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Abstract: Cryptoconcatones A-L represent a series of 12 dihydropyrone derivatives isolated from
the evergreen tree Cryptocarya concinna Hance, which is well distributed in southeast Asia. The lead
compound in the series, cryptoconcatone L, has revealed antiproliferative activity against cultured
cancer cells but its mechanism of action remains unknown. Based on a structural analogy with
the anticancer natural product pironetin, which is well known for binding covalently to α-tubulin
and for functioning as a microtubule polymerization inhibitor, we investigated the interaction of
cryptoconcatones with tubulin dimers using molecular docking. The α-tubulin binding capacity
of each compound was quantified (through calculation of the empirical energy of interaction ∆E)
and structure–binding relationships were delineated. Two compounds were found to interact with
α-tubulin much more potently than pironetin: cryptoconcatones F and L. In both cases, the facile
formation of a covalent bond with Cys316 was evidenced, as observed with the parent compound
pironetin. A few other pironetin analogues were investigated, including spicigerolide, which is an
analogue of another known α-tubulin binder. Altogether, this study points to the identification of
a series of 5,6-dihydro-α-pyrones as α-tubulin-binding agents. The study contributes to a better
understanding of the mechanism of action of cryptoconcatones and should help the design of
analogues targeting the pironetin site of α-tubulin.

Keywords: anticancer agents; Cryptocarya species; cryptoconcatones; pironetin; tubulin binding

1. Introduction

Microtubules are elongated cytoskeletal structures formed from the polymerization
of tubulin dimers. They delimit a dynamic tubular network subjected to continuous
cycles of polymerization and depolymerization. These biopolymers are made of α-tubulin
and β-tubulin heterodimers. For many years, microtubule-targeting agents (MTAs) have
represented effective drugs for cancer treatment. Different classes of MTAs are used to
treat solid tumors, principally taxanes (paclitaxel, docetaxel, cabazitaxel), vinca-alkaloids
(vinorelbine, vincristine), and a few others (epothilone, eribulin) [1,2]. They represent
potent cytotoxic agents which are useful for blocking tumor cell growth, and display
additional key properties such as decreasing angiogenesis and cell migration, reducing
metastasis, and activating innate immunity to promote a proinflammatory response [3].
Most of these drugs were discovered more than 50 years ago, but they remain widely used
daily in cancer therapeutic units. Some of these drugs, notably taxonoids, have “changed
society”, as underlined recently [4]. However, the use of these compounds is limited by
significant toxicities (notably peripheral neuropathies) and the development of multidrug
resistance. These limitations can be reduced upon combination with targeted molecules,
such as kinase inhibitors or immune checkpoint inhibitors, but nevertheless the search for
novel MTAs is needed to improve cancer treatments [2]. Novel anti-tubulin drugs continue
to be designed and evaluated experimentally [5,6].
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All clinically approved MTAs interact with the β-tubulin component of tubulin het-
erodimers. Several drug-binding sites have been identified on β-tubulin, such as the vinca
site, maytansine site, taxane site, colchicine site, and laulimalide/peruloside site [7]. Re-
cently, another site at the junction of α- and β-tubulin was identified for cyclodepsipeptide
gatorbulin-1, isolated from marine cyanobacteria [8]. There is only one known binding site
within the α-tubulin component, the so-called pironetin site (Figure 1). Pironetin (PRN) is a
naturally occurring plant growth regulator isolated from the culture broth of Streptomyces
sp. NK10958 [9,10]. PRN is a dihydropyrone derivative and its α,β-unsaturated lactone is
absolutely essential for its microtubule inhibitory activity. The alkyl chain and the hydroxyl
group at the 7-position are also important for the inhibition of the microtubule dynamic [11].
Early on, PRN was shown to function as an inducer of microtubule disassembly, endowed
with marked antitumor properties [12,13]. Detailed investigations of the mode of binding of
PRN to α-tubulin have revealed that the drug interacts with Lys352 residue [14] and reacts
covalently with Cys316 to destabilize microtubules (Figure 1) [15,16]. Dynamic molecular
models of the PRN/α-tubulin complex have been produced [17].
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tives with improved pharmacological properties and metabolic stability [23–29]. Hybrid 

Figure 1. The molecular model of pironetin (PRN) bound to β-tubulin. (a) A docking model of PRN
binding to the α/β-tubulin dimer interacting with stathmin-4 and tubulin tyrosine ligase (PDB access
code: 5FNV) was built. The pironetin active site of α-tubulin is highlighted. (b) A close-up view of
PRN bound to the active site. (c) Detailed view showing the covalent bond between the lactone unit
of PRN and the thiol group of Cys316 residue, as indicated on the corresponding structures.

The unique capacity of PRN to interfere with microtubule assembly via α-tubulin
binding, coupled with its antitumor properties, have stimulated the search for more potent
analogues. Over the past 20 years, synthetic approaches have been explored to produce
PRN via different chemical routes [18–22] and to generate simplified PRN derivatives with
improved pharmacological properties and metabolic stability [23–29]. Hybrid molecules
combining the scaffold of PRN with other MTAs, such as combretastatin and colchicine,
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have been designed as well [30–32]. Overall, α-tubulin remains an attractive and underex-
plored target for the design of anticancer agents [7].

Different chemical approaches can be used to design PRN analogues and PRN-inspired
derivatives [33]. Alternatively, it is possible to search through the natural product data bank
for PRN-like molecules. In this context, our approach has consisted of searching for natural
products containing a dihydropyrone scaffold similar to that of PRN and investigating
the potential of binding of the identified compounds to the PRN-binding site on α-tubulin
using molecular docking. Here we report our discovery of the capacity of the natural
products cryptoconcatones to interact with α-tubulin at the PRN site. Structure–binding
relationships are discussed.

Twelve cryptoconcatone derivatives, designated cryptoconcatones A-L (Figure 2) were
isolated by Yang and co-workers [34,35] from the leaves and twigs of Cryptocarya concinna
Hance, a tree largely distributed in southeast Asia and used for its robust wood. These
compounds contain arylalkenyl α,β-unsaturated δ/γ-lactones and some of them display
anti-inflammatory properties [34,35]. Cryptoconcatones K and L have been shown to
inhibit proliferation and to induce cytotoxic effects in Huh7 hepatocellular carcinoma cell
lines (IC50 = 4.5 and 3.9 µM, respectively) [35]. However, these natural products have been
little studied thus far and no molecular target has been proposed to explain their cytotoxic
properties. Here we reveal the capacity of these compounds to bind to the PRN site of
α-tubulin, thus offering a possible explanation for their cytotoxic effects.

Plants 2023, 12, x FOR PEER REVIEW 3 of 11 
 

 

molecules combining the scaffold of PRN with other MTAs, such as combretastatin and 
colchicine, have been designed as well [30–32]. Overall, α-tubulin remains an attractive 
and underexplored target for the design of anticancer agents [7]. 

Different chemical approaches can be used to design PRN analogues and PRN-in-
spired derivatives [33]. Alternatively, it is possible to search through the natural product 
data bank for PRN-like molecules. In this context, our approach has consisted of searching 
for natural products containing a dihydropyrone scaffold similar to that of PRN and in-
vestigating the potential of binding of the identified compounds to the PRN-binding site 
on α-tubulin using molecular docking. Here we report our discovery of the capacity of the 
natural products cryptoconcatones to interact with α-tubulin at the PRN site. Structure–
binding relationships are discussed. 

Twelve cryptoconcatone derivatives, designated cryptoconcatones A-L (Figure 2) 
were isolated by Yang and co-workers [34,35] from the leaves and twigs of Cryptocarya 
concinna Hance, a tree largely distributed in southeast Asia and used for its robust wood. 
These compounds contain arylalkenyl α,β-unsaturated δ/γ-lactones and some of them 
display anti-inflammatory properties [34,35]. Cryptoconcatones K and L have been shown 
to inhibit proliferation and to induce cytotoxic effects in Huh7 hepatocellular carcinoma 
cell lines (IC50 = 4.5 and 3.9 μM, respectively) [35]. However, these natural products have 
been little studied thus far and no molecular target has been proposed to explain their 
cytotoxic properties. Here we reveal the capacity of these compounds to bind to the PRN 
site of α-tubulin, thus offering a possible explanation for their cytotoxic effects. 

 
Figure 2. Structures of cryptoconcatones A-L isolated from the leaves and twigs of the tree Crypto-
carya concinna Hance (Lauraceae). 

2. Results 
A high-resolution crystal structure of PRN bound to α/β-tubulin dimer is available 

(PDB: 5FNV). This structural model has been used to investigate binding of the various 
cryptoconcatones to the pironetin site, via a molecular docking analysis. There is a narrow 
but deep cavity in the center of α-tubulin in which the different ligands can insert, with 
the phenylalkenyl moiety positioned toward the floor of the cavity and the dihydro-α-
pyrone moiety toward the opening of the cavity, as represented in Figure 3a with crypto-
concatone A (CC-A). The binding pocket is small but sufficiently deep to accommodate 
the ligand completely, and remains well accessible to the solvent (Figure 3b). Multiple 
molecular contacts can be established between the natural product and the protein to sta-
bilize the complex. We could identify up to 26 potential contacts, including 3 H-bonds 
with the key residues Lys352, Ile238 and Ser241, plus a range of van der Waals, alkyl/π-
alkyl and π -sulfur contacts (Figure 3c). 

For each compound, a specific model was built and the empirical energy of interac-
tion (ΔE) and free energy of hydration (ΔG) were calculated (Table 1). Interestingly, al-
most all compounds provided ΔE values more negative than those calculated with the 
reference PRN. Only CC-K was found to bind poorly to α-tubulin. 

Figure 2. Structures of cryptoconcatones A-L isolated from the leaves and twigs of the tree Cryptocarya
concinna Hance (Lauraceae).

2. Results

A high-resolution crystal structure of PRN bound to α/β-tubulin dimer is available
(PDB: 5FNV). This structural model has been used to investigate binding of the various
cryptoconcatones to the pironetin site, via a molecular docking analysis. There is a narrow
but deep cavity in the center of α-tubulin in which the different ligands can insert, with the
phenylalkenyl moiety positioned toward the floor of the cavity and the dihydro-α-pyrone
moiety toward the opening of the cavity, as represented in Figure 3a with cryptoconcatone
A (CC-A). The binding pocket is small but sufficiently deep to accommodate the ligand
completely, and remains well accessible to the solvent (Figure 3b). Multiple molecular
contacts can be established between the natural product and the protein to stabilize the
complex. We could identify up to 26 potential contacts, including 3 H-bonds with the key
residues Lys352, Ile238 and Ser241, plus a range of van der Waals, alkyl/π-alkyl and π

-sulfur contacts (Figure 3c).
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Figure 3. Molecular model of cryptoconcatone A (CC-A) bound to α-tubulin. (a) CC-A fits into a
cavity of the protein. (b) A close-up view of CC-A inserted into the binding cavity, with the solvent-
accessible surface (SAS) surrounding the drug binding zone (color code indicated). A ribbon model
of α-tubulin is shown, with α-helices (in red) and β-sheets (in cyan). (c) Binding map contacts for
CC-A bound to α-tubulin (color code indicated).

For each compound, a specific model was built and the empirical energy of interaction
(∆E) and free energy of hydration (∆G) were calculated (Table 1). Interestingly, almost all
compounds provided ∆E values more negative than those calculated with the reference
PRN. Only CC-K was found to bind poorly to α-tubulin.

Table 1. Calculated potential energy of interaction (∆E) and free energy of hydration (∆G) for the
interaction of the indicated natural products with tubulin.

Compounds ∆E (kcal/mol) ∆G (kcal/mol)

Pironetin −57.32 −24.20
Cryptocontanone A −67.80 −25.00
Cryptocontanone B −63.10 −24.25
Cryptocontanone C −70.30 −26.25
Cryptocontanone D −60.70 −27.50
Cryptocontanone E −65.40 −22.00
Cryptocontanone F −74.15 −27.60
Cryptocontanone G −66.00 −24.40
Cryptocontanone H −57.70 −23.30
Cryptocontanone I −66.65 −29.10
Cryptocontanone J −66.75 −30.75
Cryptocontanone K −52.30 −22.85
Cryptocontanone L −73.40 −26.50

Cryptofolione −56.20 −21.75
Cryptoyunone B −60.20 −19.80

Obolactone −52.50 −18.50
Rugulactone −59.50 −16.80
Spicigerolide −67.70 −21.00

Among the subseries of seven compounds with a similar phenylalkenyl α,β-unsaturated
delta-lactone core (CC-A to CC-G), the best two compounds are CC-C and CC-F. This latter
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compound emerged as the best ligand in this study. CC-F also displays a lower solvation
free energy (∆G) than CC-C. A molecular model of CC-F bound to α-tubulin is presented
in Figure 4. The bonding interaction between the Cys316 residue of the protein and the
drug can be clearly seen, together with the extended conformation of the ligand within the
binding site. Multiple molecular contacts maintain the compound in the cavity (Figure 4b).
Compared to CC-A, CC-F interacts with the protein via a greater number of H-bonds,
notably with residues Ser-237 and Leu-242, but the two protein-bound drug configurations
are very similar. They both present the same key three hydroxyl groups necessary to anchor
the drug in the protein cavity. The central -OH (R3) is important because its substitution
with an acetyl group, as in CC-B, CC-C and CC-G, reduces the binding interaction with
the protein. The other -OH group at R2 is apparently less essential; its substitution with
an acetyl group is not detrimental to the binding interaction, but is favorable. The best
binders, CC-A, -C and -G, all present an -OAc substituent at this position R2.
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Figure 4. Molecular model of cryptoconcatone F (CC-F) bound to α-tubulin. (a) A detailed view of
CC-F inserted into the binding cavity. The drug is covalently bound to the protein, with α-helices (in
red) and β-sheets (in cyan). (b) Binding map contacts for CC-F bound to α-tubulin (color code as in
Figure 3). Note that in (b), the compound interaction is represented prior to the covalent binding to
Cys316. The structures of CC-F free and bound to the Cys316 residue of the protein are represented
below the model.

Cryptoconcatones I and J (Figure 2), with an arylalkenyl α,β-unsaturated γ-lactone
(not δ-lactone, as for all the other cryptoconcatones), display the same capacity to bind
to α-tubulin, weaker than that of CC-F but comparable to that of CC-A and CC-G, for
example. CC-J is the compound with the lowest solvation free energy in the series but
is not the best overall binder. The replacement of the 2-pyranone with a 2-furanone unit
is neither an obstacle for protein binding, nor a source of additional interaction. The
last three compounds with an arylalkenyl α,β-unsaturated δ-lactone (CC-H, -K, -L) offer
interesting observations. The best compound is CC-L with an acetyl group on the central
tetrahydropyran ring (at the 4′ position), with a binding capacity almost identical to that of
CC-F. Both the empirical energy of interaction (∆E) and solvation free energy (∆G) values
are similar for the two compounds (Table 1). The deletion of the acetyl group gives a
compound with a 4′-OH (CC-K), which is significantly less potent as an α-tubulin binder
compared to CC-L. The removal of the hydroxyl on the lactone ring, as in CC-H (R2=H),
leads to a compound with the weakest protein binding capacity. The two substituents of
CC-L (R1=OAc and R2=OH) play a major role in maintaining the interaction between the
compound and α-tubulin, as represented in Figure 5. Upon binding to the PRN site of
α-tubulin, the molecule CC-L is positioned with its lactone ring facing the thiol group of
the Cys316 residue, at a short distance to allow the covalent reaction. The compound is
ideally placed to react with the proximal thiol group, leading easily to the covalent adduct
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(Figure 6). The same process was observed with CC-F and CC-L, the two best α-tubulin
ligands in the cryptoconcatone series.
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To complete the study, we searched for other natural products bearing an aryl or
arylalkenyl δ-lactone as in CC-F to try to identify other α-tubulin binders. We tested
five compounds structurally close to CC-F: cryptofolione, cryptoyunone B, obolactone,
rugulactone and spicigerolide (Figure 7).

These compounds can be found in Cryptocarya species [36–39]. The ∆E and ∆G values
calculated with these compounds are reported in Table 1. None of them provided ∆E
values better (more negative) than those calculated with the best two ligands in our series,
CC-F and CC-L. However, the lactone spicigerolide revealed a marked capacity to interact
with α-tubulin, with an affinity similar to that of CC-A, for example. This compound has
been described previously as a cytotoxic agent [40]. Tubulin binding may contribute to the
cytotoxic action of spicigerolide.
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3. Discussion

The evergreen tree Cryptocarya concinna Hance is largely distributed in southeast Asia
and southern China [41,42]. The wood of the tree is frequently used for housing and furni-
ture making. Many bioactive natural products have been isolated from the plant, notably
from the young leaves, which contain phenolic compounds with antioxidant properties [43].
They also contain compounds with antimicrobial and mosquito larvicidal activities [44]. A
series of 12 lactone derivatives, called cryptoconcatones A-L, has been isolated from the
plant and some of these compounds have revealed interesting biological properties [34,35].
This is the case notably for cryptoconcatone L, which is a cytotoxic molecule, inhibiting
proliferation of Huh7 hepatocellular carcinoma cells [35]. The mechanism of action of the
natural product has never been investigated. Here we provide computational evidence
suggesting that the compound could function as a tubulin binder. Nevertheless, tubulin
binding is not the sole parameter to explain the cytotoxicity of the compounds. CC-L
emerges as a potent potential tubulin binder, whereas the analogue CC-K exhibits a much
weaker tubulin binding profile (at least according to our calculations), but is also a cytotoxic
compound [35]. There are other parameters that play a role in the cytotoxic action (drug
uptake, excretion, metabolism, etc).

Cryptoconcatone L and its analogue cryptoconcatone F both present a prominent
capacity to bind to the pironetin site of α-tubulin. These two compounds have been
completely neglected thus far and rarely studied. There are described chemical proce-
dures for the synthesis of cryptoconcatones D, H and I [45–47]. However, there are no
pharmacological studies defining their molecular target and activities. The present work
opens novel perspectives to understand their mode of action. The molecular models of
cryptoconcatone/α-tubulin complexes reported here can also facilitate the design of novel
analogues targeting the microtubule network. Molecular docking is a useful approach to
investigate and propose protein targets and to guide the design of more potent analogues.

The pironetin site of α-tubulin is viewed as a target for the design of anticancer
agents. Microtubule inhibitors have been extensively studied, but most of them bind to
the vinca-alkaloid or taxane sites on β-tubulin [8]. The pironetin binding site on α-tubulin
is considered an unexplored target for cancer therapeutics [7]. There are a few recent
studies dedicated to the design of novel pironetin derivatives, such as phenylpironetin
analogs [28,29] and functionalized pironetin analogs [25–27]. Otherwise, the pironetin
scaffold is not frequently used as a template to build anticancer agents. Nevertheless, it is
interesting to refer to a study about the properties of 2-pyranone derivatives isolated from
Hyptis species (Lamiaceae) to bind to the pironetin site of α-tubulin. These compounds,
named pectinolides, exert cytotoxic effects toward cancer cells. The best compound in the
series, pectinolide K (Figure 7), has shown submicromolar activities against breast, cervix
and colon cancer cells in vitro (IC50 = 0.5, 0.7 and 0.8 µM, against MCF7, HeLa, and HCT-15
cells respectively) [48]. Based on a molecular docking analysis (similar to the one reported
here), the authors concluded that pectinolide K binds to the pironetin site on α-tubulin,
using notably H-bonding interaction with residue Lys352. The situation for this pyrone
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derivative, structurally close to spicigerolide, is totally reminiscent of that described here
with cryptoconcatones F and L. The protein binding process implicates Lys352 and Val353,
and the respective orientations of the compounds in the pironetin site are very similar (but
according to our calculation, pectinolide K is much less prone to α-tubulin binding than
CC-F (∆E = −48.9 and −74.1 kcal/mol, respectively)). Based on their model, the authors
designed a series of 6-heptyl-5,6-dihydro-2H-pyran-2-ones targeting α-tubulin [48]. In
conclusion, our work, entirely consistent with other observations, attests that the cryp-
toconcatone and pironetin scaffolds can be further exploited to design anticancer agents.
There exists a variety of 5,6-dihydro-α-pyrones in plants, such as monticolides [49], pul-
chrinervialactone [50], cryptorigidifoliols [51], cryptomoscatones [36] and others. All these
compounds should be tested as modulators of microtubule dynamics.

4. Materials and Methods
4.1. Molecular Structures and Software

The three-dimensional structure of pironetin bound to α-tubulin was retrieved from
the Protein Data Bank (www.rcsb.org, accessed on 23 December 2022) under the PDB code
5FNV. The structure has been determined by X-ray diffraction with a good resolution
(2.61 Å) [15]. Docking experiments were performed using the GOLD software (GOLD 5.3
release, Cambridge Crystallographic Data Centre, Cambridge, UK). Molecular graphics
and analyses were performed using Discovery Studio Visualizer, Biovia 2020 (Dassault
Systèmes BIOVIA Discovery Studio Visualizer 2020; San Diego, Dassault Systèmes, 2020).

4.2. In Silico Molecular Docking Procedure

The process used includes the following five steps:

(1) Monte Carlo (MC) conformational search of the ligand using the BOSS (Biochemical
and Organic Simulation System) software, freely available to academic users. The
structure of the ligand was optimized using a classical MC conformational search
procedure, as described in BOSS [52]. A conformational analysis was performed to
define the best starting geometries for each compound. An energy minimization was
carried out to identify all minimum-energy conformers, leading to the identification of
a unique conformer for the free ligand. Within BOSS, MC simulations were performed
in the constant-temperature and constant-pressure ensemble (NPT).

(2) Evaluation of the free energy of hydration for the chosen structure of the ligand. The
molecular mechanics/generalized Born surface area (MM/GBSA) procedure was
used to evaluate the free energies of hydration (∆G) (Jorgensen and Tirado-Rives,
2005) [53]. MC search and computation of ∆G were performed within BOSS using the
xMCGB script according to procedures given in references [53,54]. The best ligand
structure was then used in the docking procedure.

(3) Definition of the α-tubulin-ligand site of interaction. The pironetin binding site
was defined as the binding site for all α-pyrone derivatives tested. With the 5FNV
structure, based on shape complementarity criteria, the flexible amino acids are
Phe135, Phe202, Leu248, Leu252, Phe255, Gln256, Leu259, Cys316, Lys352, and Leu378.
Shape complementarity and geometry considerations favor a docking grid centered
in the volume defined by the central amino acid. Within the binding site, the side
chains of the specific amino acids were considered fully flexible during docking.

(4) Docking procedure using GOLD. In our typical docking process, 100 energetically
reasonable poses (according to the ChemPLP scoring function) are retained while
searching for the correct binding mode of the ligand. The decision to maintain a trial
pose is based on ranked poses, using the PLP fitness scoring function (which is the
default in GOLD version 5.3 used here) [55]. Six poses are kept. The empirical potential
energy of the interaction ∆E for the ranked complexes was evaluated using the simple
expression ∆E(interaction) = E(complex) − [E(protein) + E(ligand)]. Calculations of
the final energy are performed on the basis of the SPASIBA spectroscopic force field.
The corresponding parameters are derived from vibrational wavenumbers obtained
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in the infrared and Raman spectra of a large series of compounds including organic
molecules, amino acids, saccharides, nucleic acids and lipids.

(5) Validation using the SPASIBA force field. This last step is considered essential to define
the best protein–ligand structure. The spectroscopic SPASIBA (Spectroscopic Potential
Algorithm for Simulating Biomolecular conformational Adaptability) force field has
been specifically developed to provide refined empirical molecular mechanics force
field parameters [56]. SPASIBA empirical energies of interaction are calculated as
described [57,58]. SPASIBA (integrated into CHARMM) [59] has been shown to be
excellent in reproducing crystal phase infrared data. The same procedure was used to
establish molecular models for the various drug–protein complexes.

5. Conclusions

The dihydropyrone compounds cryptoconcatones isolated from the tree Cryptocarya
concinna Hance can bind to tubulin dimer and target the pironetin site on α-tubulin. The
best binders are cryptoconcatones F and L. These compounds warrant further investigation
as potential modulators of tubulin dynamics and as anticancer agents.
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