70 24.50 19.70 12.10
Cumul (%) * 18.8 32.8 46.4 57.4 67.7 74.7 80.8 85.9 89.6 92.3 35.70 60.20 79.90 92.10

Factor analysis (FA) Factor analysis (FA)

Variable FA1 FA2 FA3 FA4 FA5 FA6 FA7 FA8 Comm # Uniqu $ FA1 FA2 Comm # Uniqu $

DM 0.929 −0.001 0.012 0.049 −0.072 0.064 0.007 −0.015 0.875 0.125
GFD 0.947 0.010 0.008 0.030 0.227 −0.025 0.075 −0.125 0.971 0.029
NS 0.644 0.063 0.180 −0.150 −0.264 −0.312 −0.407 −0.234 0.861 0.139
Gs −0.018 0.975 0.036 0.013 −0.114 0.065 −0.053 −0.017 0.972 0.028
E 0.044 0.951 0.080 0.016 0.051 −0.116 −0.074 −0.007 0.934 0.066

FLA −0.064 0.063 −0.884 0.072 0.177 0.028 −0.045 0.095 0.837 0.163
GLA 0.083 0.033 −0.662 −0.422 0.288 −0.233 0.259 −0.128 0.845 0.155
RWC 0.071 0.236 0.800 −0.159 0.213 0.192 −0.063 −0.265 0.883 0.117
LWC 0.029 −0.076 −0.076 −0.859 −0.243 0.098 −0.040 0.094 0.830 0.170
CT 0.098 −0.104 −0.262 0.727 −0.235 0.399 0.100 0.142 0.862 0.138 −0.324 −0.780 0.713 0.287
LAI −0.264 −0.172 −0.318 −0.084 0.705 0.318 0.301 0.086 0.903 0.097
DH −0.275 0.070 0.008 −0.160 −0.782 0.143 0.011 0.335 0.851 0.149 −0.750 0.123 0.578 0.422

POD −0.400 0.316 −0.090 0.273 0.454 −0.521 0.092 0.225 0.880 0.120
PH −0.054 0.029 0.137 0.117 −0.012 0.885 0.125 0.015 0.835 0.165

PPO 0.026 0.538 −0.259 −0.003 −0.325 −0.594 0.314 −0.117 0.928 0.072
TKW 0.372 0.243 −0.103 0.360 0.092 −0.033 −0.678 0.008 0.807 0.193 −0.333 0.752 0.677 0.323
CAT 0.203 0.047 −0.144 0.312 0.192 0.035 0.753 0.031 0.767 0.233
NKS −0.311 0.250 −0.189 −0.065 −0.041 0.360 −0.035 0.646 0.749 0.251
Pn −0.162 0.274 0.172 0.179 −0.041 0.161 0.087 −0.788 0.819 0.181 0.558 −0.033 0.313 0.687
GY −0.239 0.043 0.010 0.220 −0.188 0.026 0.144 0.778 0.769 0.231 −0.827 −0.217 0.732 0.268

Values in bold indicate related traits, # Communality, $ Uniquenesses, and * cumulative variance (%).

The genotypes selected using the MGIDI were G01, G12, G16, and G02 with all studied
traits and they were G10, G11, G08, and G20 with GY and its related traits (Figure 3A,B).
G01 and G10 were very close to the cutting point, suggesting that these genotypes could
have distinct features. Taking into account the strengths and weaknesses of the selected
genotypes when considering all studied traits, FA1 had the highest contribution for G12



Plants 2023, 12, 3540 12 of 21

and G16. FA2 and FA7 had the highest contribution for G01, G12, and G16. FA3 and FA5
represented the highest contribution for G02, and FA6 and FA8 represented the highest
contribution for G12 (Figure 3C). But when considering GY and its related traits, FA1 had
the highest contribution for G10, and FA2 had the highest contribution for G08 and G20
(Figure 3D).

Table 7. Predicted genetic gains for the MGIDI for all traits studied and GY and related traits.

Factor
All Traits GY and Related Traits

VAR Xo Sense MGIDI VAR Xo Sense MGIDI

FA1 DM 0.927 decrease −0.03 DH 0.955 decrease −0.106
FA1 GFD 0.882 decrease −0.20 Pn 0.794 increase −5.70
FA1 NS 0.786 decrease −0.08 GY 0.754 increase 7.12
FA2 Gs 0.744 increase 27.30 TKW 0.802 decrease −0.147
FA2 E 0.792 increase 13.80 CT 1.14 increase 0.0614
FA3 FLA 0.862 increase 3.09
FA3 GLA 0.792 increase 0.87
FA3 RWC 0.91 increase −0.06
FA4 LWC 0.935 increase 0.86
FA4 CT 1.14 increase 0.63
FA5 DH 0.955 decrease −0.07
FA5 LAI 0.561 increase −0.34
FA6 PH 0.911 decrease −0.90
FA6 POD 0.665 increase −31.70
FA6 PPO 0.801 increase 26.80
FA7 TKW 0.802 increase 0.24
FA7 CAT 0.695 increase 5.75
FA8 NKS 0.887 increase 0.88
FA8 Pn 0.794 increase 0.31
FA8 GY 0.754 increase −0.18

Total (increase) 80.53 7.18
Total (decrease) −1.28 −0.253

Figure 3. Genotype ranking for the MGIDI with all traits (A) and GY and related traits (B). The
strengths and weaknesses of the selected genotypes with all traits (C) and GY and related traits (D)
are illustrated as the percentage of each factor computed on the basis of MGIDI.
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3.5.2. Grain Yield Indices Performance and Stability

The ANOVA for AMMI revealed that main effects due to six environmental indices
(E), 20 genotypes (G), and GE interaction (GEI) were highly significant (p < 0.001) and
contributed 10.36%, 28.55%, and 26.38% of the total variation, respectively (Table 8). This
analysis moreover divided the GEI sum of squares into five IPCAs and a residual term.
IPCA1–IPCA3 were highly significant (p < 0.001) and explained 66.99%, 25.39%, and 7.77%
of the total variation due to the GEI, respectively. The cumulative variance in the IPCA1
and IPCA2 was 92.38% for the six indices, three (E1, E3, and E5) indices had a positive
correlation (the angle among them was <90◦), and three indices (E2, E4, and E6) provided
the same results (Figure 4).

Table 8. AMMI-ANOVA for the GY index trait for 20 genotypes with six environmental indices.

Source Df SS MS F Value Pr (>F) Proportion Accumulated

ENV 5 0.809 0.162 62.000 0.0000
REP (ENV) 12 0.031 0.003 0.962 0.4870

GEN 19 2.230 0.117 43.200 0.0000
GEN:ENV 95 2.060 0.022 8.000 0.0000

IPC1 23 1.380 0.060 22.100 0.0000 66.80 66.80
IPC2 21 0.523 0.025 9.170 0.0000 25.30 92.20
IPC3 19 0.160 0.008 3.100 0.0000 7.70 99.90
IPC4 17 0.001 0.000 0.030 1.0000 0.10 100.00
IPC5 15 0.000 0.000 0.000 1.0000 0.00 100.00

Residuals 228 0.619 0.003
Total 454 7.810 0.017

Df (degrees of freedom), SS (sum of squares), MS (mean of squares).

Figure 4. AMMI2 biplot (IPC1 vs. IPC2) for the GY index of 20 wheat genotypes evaluated across six
environmental indices.

This indicates that the magnitude of the interaction effects tends to be the same and
independent when applying the same abiotic stress (Figure 4). Additionally, negative
correlations (the vector angles > 90◦) were observed in the E1 with E4 and E6. The WAASB
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statistic was used for better descriptions to select ideal genotypes based on both index
performance and stability. For that, a biplot was rendered based on the WAASB and mean
index yields in four quadrants for comprehensive interpretation and a joint evaluation
of the genotypes/environment (Figure 5). The first quarter included the four (E1, E4, E5,
and E6) environments and one genotype (G09). This genotype and four environments
showed a lower tolerance index compared with the average tolerance index, and it thus
plays the biggest role in GEI. Genotypes G02, G04, G07, G08, and G10 combined with
environments E2 and E3 were in the second quadrant. These genotypes have an acceptable
performance and the environments play a big role in the GEI. The environments in this
quadrant provide an above-average tolerance index; so, special adaptations should be
investigated within this quadrant, especially the high-tolerance genotypes. The G05, G06,
G12, G13, G14, G15, and G19 genotypes located in the third quadrant had widely adapted
and lower-than-average tolerances, due to a reduction in WAASB values, suggesting a more
stable genotype performance across the environments. The fourth quadrant of the biplot
features the genotypes that had low WAASB values and high tolerance. Hence, the G01,
G03, G11, G16, G17, G18, and G20 genotypes were identified as the most stable genotypes
across the environments (Figure 5). Lower WAASB scores describe the genotypes that have
high stability and tolerance. In ascending order of WAASB scores, the seven genotypes
G01, G06, G12, G03, G18, G11, and G05 with values 0.032, 0.054, 0.064, 0.075, 0.100, 0.103,
and 0.114 were selected as the top genotypes with high stability and tolerance, respectively
(Table 9). If we take a closer look at the WAASB results, we find that G01, G03, G06, and
G12 are more stable (smaller WAASB values) compared to G02, G07, G08, and G10. This
may be because 33.20% of the variance is not being expounded by IPCA1. In our results,
only 66.80% of the GEI variance was expounded by IPCA1, and the results showed that
G7 had the smallest IPCA1 value (−0.280), so it was more stable when using only the first
IPCA (unlike the WAASB result). With regard to the six environments’ stability, the WAASB
scores showed the following list in ascending order: E6, E5, E2, E1, E3, and E4.

Figure 5. The yield × WAASB biplot based on joint interpretation of storage root number (Y) and
stability (WAASB) for 20 wheat genotypes evaluated under six environmental indices.
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Table 9. Results for WAASB estimation of 10 wheat genotypes assessed using 6 environmental indices.

Code Y IPC1 IPC2 IPC3 IPC4 IPC5
WAAS

Value Rank

Genotypes

G01 0.755 −0.021 0.037 −0.109 −0.006 −0.025 0.032 1
G02 0.800 0.261 0.149 0.132 −0.011 0.000 0.223 19
G03 0.811 0.018 −0.233 0.056 −0.018 0.015 0.075 4
G04 0.825 0.286 0.050 0.039 0.035 −0.019 0.207 17
G05 0.722 −0.122 0.114 −0.040 −0.015 0.013 0.114 7
G06 0.673 −0.014 0.160 −0.048 −0.001 0.001 0.054 2
G07 0.789 −0.280 −0.105 −0.082 0.003 −0.018 0.221 18
G08 0.790 −0.248 0.154 0.328 0.015 0.011 0.231 20
G09 0.693 −0.229 0.147 −0.038 −0.012 0.018 0.194 15
G10 0.868 −0.180 −0.324 −0.021 −0.024 0.007 0.204 16
G11 0.839 0.060 −0.215 0.106 −0.012 −0.016 0.103 6
G12 0.684 −0.043 0.132 0.023 0.009 0.009 0.064 3
G13 0.689 0.222 0.074 −0.108 0.021 −0.008 0.176 13
G14 0.720 0.160 −0.167 −0.006 0.020 0.055 0.150 10
G15 0.579 0.135 0.101 −0.057 −0.121 −0.001 0.120 8
G16 0.769 0.219 −0.103 0.007 0.028 −0.003 0.173 12
G17 0.770 0.252 −0.016 −0.041 0.015 −0.003 0.176 14
G18 0.794 −0.125 0.055 0.030 0.013 −0.009 0.100 5
G19 0.625 −0.179 0.084 −0.214 0.045 0.016 0.158 11
G20 0.894 −0.171 −0.093 0.041 0.013 −0.042 0.141 9

Environments

E1 0.733 0.318 0.219 0.309 −0.005 0.035 0.292 4
E2 0.837 −0.239 0.416 −0.208 −0.057 −0.002 0.281 3
E3 0.774 0.346 −0.286 −0.257 −0.006 0.036 0.324 5
E4 0.678 −0.426 −0.337 0.160 −0.063 −0.004 0.383 6
E5 0.751 0.331 −0.028 0.013 0.010 −0.072 0.230 2
E6 0.753 −0.331 0.017 −0.016 0.121 0.006 0.227 1

4. Discussion

The plant’s responses to stress are very complex, which are about acclimation, adap-
tation, and tolerance. These responses vary with the life stage and plant type, and the
plant’s continuity of life under stress conditions is linked to its ability to hold the line
against stress [29,51,52]. Previous studies stated that most of the productive and morpho-
physiological traits in wheat are influenced by the cultivar used, the growing culture, and
the interaction between them, which could be interpreted as the growth and development
of wheat being regulated by the complex interaction of a lot of factors, such as temperature,
light, day length conditions, and land quality [12,21,53,54]. The development of cultivars
that combine the best qualities of high productivity and stability under varying abiotic
stress (drought and heat) levels is one of the top priorities of plant breeders and the greatest
goal in modern breeding programs [6,29]. The GY is influenced by both genetic and envi-
ronmental factors. So, the multi-environment trials (METs) model the magnificent efforts in
modern breeding programs for the valid and reliable selection of genotypes. The reliability
of prediction (the expected value is close to the visible value) is crucial for an appropriate
genotype recommendation and delimitation of mega-environments [12,15,35]. According
to Gauch and Zobel [55], to increase the accuracy of prediction in METs, researchers must
utilize statistical models that have high prediction abilities [35]. A special focus on this
point was given in our article. Joint ANOVA for the treatments showed highly significant
differences for all studied traits, and the interactions were significant for 12 out of 20 traits,
suggesting that the genotypes’ tolerance indices differed from one treatment to another (Ta-
ble 2). Plant breeders rely primarily on the genetic stability of traits. The major advantage
of biplots is that all IPCA axes are used, thus allowing GEI not maintained in IPCA1 to be
included in the genotypes’ ranking [35].
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This model also offers the opportunity to appreciate important parameters of quan-
titative genetics (h2, As, CVs (g/r), rge, R2gei and h2mg) in greater depth and that these
provide material information in a plant breeding program and must be utilized in a MET’s
assessment. The phenotypic variation showed values two or three times greater than
genetic values for most of the traits, suggesting that the environmental effect played a
significant role [12,35]. The h2 values were highly fluctuating (ranging from 20.00% to
89.40%). But h2mg showed values of >0.7 for all traits, reflecting a significant increase in
genetic variation of the genotypes used with an accuracy level of more than 0.82. This high
accuracy indicates a high potential for predicting the genetic value [29,35,56]. Correlation
estimations are necessary for METs, and the high-value rge refers to a simple interaction
(the low value is undesirable for the selection of genotypes) [29,35,51]. The rge showed
high values (>0.580) for four out of twenty traits, indicating that the environmental effect
played a role in the inheritance of most traits. The genotypic CVs were higher than those
obtained from the residual CVs for most traits, which indicates that the CVs (g/r) ratio was
greater than 1. These results show small variability within the environment used [2,35].
In the present study, we have shown how the advantages of the AMMI model and the
performance of multi-indices may be combined to increase the reliability of MET analysis.
A study evaluating rice has shown that the estimates using the AMMI model were closer to
the “true” value [57], so predictive precision deserves special attention for model diagnosis
in MET analysis [35,58].

When comparing the AMMI model and the performance of multi-indices, we found
that ten traits (DM, GFD, NS, PH, FLA, GLA, LWC, NKS, TKW, and GY) showed clear
differences, four traits (DH, LAI, CT, and RWC) showed minor differences, and six traits
(Pn, Gs, E, PPO, CAT, and POD) did not show any clear differences (Figure 1). These results
are explained by the heritability (Table 2). The traits that had high values in heritability
showed very low differences in the AMMI model and the performance of multi-indices
compared to the traits that had low values in heritability [14,51]. Also, the biplots and
AMMI model explained the genotypes’ ranking clearly [35]. SMLR is a meaningful way
to comprehend the relationships between influential and affected variables [2,37,52]. We
used SMLR to analyze 20 indices studied as influential indices to know which ones are
powerful indices of multi-stress tolerance and their contribution to the GY index as an
affected index (Table 3). The SMLR results stated that four indices (Pn, CT, TKW, and DH)
were influential to the GY index (R2 of the SMLR model was 0.868, p < 0.0001, with a noise
value of 0.364), and their contribution ratios were 0.545, 0.190, 0.089, and 0.043, respectively
(Table 3). So, these four multi-indices could be used as influential selection criteria to create
the tolerance of wheat genotypes for multiple stresses (drought and heat). It is recognized
that the performance of the different genotypes varies from index to index, but at least it
depends on one of them [2,53]. Also, some traits might show a positive correlation in the
same genotype, whereas others may show a negative correlation. As a result, we noticed
that the equation of the model (GY, Table 3), GY = 0.408 − 1.599 × DH + 0.593 × TKW
+ 0.795 × CT + 0.626 × Pn, showed that the predicted regression GY value, error value,
and relative error value differed from 0.617 (G15) to 0.923 (G20), from −0.051 (G05) to
0.053 (G17), and from −0.071 (G05) to 0.068 (G17), respectively, with genotype evaluation
accuracy (%) ranging from 92.884 (G05) to 99.900 (G03) with an average value of 96.745
(Table 3) [2,54].

Cluster analysis is proficient when analyzing massive data sets with multiple vari-
ables [55,56], and at the same time allows for the grouping of the genotypes with identical
traits connected to multi-tolerance. The genotypes were grouped into five (HS, S, M, T, and
HT) groups for multi-tolerance by a two-way heatmap clustering pattern using standard-
ized MTI values (Figure 2). The closely associated wheat genotypes were grouped into row
clusters, which point to the clustering pattern related to genetic similarity [56]. Each HT
and T cluster consisted of five genotypes, the M cluster consisted of two genotypes, and
each S and HS cluster consisted of four genotypes. Traits DH, CT, Pn, TKW, and GY played
a crucial role in differentiating tolerant and sensitive groups of wheat genotypes (Figure 2);
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it is a great method and more confident than other traditional assessment metrics [55–57].
Although, a lot of researchers have used cluster analysis for classification [12,21,58]. But,
cross-validation of the grouping method was not used to enhance the reliability of the clas-
sification [2]. The prior and posterior classification of the five (HT, T, M, S, and HT) groups
was verified (Tables 4 and 5). In the analysis of all traits studied, compliance was assessed
in all genotypes (% correct = 100%), and in the case of the analysis of GY and its related
traits (Pn, HD, CT, and TKW), there was compliance in 15 genotypes (% correct = 75%)
and misclassification in 5 genotypes (G04, G07, G12, G17, and G20). But cross-validation
showed there was compliance in only 5 (G01, G08, G11, G13, and G20) genotypes, and
15 genotypes were misclassified in the case of the analysis of all traits; additionally, there
was compliance in 6 (G03, G05, G06, G08, G11, and G13) genotypes and 14 genotypes
were misclassified in the case of the analysis of GY and its related traits (Tables 4 and 5).
Therefore, discriminant analysis can be a useful statistical tool that is accurate and credible
in identifying genetic resources [2,22,59].

The genotypes’ ranking depending on multiple traits in conjunction with the view of
strengths and weaknesses is a powerful tool that can be used to direct researchers to better
recommendations for selecting correct genotypes. In our experiment, we used PCA and FA
to pool impactful studied traits (Table 6), and the FA managed to reduce the 20 traits to only
8 factors, which explained 85.9%, and 2 factors for GY and its related traits, which explained
60.20%. Using the MGIDI, Olivoto and Nardino [20] and Olivoto et al. [15] have shown how
to select superior and suitable genotypes in plant experiments that combine all selected
traits (MTSI) that satisfy the breeders and achieve their desired goals. In our study, the
MGIDI was superior in the process of selecting traits with intended gains. It has a higher
degree of computational ability, and it has the ability to treat multicollinearity as well as the
main advantage, that the requirements are outlined by the breeder before calculating the
index [20]. The MGIDI revealed that the number of traits with desired gains was 16 out of
20 traits considering all studied traits and 4 out of 5 traits considering GY and its 4 related
traits, and rates of increase were 80.53 and 7.18, respectively (Table 7). Out of 20 geno-
types used, 4 wheat genotypes considering all studied traits (G01, G12, G16, and G02) and
4 wheat genotypes considering GY and its related traits (G10, G11, G08, and G20) stand
out as desirable genotypes with better mean performance and stability under multi-
environment conditions (Figure 3A,B). Compared to our previous analysis using absolute
values [29], these results are different, which probably can be due to the use of tolerance
indices that give more accurate and reliable estimates of genotype performance under stress
conditions. Owing to the importance of the MGIDI in evaluating crop cultivars extensively,
it is called speed breeding. The overall goal of plant breeders is to identify multivariate
techniques to select suitable genotypes that have productive and consistent performance
in varied environmental conditions [15,20,29,34]. So, based on multiple-trait information
(MGIDI), the genotypes have been classified as desired and undesired. Assessing the
strengths and weaknesses of genotypes serves as a novel technique for better mechanisms
of crop management (Figure 3C,D), and the use MTSI and MGIDI in future studies will lead
to avoiding unnecessary calculations and allows for strategic decisions to be made more
readily [29,60]. The MGIDI ranks the factors into factors that contribute more (plotted at the
center and/or close) or contribute less (plotted towards the figure’s edge), which is used to
identify distinct genetic traits of the parents for careful selection in future hybridization
programs in order to obtain a new recombination known as the ideotype.

Genotypes with high productivity in various environments are the ultimate objective
of plant breeders, and they work to develop genotypes to strengthen stability and stabilize
yield [12,61]. The ANOVA for AMMI revealed that the GEI was highly significant and
contributed 26.38% of the total variation and divided the GEI into five IPCAs, of which
IPCA1–IPCA3 were highly significant. These results suggest that the cross-reaction gives
rise to an overall response and ranking of the genotypes with the yield indices under
different biotic stress conditions (Table 8). In our study, the E1, E3, and E5 indices and the
E2, E4, and E6 indices had positive correlations (the angle among them was <90◦), indi-
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cating that the magnitude of the interaction effects tends to be the same and independent
when applying the same abiotic stress (Figure 4). The obtuse angle of vectors in E1 with
E4 and E6 points out the negative association between them. A vertical projection from
the genotype to the environmental vector detects the extent of the interaction with the
environment [12,38,41]. The plot (Figure 4) shows that eleven genotypes (G02, G03, G04,
G06, G07, G08, G10, G11, G14, G16, and G17) were unstable across the environments.
The novel WAASB model explains the GEI, bringing together the AMMI and BLUP
models into a unique index to select genotypes based on both index performance and
stability [14,29,34,35]. The WAASB biplot, resulting in four quadrants, was constructed
with the storage root number on the x-axis and WAASB scores on the y-axis (Figure 5).
The genotypes that have a high WAASB score compared to the WAASB grand mean were
regarded as less stable (Table 9). The WAASB biplot quantifies the stability of genotypes by
combining an explanation of the stability and productivity in a two-dimensional plot, taking
into account all of the IPCAs of the model for GEI effects not maintained in IPCA1 [14,62],
so the WAASB gives more reliable results. When we took a closer look at the WAASB results,
we found that G01, G03, G06, and G12 are more stable (smaller WAASB values) compared
to G02, G07, G08, and G10. The results showed that G07 and G08 had the smallest IPCA1
values (−0.280 and −0.248, respectively), so they were more stable when using only the
first IPCA (unlike the WAASB result). This may be because 66.80% of the GEI variance was
expounded by IPCA1 while 33.20% of the variance was not being expounded through it.
Eventually, further investigation focused on total comprehension of these modern statistical
methods would be of benefit and make the method more consistent and useful, to obtain
the best (high productivity and stability) genotypes under environmental stresses and
to meet increasing demands for crop wheat because of population growth coupled with
extreme climatic variations [12,29,34,63].

5. Conclusions

The assessment of plant traits is deemed an important tool for a plant breeder in
variation studies and is essential for identifying the plant tolerance of abiotic stresses. Many
wheat genotypes showed genetic diversity under abiotic stress conditions. In the present
study, the categorization of 20 genotypes of wheat into five tolerance categories was verified
by LDA, which indicated that prior and posterior categories were perfectly symmetrical (in
the case of the study of all traits) and it varied in 5 genotypes (in the case of the study of
the GY trait and related traits), but cross-validation showed variations in both cases. G01,
G12, G16, and G02 were selected as the appropriate and stable genotypes using the MGIDI
with the six tolerance multi-indices. The biplot features the genotypes G01, G03, G11, G16,
G17, G18, and G20 as the most stable and they had high tolerance across the environments.
The results of the three analyses (LDA, MGIDI, and WAASB) showed genotype G01 to
be the most stable candidate. The genotype G01 is considered a novel genetic resource
to optimize productivity and genetic stability in wheat programs under multiple abiotic
stresses. Hence, these techniques, if used in an integrated manner, could strongly support
the plant breeders in METs.
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