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Abstract: Spiraea hypericifolia L. is affiliated with the section Chamaedryon Ser. of the genus Spiraea L.
(Rosaceae). Similar to many other Spiraea species, S. hypericifolia most often accumulates flavonols
among other flavonoids, in particular quercetin and its derivatives. An ethanol–water extract from
the aerial part of S. hypericifolia collected in the vicinity of the Ilyichovo settlement (Krasnoyarsk
Krai, Russia) was analyzed by liquid chromatography with high-resolution mass spectrometry.
Primary and secondary metabolites were found in the extract; structural interpretation consistent
with quercetin and its derivatives was proposed for 10 of them. Major compounds were various
glycosides of quercetin containing glucose (four compounds), galactose (one compound), xylose (two
compounds), arabinose (one compound), or rutinose (one compound) as a carbohydrate residue.
Isorhamnetin and 3-O-methylquercetin-3′-O-β-D-glucopyranoside were identified among methyl-
containing compounds. The latter compound and reynoutrin, rhamnetin-3-O-β-D-xylopyranosyl-
β-D-glucopyranoside, and quercetin-3-O-(6′ ′-O-malonyl)-β-D-glucoside have not been previously
found in S. hypericifolia. Data on the presence of quercetin and its derivatives in the extract of
S. hypericifolia expand the understanding of the possible practical use of this plant. In addition, the
microscopic features of S. hypericifolia leaves were studied. The diagnostic features of the leaf blade
necessary for the authentication of raw materials were revealed: straight-walled epidermis cells,
stomata located on both sides of the leaf blade (amphistomatic type), two types of trichomes, and
wrinkled cuticula with nodi. The main anatomical diagnostic features of the leaves of S. hypericifolia
were determined, which makes it possible to assess the authenticity of the raw material.

Keywords: Spiraea hypericifolia; Chamaedryon; quercetin; glycoside; anatomy

1. Introduction

Flavonoids are a large family of natural compounds that are characterized by various
structures, high and diverse biological activities, and low toxicity [1]. The development of
new medicinal formulations based on flavonoid-rich plants is hampered by insufficient
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knowledge about their chemical composition [2], especially the composition of wild species
still not used by humans [3,4].

Quercetin, that is, 3,5,7,3′,4′-pentahydroxyflavone, is a flavonoid that belongs to the
flavonol subclass and is of particular interest because it can be found in most of the studied
plants [1]. Quercetin consists of three rings (A, C, and B) with a skeleton of diphenyl
propane (C6-C3-C6). The A ring is synthesized through condensation of malonylcoenzyme
A formed by glucose metabolism. Rings B and C also arise as a result of glucose metabolism
in the shikimic acid pathway with the formation of cinnamic acid and its reduced product,
coumaric acid. Quercetin contains five hydroxyl groups at positions C-3, C-5, C-7, C-3′,
and C-4′.

Quercetin is a pharmacologically active compound because it has various biological
effects. In most cases, researchers focus on its antioxidant potential [5–8]; however, in many
other fields, clinical studies on quercetin have revealed that it is a potent pharmaceutical
agent [2,9–22]. Quercetin has manifested its efficacy in a number of medical areas, such as
allergology, immunology, endocrinology, gastroenterology, and urology, and is promising
for application in psychiatry and oncology. Animal studies indicate that oral administration
or inhalation of quercetin (20 mg/kg) has an antiasthmatic effect [9]; quercetin’s anti-
inflammatory effect has been reported too [10,11]. Quercetin is beneficial in the treatment
of a number of pelvic disorders (such as cystitis and chronic prostatitis) [12–15]. This
compound is used for the treatment of cardiovascular diseases [16] and autoimmune
disorders as well [17]. Recent studies suggest that quercetin exerts an antitumor effect as a
human cathepsin B inhibitor [18] and suppresses the proliferation and metastatic spread of
several cancer cell types, such as breast cancer [19], colon cancer [20], lung cancer [21], and
pancreatic cancer cells [22].

Spiraea L. species are flavonoid-accumulating plants whose extracts may contain up to
120 mg/g flavonoids [23]. From data about phenolic compound evolution in the Spiraea
genus, E.A. Karpova and N.P. Lapteva concluded that this genus’s flavonoid compounds
are mainly represented by flavonols, with quercetin accounting for 50% to 90% of aglycons,
and the remaining flavonoid compounds are represented by kaempferol and isorhamnetin
and their derivatives [24]. A literature review of the chemical composition of Spiraea species
also showed that the majority (over 25) of flavonoid compounds are quercetin and its
derivatives [25]. During an investigation of the chemical composition of some Spiraea
species, we attempted to study phenolic components of Spiraea representatives from Asian
Russia, including Spiraea hypericifolia L. [26,27]. Data on other chemical components of
S. hypericifolia L. are fragmentary; the plant has been found to contain such compounds
as flavonols, proanthocyanidins, and catechins [28]. Quercetin and its derivatives in
S. hypericifolia have not been studied separately.

Spiraea hypericifolia L. is affiliated with the section Chamaedryon Ser. of the genus
Spiraea L. (Rosaceae). This plant is a shrub up to 80 (150) cm in height with brown smooth
limbs (puberulent in young plants). It has long-ellipsoidal or lanceolar, grayish-green,
smooth-margin leaves. Flowers are white and are bound in an attached umbrella blossom
cluster; the fruit is a leaflet. S. hypericifolia occurs in Europe, the Caucasus, Central Asia,
Russia, Mongolia, and China [29,30]. It grows on steppe slopes, meadows, and limestone
outcrops [29].

The determination of the anatomical features of medicinal plants helps with quality
control of the production of phytotherapeutics [31]. Anatomical and morphological features
of medicinal plant raw materials are used as a mandatory indicator of standardization
in regulatory documentation to confirm authenticity. Anatomical features are especially
relevant for crushed raw materials and powders [32]. Falsification of drugs by replacement
with a species of the same genus with similar pharmacological properties can be controlled
through examination of diagnostic anatomical characteristics [33]. A comparative analysis
of the stem and leaf structure of two closely related species, Spiraea humilis Pojark. and
Spiraea salicifolia L., from Russia has revealed diagnostic features that can be employed
for interspecies diagnosis for their practical medicinal use [34]. It is reported that stems
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of species of the Spiraea section can be diagnosed only according to the structure of the
core and several quantitative features. Leaves of the species under study are diagnosed on
the basis of thickness of the lamina near the midrib and in the areas distant from ribs, the
thickness of the paxillate mesophyll, and the presence or absence of trichomes [34]. The
anatomical structure of the S. hypericifolia leaf has not been studied in Russia.

This study is aimed at (i) assaying S. hypericifolia extracts for quercetin and its deriva-
tives and (ii) anatomical and diagnostic leaf analysis.

2. Results and Discussion
2.1. Flavonoid Assay in an S. hypericifolia Extract by Liquid Chromatography Coupled with
High-Resolution Mass Spectrometry (LC–HRMS)

The analysis of LC–HRMS data was performed to characterize primary and secondary
metabolites, of which 10 were structurally interpreted as quercetin and its derivatives
(Table 1).

Table 1. Quercetin and its derivatives identified in water–ethanol extracts of S. hypericifolia by
LC–HRMS using the databases mzCloud and ChemSpider.

ID Identified Compounds tR (min) Mode Calculated
Mass

Measured
Mass

Delta
Mass (Da)

Delta
Mass (ppm)

MzCloud
Score

1 Rutin * 9.22 Negative 610.15368 610.15338 0.00029 0.48 –

2 Hyperoside *
(quercetin-3-galactoside) 12.39 Positive 464.09520 464.09548 −0.00027 −0.59 99.6

3 Quercetin * 12.40 Positive 302.04243 302.04265 −0.00022 −0.73 99.9

4
Rhamnetin-3-O-β-D-
xylopyranosyl-β-D-

glucopyranoside
12.48 Positive 610.15339 610.15338 0.00001 0.01 96.9

5
Isoquercitrin *

(quercetin-3-O-β-D-
glucopyranoside)

12.61 Negative 464.09548 464.09548 0.00000 0.00 99.4

6 Quercetin-3-O-(6′ ′-O-malonyl)-
β-D-glucoside 13.58 Positive 550.09574 550.09587 −0.00013 −0.24 97.5

7
Reynoutrin

(quercetin-3-O-β-D-
xylopyranoside)

13.72 Positive 434.08471 434.08491 −0.00020 −0.45 98.4

8 3-O-methylquercetin-3′-O-β-D-
glucopyranoside 14.10 Positive 478.11095 478.11113 −0.00018 −0.37 97.6

9 Isorhamnetin
(3′-methylquercetin) 14.10 Positive 316.05826 316.05830 −0.00004 −0.13 99.0

10
Avicularin *

(quercetin-3-O-α-L-
arabinopyranoside)

14.25 Negative 434.08417 434.08491 −0.00074 −1.71 –

Note: * Compounds confirmed by means of standards; “–”: only ChemSpider.

Among substances identified in the water–ethanol extract of S. hypericifolia, only
isorhamnetin is a methyl-containing derivative of quercetin, with the most substances
detected being various quercetin glycosides (Table 1). 3-O-methylquercetin-3′-O-β-D-
glucopyranoside contains both a methyl group (position C-3) and a carbohydrate residue
(position C-3′). The carbohydrate part of the molecule is composed of mono- and disac-
charides. Monosaccharides include pentoses (arabinose and xylose) and hexoses (galac-
tose, rhamnose, and glucose), whereas disaccharides include rutinose. The carbohydrate
moiety is usually attached at the C-3 position. In some cases (e.g., quercetin-3-O-(6′ ′-
O-malonyl)-β-D-glucoside), glucoside is additionally acylated with malonic acid on the
sugar’s hydroxyl group.

A hypothesis that quercetin and its derivatives tend to accumulate not only in
S. hypericifolia but also in other Spiraea species has been proved by other researchers. Lit-
erature data on the phytochemical content of certain species vary (data on some taxa are
scarcer than fragmentary because they are reported in one article only); therefore, it is
a foregone conclusion that the presence of the flavonoid family in Spiraea is diverse. As
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shown in Table 2, all the studied Spiraea species contain flavonols. We suppose that in terms
of the general diversity of flavonols contained in Spiraea, attention should be drawn to
S. salicifolia. Literature data on this species are more or less representative (34 flavonols)
because this taxon has been a subject of phytochemical studies more often than others.
It is difficult to assess the diversity of flavonols in Spiraea by means of studies on such
phytochemically underinvestigated species as S. albiflora, S. brahuica, or S. nipponica, in
which only one flavonol has been found.

Table 2. Flavonoid distribution in Spiraea species (according to Kostikova and Petrova [25]).

Species
Numbers of Identified Flavonoids by Class

Total
Flavones Flavonols Flavanones Isoflavones Catechins Anthocyanins

S. aemiliana – 7 – – – – 7

S. albiflora – 1 – – – – 1

S. aquilegifolia – 4 – – – – 4

S. beauverdiana – 7 – – – – 7

S. betulifolia – 8 – – – – 8

S. brahuica 2 1 – – – – 3

S. bumalda – 4 – – – – 4

S. canescens 1 2 – – – – 3

S. cantoniensis – 3 – – – – 3

S. chamaedryfolia – 4 – – – – 4

S. crenata – 6 – – – – 6

S. dahurica – 2 – – – – 2

S. douglasii – 2 – – – – 2

S. elegans – 2 – – – – 2

S. flexuosa – 3 – – – – 3

S. formosana – 5 – – – – 5

S. humilis – 2 – – – – 2

S. hypericifolia 4 6 – – 6 – 16

S. media – 9 – – – – 9

S. nipponica 1 1 – 1 2 – 5

S. prunifolia – 8 – – 3 – 11

S. pubescens – 2 – – – – 2

S. salicifolia 4 34 – – 3 – 41

S. schlothauerae – 3 – – – – 3

S. sericea – 3 – – – – 3

S. trilobata – 4 – – – – 4

S. ussuriensis – 3 – – – – 3

Note. “–“: data are unavailable.

Other researchers have reported that rutin, quercetin, avicularin, hyperoside, and iso-
quercitrin (identified by us) are present in S. hypericifolia, whereas quercetin-3-O-(6′′-O-
malonyl)-β-D-glucoside, reynoutrin, rhamnetin-3-O-β-D-xylopyranosyl-β-D-glucopyranoside,
and 3-O-methylquercetin-3′-O-β-D-glucopyranoside have not been found previously in either
this species or other Spiraea taxa.

Regarding the set of flavonoid compounds in Spiraea species, quercetin has proved
to be the most common substance (in 21 species) in various studies; hyperoside has been
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detected in 14 species; isoquercitrin has been identified in 10 Spiraea species; and avicularin,
rutin, and isorhamnetin have been found in 10 species by various authors [25].

Quercetin’s pharmaceutical characteristics have been investigated the best to date.
Most of the studies deal with its aglycone form; however, plasma analysis performed
after administration of quercetin shows that quercetin glycosides are the main circulating
compounds [35]. Various derivatives of quercetin (e.g., glycosides and methyl esters)
are mostly found in plants [36]. Frequent identification of aglycone in plant extracts
is traditionally attributed to the fact that pure quercetin as a marker is more available
commercially than its glycosides [37].

Quercetin glycosides arise via attachment of a sugar to quercetin by replacement of
one of the hydroxyl groups, with subsequent formation of a glycoside linkage. Quercetin
glycosylation may theoretically take place on any hydroxyl group, whereas most common
quercetin glycosides have a sugar group at the C-3 position. The isoquercetin structure has
been found to contain glucose attached to the OH group of quercetin at the C-3 position.
The addition of galactose to the quercetin molecule at the same C-3 position leads to
hyperoside, and the addition of a rhamnosyl group initiates the synthesis of quercitrin.
Several quercetin derivatives contain disaccharides, such as rutinose or arabinofuranose;
their attachment at position C-3 causes the formation of important compounds: rutin and
avicularin, respectively [2].

There are also some methylated derivatives of quercetin. For instance, rhamnazin
contains two methyl groups at positions C-7 and C-3′. Isorhamnetin is another methylated
flavonol (C-3′ position), which can be glycosylated, giving rise to quercetin 3-O-rutinoside
(narcissin) and other compounds.

A carbohydrate molecule attached to quercetin aglycone has been shown to improve
water solubility, absorption, and other properties [38]. The examples are an enzymatically
modified isoquercitrin and oligoglycosylated rutin. The former contains up to 10 glucose
residues attached to the C-3 position, whereas the latter carries up to five additional glucose
residues attached to rutin’s glucose residue. These compounds are dissoluble in water
and are taken up by the human body better than other quercetin glycosides used as food
additives in the USA and Japan [39].

Rutin’s pharmaceutical characteristics are studied best among all quercetin glycosides:
this compound promotes mammalian smooth muscle relaxation [40], and rutin’s antiox-
idant effect protects hepatic cells [41], inhibits hemoglobin oxidation [42], and exerts an
anti-inflammatory action [43,44]. Large reviews regularly mention the biological activity
and therapeutic features of such quercetin glycosides as quercitrin [45], isoquercitrin [46],
hyperoside [47], and reynoutrin [48]; some authors focus on the pharmacological activity
of its methyl-containing derivative, isorhamnetin [49]. Nonetheless, quercetin derivatives
that are less common in plants have attracted much attention. For instance, quercetin-3-
O-(6′ ′-O-malonyl)-β-D-glucoside has previously been found only in Moringa oleifera Lam.
(Moringaceae) [50], Morus alba L. (Moraceae) [51], Apocynum venetum L. [52], and A. hender-
sonii Hook. f. (Apocynaceae) [53]. The therapeutic potential of this compound and that of
rhamnetin-3-O-β-D-xylopyranosyl-β-D-glucopyranoside and 3-O-methylquercetin-3′-O-β-
D-glucopyranoside are yet to be researched.

2.2. Anatomical Features of S. hypericifolia Leaves

To identify the species, the microscopic features of S. hypericifolia leaves were investi-
gated next. Visual examination revealed straight-walled epidermis cells and anomocytic
stomata located on both sides of the leaf, being numerous under the leaf (amphistomatic
type) (Figure 1). Two types of trichomes can be found on both sides of the leaf: small
ordinary one-celled sharp conical trichomes and larger ordinary one-celled thick-walled
trichomes. The epiderma is covered with wrinkled cuticula with nodi. Calcium oxalate
clusters can be seen in the leaf mesophyll.
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cinity of the Ilyichovo settlement, Shushensky District, Krasnoyarsk Krai (Russia). 
Voucher specimens (No. SH-KI-25, No. SH-KI-26, and No. SH-KI-27) were deposited in 
the plant material storage room in the Laboratory of Phytochemistry, CSBG SB RAS 

Figure 1. S. hypericifolia leaves. (A). The upper epidermis of the leaf blade (×400) (B). The lower
epidermis of the leaf blade (×400) (C). The epidermis of the leaf blade with a single one-celled
trichome and anomocytic stomata (×600). (D). Ordinary one-celled sharp conical trichomes (×600).
(E). Wrinkled cuticula with nodi (×600). (F). An ordinary hair and its attachment site (×600).

There is not much information about the anatomical features of the leaves of S. hypericifolia
in the literature. S. Kuzieva et al. [54] researched the structural features of the vegetative
organs of S. hypericifolia growing in Uzbekistan. As a result, it has been shown that the
leaves of this plant are amphistomatic; the epidermis consists of one row of cells with a
thick-walled cuticle layer, and the stomata are not submerged. Leaf trichomes are also
described, and according to these data, they are all of the same type: simple, opaque,
awl-pointed, very rarely located along large veins. The discrepancy between the literature
data and our findings may be explained by differences in the methods for obtaining mi-
cropreparations because those authors did not conduct special analyses of trichomes and
merely recorded their presence on transverse sections of leaves near large veins. Additional
research on this issue is required. Furthermore, for a comparative analysis in the future,
it is important to study the anatomical and diagnostic features of other species of Spiraea,
especially those with morphological features similar to those of S. hypericifolia.

3. Materials and Methods
3.1. Plant Material and Preparation of the Extract

Aerial parts of S. hypericifolia were collected during the flowering period in the vicinity
of the Ilyichovo settlement, Shushensky District, Krasnoyarsk Krai (Russia). Voucher
specimens (No. SH-KI-25, No. SH-KI-26, and No. SH-KI-27) were deposited in the plant
material storage room in the Laboratory of Phytochemistry, CSBG SB RAS (Novosibirsk,
Russia). Air-dried plant material was mechanically ground to obtain a homogeneous
powder with a particle size of 2–3 mm. The dry extract was prepared as follows: The plant
material was extracted in a water bath in three replicates (100 mL in the first replicate and
75 mL in the second and third replicates) with 70% ethyl alcohol for 8 h at 60 ◦C. After
cooling, the combined filtrates were concentrated in a rotary evaporator to remove the
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solvent, and then the thick extract was dried in a vacuum drying cabinet to 5% residual
moisture. To identify flavonoids, a stock solution of the crude extract was prepared by
dissolving the dry extract in 70% ethanol at a 1:1000 ratio.

3.2. Mass Spectrometry Settings and the Spectral Library

LC–HRMS was carried out at the Core Facility of Mass Spectrometric Analysis at the
Institute of Chemical Biology and Fundamental Medicine SB RAS (Novosibirsk, Russia).

An UltiMate 3000 liquid chromatograph (Thermo Fisher Scientific, San Jose, CA, USA)
coupled with a Q Exactive HF mass spectrometer (Thermo Fisher Scientific) was utilized to
determine the flavonoid profile of the S. hypericifolia extract. The chromatographic separa-
tion was attained at a 0.4 mL/min flow rate on a Zorbax Eclipse XDB-C18 reversed-phase
column (150 × 3.0 mm, 5 µm, Agilent Technologies, Santa Clara, CA, USA) thermostatted
at 40 ◦C. The mobile phase was composed of 0.1% aqueous formic acid (eluent A) and
acetonitrile (eluent B). The elution gradient was implemented as follows: from 5% to 70% B
for 40 min, followed by an increase to 90% B for 8 min, a decrease to 5% B for 5 min, and
re-equilibration under the initial conditions for 7 min.

The parameters set for the electrospray ionization (ESI) source were as follows: elec-
trospray voltage: 3.2 kV in the negative mode and 4.2 kV in the positive mode; capillary
temperature: 320 ◦C; and S lens RF level: 50. Data were obtained by full-scan data-
dependent acquisition (FS-dd-MS2) in the positive and negative modes at a resolving
power of 45,000 full width at half maximum (FWHM) m/z 200. The following settings of
the mass spectrometer were employed: scan range, m/z 80–1200; automatic gain control
(AGC), 3e6; injection time, 100 ms; and isolation window, m/z 2.0. The normalized collision
energy for the fragmentation of molecular ions was set to 40 eV. Targeted tandem mass
spectrometry (MS/MS; dd-MS2) was performed in both positive and negative modes at
15,000 FWHM (m/z 200). AGC for dd-MS2 was set to 1e5, with an injection time of 50 ms
and a loop count of 5. In the section of dd settings, the AGC target was programmed
at 8e3, and the maximum injection time was set to 100 ms. Data were analyzed using
Xcalibur 4.0 and the Compound Discoverer 3.1 software (Thermo Fisher Scientific). All
the samples, including blank ones, were assayed in triplicate. All the samples were pro-
cessed in Compound Discoverer 3.1 via a common workflow, “Environmental Unknown
ID w Online and Local Database Searches” (Figure S1). A mass tolerance of 5 ppm was
applied to all nodes. Several databases, namely, KEGG (https://www.genome.jp/kegg/,
last accessed 10 March 2021), MassBank (https://massbank.eu/MassBank/, last accessed
10 March 2021), PlantCyc (https://plantcyc.org/, last accessed 10 March 2021), and Planta
Piloto de Quimica Fina Universidad de Alcala (http://www.cqab.eu/index.php/en/, last
accessed 10 March 2021), were chosen in ChemSpider.

Flavonoids were identified on the basis of both accurate mass and fragment mass “fin-
gerprint” spectra via searches against the spectra of compounds available in the mzCloud
database (https://www.mzcloud.org, last accessed 10 March 2021). If compounds were
absent in mzCloud, they were tentatively identified using a ChemSpider search. According
to the workflow, the masses extracted from the chromatograms were aligned and filtered
to remove (i) background compounds present in the blank sample, (ii) substances that
failed to become fragmented, (iii) compound masses that were absent in the databases,
and (iv) signals with low intensity.

The S. hypericifolia extract and a blank sample, which consisted of pure solvent, were
analyzed as two biological replicates with three technical replicates per treatment group.

3.3. Chemicals

All chemicals were of mass spectrometric or analytical grade. Chemical reference
standards of quercetin and isoquercitrin were purchased from Sigma-Aldrich (Germany),
whereas rutin, avicularin, and hyperoside from Fluka Chemie AG (Switzerland).

https://www.genome.jp/kegg/
https://massbank.eu/MassBank/
https://plantcyc.org/
http://www.cqab.eu/index.php/en/
https://www.mzcloud.org
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3.4. Anatomic Examination of S. hypericifolia Leaves

Leaves from the herbarium were studied visually with the naked eye using a 10×
magnifier in accordance with the requirements of the books Herbae and Technique of
Microscopic and Microchemical Studies of Herbal Drugs and Herbal Medicinal Products,
State Pharmacopoeia of the Russian Federation, XIV edition [32].

Analyzed specimens were clarified by boiling in 5% sodium hydroxide and chloral
hydrate. Micropreparations were examined under a BIOSCOP-1 biological microscope
with 4×, 10×, and 40× lenses and 7×, 10×, and 15× oculars. Microphotoshooting was
performed using a ToupCam FMA050 digital camera (12 megapixels).

4. Conclusions

Primary and secondary metabolites were detected in an ethanol–water extract of
S. hypericifolia; 10 of these were identified as quercetin and its derivatives. Seven of the
identified substances (quercetin, hyperoside, isoquercitrin, reynoutrin, avicularin, rutin,
and isorhamnetin) have pharmacological activities, according to numerous studies. Hence,
the therapeutic potential of S. hypericifolia has not been exploited so far. The pharmaco-
logical activity of other found substances (quercetin-3-O-(6′ ′-O-malonyl)-β-D-glucoside,
rhamnetin-3-O-β-D-xylopyranosyl-β-D-glucopyranoside, and 3-O-methylquercetin-3′-O-
β-D-glucopyranoside) requires further investigation. Our data should improve the un-
derstanding of the enormous pharmacological potential of S. hypericifolia. Results on the
content of quercetin and its derivatives (except for pharmaceutical compounds) may be of
interest for food and cosmetics industries. The anatomical features of S. hypericifolia leaves
were studied too. The anatomic diagnostic features of the raw material can be defined as
straight-walled epidermis cells, stomata located on both sides of the leaf blade (amphis-
tomatic type), two types of trichomes, and wrinkled cuticula with nodi. The anatomical
features of S. hypericifolia leaves will allow investigators to evaluate the authenticity of raw
materials, which have diverse uses.

Supplementary Materials: The following is available online at https://www.mdpi.com/article/
10.3390/plants12020381/s1, Figure S1: Workflow on Compound Discoverer used for flavonoid
identification.
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