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Abstract: Tubers and tuberous root crops are essential carbohydrate sources and staple foods for
humans, second only to cereals. The developmental phase transition, including floral initiation and
underground storage organ formation, is controlled by complex signaling processes involving the
integration of environmental and endogenous cues. FLOWERING LOCUS T (FT) and TERMINAL
FLOWER 1/CENTRORADIALIS (TFL1/CEN), members of the phosphatidylethanolamine-binding
protein (PEBP) gene family, play a central role in this developmental phase transition process. FT
and FT-like proteins have a function to promote developmental phase transition, while TFL1/CEN
act oppositely. The balance between FT and TFL1/CEN is critical to ensure a successful plant life
cycle. Here, we present a summarized review of the role and signaling network of PEBP in floral
initiation and underground storage organ formation, specifically in tubers and tuberous root crops.
Lastly, we point out several questions that need to be answered in order to have a more complete
understanding of the PEBP signaling network, which is crucial for the agronomical improvement of
tubers and tuberous crops.

Keywords: PEBP; tubers; tuberous roots; flowering time; underground storage organ; signaling
network

1. Introduction

Billions of people around the world consume tubers and tuberous root crops. Tuber
crops, such as potato (Solanum tuberosum) and yam (Dioscorea spp.), and tuberous roots or
starchy root crops, such as cassava (Manihot esculenta) and sweet potato (Ipomea batatas), are
important carbohydrate sources and staple foods for humans, second only to cereals [1].
Tubers and tuberous crops give more energy per unit per day than cereals while also having
a high amount of dietary fibers and serving as a good source of vitamins and minerals [1].
The global production of potato, yam, cassava, and sweet potato in 2020 was 359, 74, 302,
and 89 megatons, respectively [2]. Potato is mainly cultivated in subtropical and temperate
regions, such as China, India, Russia, Ukraine, and the USA. In contrast, yam, cassava,
and sweet potato are mainly produced in tropical regions such as Southeast Asia, Central
Africa, and Middle and South America [2]. Given their widespread cultivation and high
nutritional values, tubers and tuberous root crops are valued to combat food insecurity,
especially in developing countries [3,4].

Potato and yam tubers are initiated from specialized shoots called stolons. There
are two main phases of tuber formation. The first phase is stolon initiation and growth,
followed by the second phase of tuber induction and growth [5]. Potato tubers mostly
grow from a stolon tip that forms scattered meristematic cells from a former vasculature
tissue [6]. Meanwhile, tuberous roots mainly grow from the development of the primary
cambium, followed by active cell division and cell expansion in the vascular cylinder [6].
The development of underground storage organ formation is initiated by a complex molec-
ular biology process, which is controlled by environmental factors such as nutrient content,
photoperiod, and temperature [7–9].
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Underground storage organs such as tubers and tuberous roots contain high carbo-
hydrate levels produced by photosynthesis. Tubers and tuberous roots are primary sink
tissues to store excess assimilates. Sucrose, as a significant photo-assimilate, is transported
to the underground storage organ by SUCROSE TRANSPORTERs (SUTs), such as the
high-affinity sucrose/H+-symporter, StSUT1, and the low-affinity sucrose/H+-symporters,
StSUT2 and StSUT4 [10–12]. Furthermore, the external application of sugar induces the
formation of potato tubers and cassava tuberous roots [13,14], suggesting that the ini-
tiation of underground storage organ formation is well connected with plant growth
and development.

The floral initiation and underground storage organ development are controlled by
overlapping regulatory processes involving the Phosphatidylethanolamine-Binding Protein
(PEBP) gene family [15]. In this review, we briefly summarize the function of PEBPs in floral
initiation and underground storage organ formation of tuber and tuberous root crops, such
as potato, yam, cassava, and sweet potato. We also describe the environmental and internal
cues that modulate the function of PEBPs as regulators of flowering time and underground
storage organ formation. Furthermore, the known upstream regulators and interacting
partners of PEBPs in tubers and tuberous root crops are described and summarized into
a PEBP signaling network.

2. PEBPs in Tuber and Tuberous Root Crops

PEBPs were first purified from the bovine brain and characterized as having affinities
with several organic anions and phospholipids, e.g., phosphatidylethanolamine (PE) [16].
The overall protein structure of plant PEBPs shows a high degree of similarity with bovine
PEBP. It comprises a large central antiparallel β-sheet flanked by a smaller β-sheet on one
side and an α-helix on the other side [17,18]. These two central β-sheets are conserved and
essential for the anion-binding pocket structure, the signature of PEBPs [17,18].

On the basis of the genome sequence, PEBPs can be classified into three main groups,
MOTHER OF FT AND TFL1 (MFT)-like genes, FLOWERING LOCUS T (FT)-like genes, and
TERMINAL FLOWER 1 (TFL1)/CENTRORADIALIS (CEN)-like genes [19]. Algae and non-
vascular plants only contain MFT-like genes, whereas further duplication and divergence
of FT/TFL1-like genes have occurred in vascular plants [19]. In angiosperms, the PEBP
gene family plays an important role in plant development, including floral initiation and
underground storage organ formation [20,21]. In general, the florigen FT-like protein acts
as an activator to promote flowering and underground storage organ formation, while
the anti-florigen, TFL1/CEN-like protein, has a function to repress flowering and under-
ground storage organ formation [15,22]. In Arabidopsis, FT, TWIS SISTER OF FT (TSF), and
MFT are known as floral activators, while BROTHER OF FT AND TFL1 (BFT), TFL1, and
ARABIDOPSIS THALIANA CENTRORADIALIS (ATC) act as floral repressors [23]. Interest-
ingly, the functional evolution of FT-like genes likely started in basal angiosperms, as the
gymnosperm FT-like genes failed to promote flowering, in contrast with the gymnosperm
TFL1-like genes, which were capable of repressing flowering when expressed in Arabidopsis
(Arabidopsis thaliana) [24,25].

Several copies of FT-, TFL1/CEN-, BFT-, and MFT-like genes were identified in the
selected tubers and tuberous root crops, including potato, yam, cassava, and sweet potato
(Figure 1A). On the basis of phylogenetic analysis, we found that potato has three FT-like
genes, two TFL1/CEN-like genes, three BFT-like genes, and one MFT-like gene, consistent
with a previous report [26]. We found that yam (Dioschorea rotundata) has eight FT-like
genes, three TFL1/CEN-like genes, one BFT-like gene, and one MFT-like gene. Cassava has
two FT-like genes, five TFL1/CEN-like genes, one BFT-like gene, and two MFT-like genes.
Lastly, sweet potato has 10 FT-like genes, 11 TFL1/CEN-like genes, and seven MFT-like
genes. Among the identified FT-like genes, until now, only PGSC0003DMG400016179
(StSP3D) and Manes_12G001600 (MeFT1) have been characterized as floral
activators [21,27,28], while PGSC0003DMG400023365 (StSP6A) was found to be responsible
for promoting potato tuberization [21]. Interestingly, StSP5G, the repressor of StSP6A [29],
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is seemingly not annotated by the Potato Genome Sequencing Consortium (PGSC). Fur-
thermore, our phylogenetic analysis suggested that PGSC0003DMG400014322 (StCEN),
which has been identified as a negative regulator of floral development and tuber forma-
tion [30,31], is more closely related to BFT than TFL1/CEN (Figure 1A).
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Figure 1. Characterization of PEBP family in tubers and tuberous root crops. (A) Phylogenetic
tree of the PEBP family in potato, cassava, and yam. The tree was constructed using webtool
Phylogeny.fr with the maximum likelihood method [32]. The protein name represents the Ensembl
Plants accession number. (B) Multiple sequence alignment of the deduced amino-acid sequences of
FT for the conserved anion-binding pocket (ABP) and segment B of the fourth exon. Red, green, and
blue asterisks represent amino-acid residues that are important for FT movement, FT function, and
FT-to-TFL1 neofunctionalization, respectively.
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The divergence of FT-like genes involves a positive selection of the fourth exon after
the duplication event [33]. Among the thirty-nine nonconservative substitutions that
distinguish FT and TFL1, four residues (E109, W138, Q140, and N152) in the divergent
external loop segment in the fourth exon are critical for the opposite function of FT and
TFL1 [18,34]. Several FT homologs undergo neofunctionalization after the duplication event
to revert the function of FT from floral activator into floral repressor [35]. For example, an FT
homolog from sugar beet (Beta vulgaris), BvFT1, acts as a floral repressor due to mutations
that correspond to Y134N, G137Q, and W138Q in Arabidopsis FT [36], while barley (Hordeum
vulgare), HvFT4, acts as a floral repressor likely due to W138A mutation [37]. Other residues
such as V70, S76, and R83 are crucial for cell-to-cell movement of FT near the shoot apical
meristem (SAM) region [38], while the D73, E84, Y85, P94, R119, and G171 residues are
essential for the function of FT as the coactivator [20,34].

The majority of FT-like proteins from tubers and tuberous root crops have
conserved critical residues in comparison with Arabidopsis FT (Figure 1B). Interestingly,
PGSC0003DMG400016180 (StSP5G-like) has two mutations corresponding to R83K and
W138N in Arabidopsis FT which are crucial for FT movement [38] and neofunctionalization
of FT as a floral repressor [34], respectively. A similar mutation, crucial for the neofunc-
tionalization of FT as a floral repressor, is also seen in the yam. For instance, compared
with Arabidopsis FT, DRNTG_29881 has a Y85H mutation, DRNTG_11086 has a W138M
mutation, DRNTG_11087 has W138M and Q140H mutations, and DRNTG_20845 has
a Q140P mutation. Furthermore, DRNTG_16474 has a V70I mutation, which is crucial for
FT movement [38]. Therefore, only two FT-like proteins, DRNTG_28722 and DRNTG_10592,
are likely responsible for promoting flowering and underground storage organ formation
in yam. For tuberous root crops, two FT-like proteins in cassava and 10 FT-like proteins
in sweet potato have similar critical residues to Arabidopsis FT. Nevertheless, functional
studies of the remaining FT-, BFT-, and TFL1/CEN-like genes in potato, yam, cassava, and
sweet potato are essential to understand the genetic redundancy and the signaling network
of PEBPs in the regulation of flowering time and underground storage organ formation.

3. PEBP Signaling Network in Flowering Time Regulation

Internal and external cues strictly control the timing of flowering by regulating
PEBP [39] (Figure 2A). Long-day (LD) plants, such as Arabidopsis, flower in response
to increasing day length, whereas other plants, including rice and sorghum, flower under
short-day (SD) conditions. Photoperiodic flowering is controlled by the integration of light
perception and internal circadian rhythm [40]. In Arabidopsis, LD conditions induce high
levels of FT and TSF expression, which eventually promote flowering [20]. Transcription
factor complexes are also involved, such as the B-box transcription factor CONSTANS
(CO) [41,42]. The rhythmic expression and protein stability of CO are controlled by the
circadian clock and light, which eventually only allow FT and TSF expression at dusk under
LD conditions [39,40]. In contrast, the expression of ATC is activated by SD conditions,
especially at night time, likely to prevent flowering under noninductive SD conditions [43].

Temperatures also control the flowering time of Arabidopsis by flowering earlier under
warm temperatures and later under cool temperatures [44] (Figure 2A). Warm temperatures
promote the expression of FT and TSF through the activation of PHYTOCHROME INTER-
ACTING FACTOR 4 (PIF4) [45]. Moreover, temperature regulates FT trafficking through
the modulation of FT–phospholipid interactions [46]. Drought also accelerates flowering
through the drought escape response by activating FT and TSF expression via phytohor-
mone abscisic acid (ABA) [47,48]. Interestingly, early drought also activates BFT expression,
which likely serves as a buffering mechanism to counteract FT and TSF activation [49]. The
phytohormone gibberellic acid (GA) also promotes flowering through FT-dependent and
-independent pathways [50]. Lastly, other internal cues, including sugars as photosynthe-
sis products and age, regulate flowering through microRNA 156 and microRNA 172 via
FT-dependent and -independent pathways [51] (Figure 2A).
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Figure 2. Schematic representation of PEBP signaling network in flowering time regulation of
Arabidopsis. (A) Schematic representation of flowering time regulation in Arabidopsis by PEBP. Internal
and external cues regulate the expression and activity of PEBP to fine-tune floral development. LD
conditions, warm temperatures, early drought, ABA, GA, and sugars represent positive signals to
promote floral initiation. In contrast, SD conditions and cool temperatures represent negative seasonal
cues that delay floral formation. (B) Classification of Arabidopsis PEBP as a floral activator or floral
repressor. Under noninductive conditions, FD and 14-3-3 primarily form a floral repression complex
with anti-florigen, TFL1, ATC, and BFT to repress the expression of floral meristem identity genes.
However, under inductive conditions, high levels of florigen, FT, and TSF compete with anti-florigen
to make a floral activation complex that activates floral meristem identity genes.

FT is expressed in specific cells in the leaf vasculature called companion cells, in con-
trast with TFL1, which is expressed in the SAM [52,53] (Figure 2A). FT is then translocated to
the SAM through interactions with several multiple C2 domain and transmembrane region
proteins (MCTPs) transporters, including FT-INTERACTING PROTEIN1 (FTIP1/MCTP1),
QUIRKY (QKY/MCTP15), and MCTP6 [54–56]. In the SAM, both FT and TFL1 compete
to interact with chromatin-bound transcription factors FD to modulate the expression
of floral identity genes, such as SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1),
LEAFY (LFY), FRUITFULL (FUL), and APETALA1 (AP1) [57]. Furthermore, Arabidopsis BFT,
TSF, and ATC were also reported to interact with FD [43,58,59], while the MFT ortholog
from Adiantum capillus-veneris is also capable of interacting with FD [60]. The interaction
of FT or TFL1 with FD is mediated by the 14-3-3 protein to form either a floral activator
complex or a floral repressor complex [61]. Considering that all Arabidopsis PEBPs contain
the 14-3-3-binding motif, this suggests a dynamic complex formation to fine-tune floral
formation (Figure 2B). Furthermore, FT and TFL1 also interact with different classes of TCP
(for TEOSINTE BRANCHED1, CYCLOIDEA, and PCF) transcription factors to regulate
flowering time [34,62].

Unlike in the model plant Arabidopsis, the molecular mechanism of flowering time
regulation in tubers and tuberous root crops is still elusive [22]. Most tubers and tuberous
root crops are mainly propagated through a vegetative method using clonal propagation
from a tuber, stem, or vine [63–66]. Clonal propagation through the tuber or stem is
the easiest way to multiply the plants as it does not require a complicated technique
while maintaining the parental plants’ characteristics. However, loss of genetic diversity,
deleterious mutation, and pathogen accumulation are the major pitfalls of these clonal
propagation methods [67]. Furthermore, the relatively long growth period of tubers and
tuberous crops is a major obstacle in the breeding process of these plants [68–70]. Therefore,
the complete understanding of molecular mechanism that control floral formation in tubers
and tuberous root crops could aid in the breeding process of these crops.
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Potato can be classified into two subspecies, the wild Andean varieties (S. tuberosum
ssp. andigena), cultivated in the Andean highlands, and the modern potato (S. tuberosum
ssp. tuberosum), originating from the lowlands of southern Chile [71]. The flowering time
of both potato varieties is accelerated under LD conditions, although the plant still flowers
under short day (SD) conditions [72,73]. Interestingly, unlike in Arabidopsis, StSP3D is
expressed in the middle of the day instead of at dusk [74]. Furthermore, constitutive
expression of Arabidopsis CO results in downregulation of StSP3D and late flowering in
potato plants [21,75]. Potato StCO is encoded by three tandem genes, CONSTANS-like 1
(StCOL1), StCOL2, and StCOL3 [29]. The knockdown of StCOL1 using RNA interference
accelerates potato flowering time [29], in contrast with the role of CO as a floral activator in
Arabidopsis [42]. StCOL1 directly activates the expression of StSP5G through the TGTGGT
motif in the StSP5G promoter [29]. StSP5G represses the expression of StSP3D and, thus,
delays flowering [21,29] (Figure 3A).
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Figure 3. Schematic representation of PEBP signaling network in potato and cassava. (A) Schematic
representation of flowering time and underground storage organ formation in potato. Internal and
external cues modulate PEBP expression, including StSP5G, StSP3D, and StSP6A. StSP3D undergoes
long-distance movement to the SAM to initiate flowering, while StSP6A moves to the stolon to
promote tuber formation. Another PEBP, StCEN, acts oppositely to prevent floral initiation and tuber
formation. (B) Schematic representation of flowering time and underground storage organ formation
in cassava. External cues, including photoperiod and drought, promote the expression of florigens,
MeFT1 and MeFT2, to modulate flowering time.

The potato B-box 24 (stBBX24) acts as a negative regulator of the flowering time
through the regulation of StSP3D (Figure 3A), in contrast with the positive role of BBX24
in Arabidopsis flowering [74,76]. However, the overexpression of potato CYCLING DOF
FACTOR 1 (stCDF1) results in a late flowering phenotype [77], consistent with the role
of CDF1 as a floral repressor in Arabidopsis [78,79]. Interestingly, while Arabidopsis CDF1
prevents flowering through repressing CO and FT transcription [80,81], StCDF1 prevents
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flowering by activating the tuberigen, StSP6A [77] (Figure 3A). StSP6A was found to
prevent potato flowering, as StSP6A knockdown plants flowered early, while plants with
high StSP6A levels flowered late [77]. The flowering time regulation by StSP6A seems
unrelated to the regulation of StSP3D expression [21,77]. It is noteworthy to mention that
StSP6A still maintains florigenic activity, as the overexpression of StSP6A, using constitutive
35S promoter, accelerated the flowering of Arabidopsis and potato [21]. Considering that
both StSP6A and StSP3D are expressed in the leaves and stem, it is interesting to speculate
whether StSP6A competes with StSP3D to interact with protein transporters such as the
MCTPs [54] (Figure 3A).

LD conditions also promote the flowering of yam and cassava, while sweet potato
flowering is accelerated under SD conditions [82–85]. The upregulation of MeFT1 and
MeFT2 likely regulates the photoperiodic flowering of cassava under LD conditions [86]
(Figure 3B). However, the function of MeFT2 to promote flowering still needs to be dis-
covered. Furthermore, we have yet to find any report describing the role of florigen or
anti-florigen, as well as any molecular study of flowering time regulation in yam and sweet
potato. Considering that the regulation of flowering time by photoperiod is likely caused
by natural selection and domestication of crops [15,87], further research into this area may
uncover novel insight into photoperiodic flowering in tubers and tuberous root crops.

In addition to the photoperiod, temperature is one of the seasonal cues that control
the flowering time of many plant species [39]. A cold night temperature (5–6 ◦C) or
GA treatment during SD conditions is reported to induce the flowering of LD potato
species, including S. sparsipilum, S. acaule, S. punae, and S. demissum [72]. In Arabidopsis, the
expression levels of the GA biosynthesis gene, AtGA20ox1, AtGA20ox2, and AtGA30x1 are
induced under low temperatures [88]. Cold night temperature also reduces the expression
of the GA catabolism gene, SlGA2ox, and promotes the accumulation of bioactive GA in
tomato (S. lycopersicum) [89]. Furthermore, the flowering time of potato is also accelerated
by high light, albeit in an StSP3D-independent manner [90]. In Arabidopsis, high light
prevents the transcription of the floral repressor, FLOWERING LOCUS C (FLC), through
nuclear accumulation of the PHD type transcription factor [91,92]. Considering that FLC
also regulates temperature-responsive flowering of Arabidopsis and GA biosynthesis and
signaling [93,94], it is tempting to speculate that temperature, high light, and GA also
mutually regulate the flowering time of potato.

Cassava’s flowering time is induced by LD conditions and cool temperature (early
flowering at 22 ◦C and late flowering at 34 ◦C) [84,95] (Figure 3B). The temperature-
responsive flowering of cassava has the opposite pattern to several plant species, including
Arabidopsis, which flower early in warm temperatures [44]. However, unlike in Arabidopsis,
the expression levels of MeFT1 and MeFT2 are mostly unperturbed by temperature, while
PIF4 expression increases in warm temperatures (similar to Arabidopsis) [84,86]. As shown
in another study, the flowering time of field-grown cassava in Southeast Asia is promoted
during the dry season in mountainous regions [96]. The drought and low night temperature
of mountainous regions activate the expression of MeFT1 and MeFT2 [96] (Figure 3B). The
activation of florigen by drought is well documented in annual plants, including Arabidopsis
and rice [47,48,97].

Overall, the mechanism underlying the long-distance transport and activation of the
downstream targets of florigen in tubers and tuberous root crops is still elusive. However,
a recent report suggested that StSP3D is able to form a floral activation complex with
StABI5-like 1 (StABL1) to promote flowering [98]. However, whether StSP3D also makes
a complex with StFDs such as StSP6A needs further verification. To initiate floral formation,
the StSP3D/St14-3-3/StABL1 complex directly activates the expression of StSOC1 and
StFUL to mediate meristem determinacy [98]. Furthermore, the anti-florigen StCEN is
also capable of making a complex with StFD-like (StFDL1), probably to repress floral
formation [31] (Figure 3A). Considering the sequence conservation of PEBPs, it is tempting
to speculate that florigens and anti-florigens in other tubers and tuberous root crops may
also make complexes with 14-3-3, ABI5-like, and FD-like proteins. Nevertheless, further
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analysis of upstream regulators of PEBPs, their transporters, and their downstream targets
is essential to expand the PEBP signaling network in tubers and tuberous root crops.

4. PEBP Signaling Network in Underground Storage Organ Formation

Underground storage organ formation, including tubers and tuberous roots, is essen-
tial for plant survival under adverse environmental conditions. Day length regulates potato
tuber formation in a genotype-dependent manner. For instance, the wild Andean varieties
strictly require SD conditions to promote tuber formation, while the modern potato cultivar
is more adapted to LD conditions [71]. SD conditions also promote the tuber formation of
yams (D. rotundata, D. alata, and D. cayanensis), while LD conditions inhibit tuber formation
and stimulate vine and leaf growth [99,100]. Interestingly, SD conditions also promote the
tuberous root formation of cassava [101], suggesting an inverse correlation of photoperiod
requirement for floral initiation and underground storage organ formation.

Similar to flowering time, photoperiodic tuber formation is controlled by integrating
light signaling and the circadian clock [71]. Light signals are perceived by multiple pho-
toreceptors, including phytochromes, cryptochromes, phototropins, and F-box-containing
flavin-binding proteins [102]. White- or red-light treatment of SD-grown plants in the
middle of the night (known as night break) represses the tuber formation of Andigena
potatos, while subsequent application of far-red light reverses the repression [103], suggest-
ing the role of phytochrome in tuberization. Indeed, the knockdown of StPhyB induces
tuber formation in noninductive conditions (LD and SD + night break) [104]. Further-
more, StPhyB interacts with StPhyF to repress tuber formation and flowering by stabilizing
StCOL1 [29,105] (Figure 3A), in contrast to their function in Arabidopsis, where PhyB in-
duces CO degradation [106]. Interestingly, Arabidopsis CONSTANS-like 7 is stabilized
by PhyB [107], similar to StCOL1, suggesting that the function of PhyB depends on the
CO-like protein sequence. StCOL1 then represses tuber formation by activating StSP5G
transcription, a negative regulator of StSP6A [29]. Finally, StSP6A undergoes long-distance
movement to initiate tuber formation [21]. Interestingly, the photoperiodic tuberization in
water yam (D. alata) is also likely connected with FT-like genes, DaFT1 and DaFT2 [108].

The natural variation of StCDF1 confers the adaptation of European potato to tuberiza-
tion under noninductive LD conditions [109]. StCDF1 represses the expression of StCOL1
and StCOL2 to activate tuber formation [29,109]. The early-maturing line, CE3130, has
two truncated alleles, StCDF1.2 and StCDF1.3, which do not contain a carboxyl-terminal
region that is important for interaction with FLAVIN-BINDING, KELCH REPEAT, F-
BOX1 (FKF1) [109]. StFKF1 and GIGANTEA (StGI) promote the degradation of StCDF1
through direct interactions [109] (Figure 3A), suggesting the similarity of molecular com-
ponents of the photoperiodic response between potato and Arabidopsis. Furthermore, the
BELLRINGER-1-like transcription factor (StBEL5) and its interacting partner, the StKNOX
transcription factor, have been identified as activators of StCDF1 and StSP6A [110,111].

The expression levels of StBEL5 are regulated by photoperiod through the PhyB/
microRNA miR172 cascade [112]. Similar to flowering time regulation in Arabidopsis,
miR172 and miR156 have been shown to promote and inhibit tuber formation, respec-
tively, partly through the regulation of StSP6A [112,113]. Both miR172 and miR156 are
graft-transmissible and regulate phytohormone signaling, including GA, cytokinin, and
strigolactone [112–114]. Considering that the sequential action of miR156 and miR172 de-
fine the age-dependent pathway of flowering time regulation in Arabidopsis [51] (Figure 2A),
it is tempting to speculate whether a similar mode of action also regulates underground
storage organ formation.

Temperature is another seasonal cue that controls underground storage organ forma-
tion. Warm temperatures inhibit potato tuber formation and sweet potato and Mexican
turnip (Pachyrhizus tuberosus) tuberous root formation [112,115,116]. Warm temperature
promotes the expression of a small RNA called Suppressing Expression of SP6A (SES),
an upstream regulator of StSP6A [117]. SES reduces the accumulation of StSP6A transcripts
to reduce the sink strength and delay tuber formation [117]. Interestingly, SES is likely



Plants 2023, 12, 264 9 of 15

a potato-specific small RNA, as no homolog of SES-pri-miRNA was found in the Solanaceae
genome [117]. Furthermore, a circadian clock component, TIMING OF CAB EXPRESSION 1
(StTOC1), interacts with StSP6A to inhibit the autoactivation of StSP6A, especially in warm
temperatures [118]. In Arabidopsis, the interaction between TOC1 and PIF4 mediates the
circadian gating of thermomorphogenesis [119], suggesting that a similar mechanism may
apply to underground storage organ formation. Further analysis of temperature-sensing
components, including PhyB, EARLY FLOWERING 3, and florigen movement, could poten-
tially elucidate the molecular mechanism of temperature-responsive underground storage
organ formation [44,46,120].

A previous report suggested that the tuberigen signal, StSP6A, prevents floral for-
mation in an StSP3D-independent manner [77]. However, the relationship between flo-
ral initiation and underground storage organ formation remains elusive. Interestingly,
the removal of flowers increases the yield of potato and artichoke (Helianthus tuberosus)
tubers [121–123], suggesting a competition between flower and tuber development for
photosynthesis products. Furthermore, the overexpression of FT reduces the tuberous
root growth and accelerated flowering of cassava, suggesting a relationship between both
developmental processes [124] (Figure 3B). On a molecular level, the source–sink regulation
of tuber formation is controlled by the interaction between StSP6A and sucrose efflux trans-
porter StSWEET11 in the plasma membrane [125]. The binding of StSP6A to StSWEET11
prevents the leakage of sucrose to the apoplast, promoting symplastic sucrose transport
and activating tuber formation [125]. The presence of StSP6A along the phloem also likely
enables enhanced sucrose delivery toward tuber development [126] (Figure 3A). It will be
interesting to see whether StSP3D also interacts with StSWEETs to compete in source–sink
carbon partitioning for flower development. Furthermore, whether FT-like protein is also
involved in sucrose export during tuberous root formation will be interesting to study
(Figure 3B).

Similar to floral initiation, StSP6A forms a tuberigen activation complex by making
a protein complex with St14-3-3 and StFD-like1 (StFDL1) to activate tuber formation [27].
Moreover, StCEN is also reported to interact with StFD and StFDL1a to prevent the activa-
tion of StFD and StFDL1 downstream targets, including StMADSs, StSP6A, and germin3 [31].
StSP6A and StCEN likely compete to form tuberigen activation or repression complex to
control tuber formation [31] (Figure 3A), similar to the competition between FT and TFL1
during Arabidopsis floral formation [57] (Figure 2B).

The phylogenomic approach suggests that StSP6A and its interacting partner, IDEN-
TITY OF TUBER 1 (IT1), a plant-specific TCP transcription factor, are crucial for tuber
formation in potato species [127]. Another TCP transcription factor, BRANCHED1b, in-
teracts with StSP6A to prevent aerial tuber formation [128] (Figure 3A). In Arabidopsis,
BRANCHED1 interacts with FT but not TFL1 to prevent floral transition in the axillary
meristem [129], suggesting a conserved regulatory network across plant species. StSP6A
was also found to interact with Flowering-Promoting Factor 1, No Flowering in Short Days
1 (StNFL1), and StNFL2, which are likely crucial for tuber formation [130].

StSP6A also forms an alternative complex with St14-3-3 and StABL1 to promote tu-
ber formation [98]. StABL1 binding regions are enriched with several binding motifs,
including the bZIP/BHLH and TCP transcription factor-binding motifs, suggesting that the
StSP6A/St14-3-3/StABL1 complex may form a larger protein complex with TCP transcrip-
tion factors, such as IT1 [98,127]. StABL1 also directly activates the expression of StGA2ox1,
a GA-catabolizing enzyme [98]. The fact that StABL1 is a component of ABA signaling
probably explains the opposite role of GA and ABA as an inhibitor and an inducer of tuber-
ization, respectively [98,131]. Interestingly, cassava tuberous root formation is inhibited
by ABA [132], suggesting the opposite role of phytohormone signaling in (potato) tuber
and (cassava) tuberous root development. Further functional studies of yam, cassava, and
sweet potato PEBP are essential to expand our knowledge on the molecular mechanism of
underground storage organ formation of these plants.
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5. Conclusions and Future Perspectives

Floral initiation and underground storage organ formation are complex processes that
integrate environmental cues and endogenous signals through the regulation of master
regulators, i.e., the PEBP gene family [6,22]. FT and TFL1 act oppositely due to the external
loop segment variation in the fourth exon [18]. Subtle amino-acid changes in the external
loop segment during evolution and diversification cause neofunctionalization of PEBP,
converting FT from a coactivator into a corepressor [15,35,36]. The PEBP signaling network
of tuber and tuberous root crops is likely conserved, as upstream regulators and interacting
partners of FT- and TFL1-like proteins are likely similar such as in Arabidopsis [6,15,22,39,71].
Several important issues, as listed below, could offer a future perspective to elucidate the
PEBP signaling network in tubers and tuberous root crops.

1. All Arabidopsis PEBPs are involved in flowering time regulation [15,23], while little is
known in other plant species. Furthermore, whether PEBPs also regulate tuberous
root formation remains elusive. Therefore, a functional study of the role of PEBP in
flowering time and underground storage organ formation is essential to elucidate the
PEBP signaling network in each tuber and tuberous root crop;

2. Further in-depth studies of the molecular mechanism that controls the function of
PEBP are needed. For example, the non-cell-autonomous function of FT requires
an interaction with the MCTP transporter and phospholipids [24,46,55,56,133]. How-
ever, the mechanism underlying the long-distance transport of FT-like proteins in
tubers and tuberous root crops is still elusive. Therefore, further verification of pro-
tein transporters and phospholipid interactors of the PEBP family from tubers and
tuberous root crops is needed for a complete understanding of the PEBP signaling
network in these plants. Furthermore, although StSP5G is a central regulator con-
necting the photoperiod with floral initiation and tuber formation by regulating
StSP3D and StSP6A [21,29,109], it is not clear how StSP5G regulates its downstream
targets. StSP5G may interact with other proteins, including St14-3-3s and StTCPs, to
modulate floral initiation and tuber formation. Therefore, translating the knowledge
from Arabidopsis could accelerate the characterization of the regulatory module of the
PEBP-gene family in tubers and tuberous root crops (Figure 2);

3. Some plants develop underground storage organs to survive adverse environmental
conditions [6]. Whole-genome analysis of the non-tuber-bearing Etuberosum, sister
of the Petota (tuber-bearing) section of the Solanum genus, suggests that the non-
tuber-bearing phenotype of Etuberosum is caused by the deletion of the fourth exon
of SP6A [127]. However, a more in-depth examination is needed to elucidate how
PEBP, a flowering time regulator, evolved and diversified its function to regulate
underground storage organ formation.
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