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Abstract: The aim of this study was to evaluate the anti-osteoporosis effects of Osmanthus fragrans leaf
ethanol extract (OFLEE) in bone marrow-derived macrophages (BMM) and animals with osteoporosis.
OFLEE not only suppressed tartrate-resistant acid phosphatase (TRAP)-positive cells with multiple
nuclei but also decreased TRAP activity in BMM treated with macrophage colony stimulating factor
(M-CSF) and receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL). The formation of
F-actin rings and the expression and activation of matrix metalloproteinases were decreased by
OFLEE in BMM treated with M-CSF and RANKL. OFLEE suppressed M-CSF- and RANKL-induced
osteoclastogenesis by inhibiting NF-κB phosphorylation, tumor necrosis factor receptor-associated
factor 6, c-fos, the nuclear factor of activated T-cells, cytoplasmic 1, and cathepsin K in BMM.
OFLEE downregulated reactive oxygen species, cyclooxygenase-2, inducible nitric oxide synthase,
prostaglandin E2, tumor necrosis factor α, interleukin (IL)-1β, IL-6, IL-17, and RANKL in BMM
treated with M-CSF and RANKL. Oral administration of OFLEE suppressed osteoporotic bone loss
without hepatotoxicity in ovariectomy-induced osteoporosis animals. Our findings suggest that
OFLEE, with anti-inflammatory effects, prevents osteoporotic bone loss through the suppression of
osteoclastic differentiation in BMM and animals with osteoporosis.

Keywords: osteoporosis; osteoclast; receptor activator of nucleus factor-κB ligand; osteoclastogenesis;
anti-inflammation; Osmanthus fragrans

1. Introduction

Osteoporosis (OP) is a chronic skeletal disorder with the increased risk of bone fracture
leading to microarchitectural deterioration, caused by the decrease of bone mass related to
skeletal fragility [1,2]. The prevalence of OP is estimated higher by approximately 33% in
women, more than 20% of men [3]. As the global elderly population increases, the rapidly
increasing prevalence of OP is being considered as a public health problem accompanied
with the social and economic burden worldwide [1].

Generally, the homeostasis of a normal bone is precisely balanced between the bone
resorption by osteoclast and the bone formation by osteoblast [1]. Osteoclasts, multinucle-
ated giant cells differentiated from the cell-to-cell fusion of monocytes and macrophage by
macrophage colony stimulating factor (M-CSF) and receptor activator of nucleus factor-κB
ligand (RANKL) [4], can induce bone resorption through acidification and proteolytic
digestion [1], whereas osteoblasts originated from pluripotent mesenchymal stem cells and
are involved with the bone formation through the synthesis of the bone matrix component,
including type I collagen and the bone matrix mineralization caused by the deposition of
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calcium phosphate crystals such as hydroxyapatite [5]. Hence, the imbalance of bone home-
ostasis between osteoclast-induced bone resorption and osteoblast-induced bone formation
is closely associated with the pathogenesis of bone diseases. Especially, OP is caused by
the excess of osteoclast-induced bone resorption, more than the osteoblast-induced bone
formation at bone resorptive cavity [6]. The increase of inflammation caused by patho-
physiological risk factors such as the alteration of sexual hormones, aging, obesity, low
calcium and the deficiency of vitamin D is closely associated with the acceleration of bone
resorption though the induction of bone homeostasis imbalance between osteoclast and
osteoblast [3,7]. Hence, the suppression of osteoclastogenesis through the down-regulation
of inflammation is to be a preventive strategy for OP.

Osmanthus fragrans (O. fragrans) is a medicinal and edible plant used traditionally for
toothache, rheumatoid arthritis, asthma, coughs, physical pain and menopausal pain in Korea,
Japan and southwestern China [8,9]. Especially, the flower of O. fragrans, with its fragrance,
is not only used as a cosmetic substance, but also is used traditionally as a food additive for
tea and beverages [10]. In addition, O. fragrans leaves (OFL) are also used as a traditional
folk medicine to relive pain and coughs [10]. Recent pharmacological studies reported that O.
fragrans, with more than 183 compounds such as flavonoids and polyphenols, have various
biological activities including antioxidant and anti-inflammation properties [8]. Recent studies
reported on the anti-inflammatory effect of OFL containing a phenylpropyl triterpenoids and
phillyrin in the macrophages treated with lipopolysaccharide [9,11]. Furthermore, Zhang
et al., reported that the phillyrin prevented osteolysis via the inhibition of osteoclast differenti-
ation [12]. Hence, we hypothesized that the OFL, with its anti-inflammatory effects, might
suppress or delay the osteoclastic bone loss through the downregulation of pro-inflammatory
factors associated with the osteoclastogenesis of macrophages.

Based on our hypothesis, the aim of the present study was to evaluate the anti-
osteoporosis effects of the OFL ethanol extracts (OFLEE) in primary bone marrow derived
macrophage (BMM) and experimental animals with OP.

2. Results
2.1. OFLEE Does Not Induce Cell Death in Either L929 Fibroblast Cells or BMMs

To determine whether the OFLEE increases the cytotoxicity in BMMs, MTT assays
were performed in the mouse embryonic fibroblast L929 cells used as normal cells and
BMMs treated with 1, 10, 25, 50, and 100 µg/mL OFLEE for 24 h. As shown in Figure 1A,
1–100 µg/mL OFLEE did not increase the cytotoxicity in L929 fibroblast cells. Although
1 µg/mL OFLEE did not increase the viability of BMMs, viabilities of BMMs were increased
by 10 (p < 0.05), 25 (p < 0.01), 50 (p < 0.01) and 100 µg/mL OFLEE (p < 0.01) for 24 h. Hence,
these data indicated that the 1–100 µg/mL OFLEE did not induce cell death in either L929
fibroblast cells or BMMs.
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Figure 1. OFLEE does not induce cell death in either L929 fibroblast cells used as normal cells or BMMs.
(A) OFLEE did not affect the viability of L929 fibroblast cells. (B) Quantities of 10–100 µg/mL OFLEE
increase the viability of BMMs. Both mouse embryonic fibroblast L929 cells used as normal cells to
measure the cytotoxicity and BMMs were cultured at a density of 0.5× 105 cells/mL in a 96-well culture
plate for 24 h and were treated with 1, 10, 25, 50 and 100 µg/mL OFLEE for 24 h. Thereafter, MTT assay
was performed to measure the cytotoxicity of OFLEE in L929 fibroblast cells and BMMs. Results are
mean ± SD of three independent experiments (n = 3), * p < 0.05 and ** p < 0.01.
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2.2. OFLEE Suppresses the Osteoclastic Differentiation of BMMs in the Presence of M-CSF and
RANKL

BMMs were stimulated with 10, 25, and 50 µg/mL OFLEE in the presence of 30 ng/mL
M-CSF and 50 ng/mL RANKL for 72 h. Thereafter, to investigate the alteration of osteoclas-
tic differentiation, tartrate-resistant acid phosphatase (TRAP) staining using a TRAP and
alkaline phosphatase (ALP) double-stain kit (TaKaRa Bio Inc., Kyoto, Japan) was performed,
as shown in Figure 2A,B. TRAP-positive cells with multiple nuclei were significantly in-
creased in the BMMs treated with M-CSF and RANKL, whereas TRAP-positive cells were
not observed in untreated control BMMs. However, TRAP-positive cells treated with
M-CSF and RANKL were decreased by OFLEE in a dose-dependent manner. Moreover,
the activity of TRAP was significantly decreased by OFLEE in the BMMs treated with
M-CSF and RANKL, as shown in Figure 2C. Hence, these data indicated that the OFLEE
suppressed the osteoclastic differentiation of BMMs treated with M-CSF and RANKL, in a
dose-dependent manner.
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Figure 2. OFLEE suppresses TRAP-positive cells in the BMMs treated with M-CSF and RANKL. (A)
OFLEE decreased the TRAP positive cells with multiple nuclei in the BMM treated with M-CSF and
RANKL. (B) The number of TRAP positive cells were decreased by OFLEE treatment in the BMM
treated with M-CSF and RANKL. (C) The OFLEE down-regulated TRAP activity in the BMM treated
with M-CSF and RANKL. BMM was treated with 0, 10, 25, and 50 µg/mL OFLEE in the presence of 30
ng/mL M-CSF and 50 ng/mL RANKL for 72 h. Thereafter, the TRAP staining and TRAP activity assay
were performed using a TRAP and ALP double-stain kit, according to manufacturer’s instruction.
Stained cells were photographed under a microscope. Thereafter, TRAP-positive cells were counted at
equal areas. In addition, the TRAP activity was assessed by a microplate spectrophotometer. Results
are mean ± SD of three independent experiments (n = 3), ** p < 0.01.

2.3. OFLEE Inhibits the Expression and Activation of Matrix Metalloproteinase via the
Suppression of F-Actin Formation in the BMMs Treated with M-CSF and RANKL

To investigate the formation of F-actin ring, which is a prerequisite for osteoclast
bone resorption [13], BMMs were stimulated with 10, 25, and 50 µg/mL OFLEE in the
presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h. Thereafter, F-actin staining
was performed as shown in Figure 3A. The formation of the F-actin ring was significantly
increased in the BMMs treated with M-CSF and RANKL, whereas the F-actin ring was
not observed in untreated control BMMs. However, the formation of the F-actin ring was
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decreased by OFLEE in the BMMs treated with M-CSF and RANKL. Moreover, as shown
in Figure 3B,C, OFFLEE not only suppressed the expression of matrix metalloproteinases
(MMP) associated with the activation of osteoclast such as MMP-2 and MMP-9 [14], but also
decreased the activation of MMPs in the BMMs treated with M-CSF and RANKL. Hence,
these findings suggested that OFLEE suppressed the activation of osteoclasts through the
inhibition of F-actin formation and the suppression of MMPs expression and activation
during the M-CSF and RANKL-induced osteoclastic differentiation of BMMs.
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Figure 3. OFLEE suppresses the formation of the F-actin ring and the expression and activation of
MMPs in the BMMs treated with M-CSF and RANKL. (A) OFLEE suppressed the formation of the
F-actin ring in the BMMs treated with M-CSF and RANKL. BMMs were treated with 0, 10, 25, and
50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h. Thereafter,
BMMs were stained with rhodamine-conjugated phalloidin and then stained with DAPI. Images
were taken by a confocal laser scanning microscope. (B,C) OFLEE inhibited the expression (B) and
activation (C) of MMPs in the BMMs treated with M-CSF and RANKL. BMMs were treated with
0, 10, 25, and 50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for
72 h. Thereafter, the expressions of MMPs in conditioned media were verified by Western blot using
MMP-2 and MMP-9 antibodies. In addition, the activity of MMPs in conditioned media were verified
by 0.2% porcine skin gelatin zymogram gel. The gelatinolytic bands were captured using a digital
camera. Results are mean ± SD of three independent experiments (n = 3), ** p < 0.01.

2.4. OFLEE Suppresses the Osteoclastic Differentiation of BMMs through the Inhibition of
Nucleus Factor-κB (NF-κB) Phosphorylation in the Presence of M-CSF and RANKL

RANKL-induced osteoclastogenesis is generally initiated via the activation of NF-κB
in monocytes and macrophages [15]. Hence, to investigate the alteration of NF-κB phos-
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phorylation, BMMs were stimulated with 10, 25, and 50 µg/mL OFLEE in the presence of
30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h. As shown in Figure 4A, OFLEE effec-
tively suppressed the RANKL-induced NF-κB phosphorylation in BMMs. Furthermore,
OFLEE downregulated the expression of transcriptional factors associated with osteoclasto-
genesis, such as tumor necrosis factor receptor-associated factor 6 (TRAF6), c-fos, nuclear
factor of activated T-cells, cytoplasmic 1 (NFATc1), and cathepsin K in the BMMs treated
with M-CSF and RANKL (Figure 4B). Hence, these findings clearly indicated that OFLEE
suppressed the M-CSF and RANKL-induced osteoclastogenesis through the suppression of
TRAF6-NF-κB-NFATc1 axis in BMMs.
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Figure 4. OFLEE suppresses the M-CSF and RANKL-induced osteoclastogenesis via the inhibition of
TRAF6, NF-κB phosphorylation, c-fos, NFATc1, and cathepsin K in BMMs. BMMs were treated with
0, 10, 25, and 50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h.
Thereafter, Western blot was performed to verify the expression of TRAF6, NF-κB phosphorylation,
c-fos, NFATc1, and cathepsin K. β-actin was used as internal control. (A) OFLEE suppressed the
M-CSF and RANKL-induced NF-κB phosphorylation in BMMs. (B) OFLEE downregulated the
osteoclastogenesis related transcriptional factors such as TRAF6, c-fos, NFATc1, and cathepsin K in
the BMMs treated with M-CSF and RANKL. Results are mean± SD of three independent experiments
(n = 3), * p < 0.05 and ** p < 0.01.

2.5. OFLEE-Mediated Anti-Osteoclastogenesis Is Mediated by the Suppression of Reactive Oxygen
Species (ROS), Inflammatory Mediators, Pro-Inflammatory Cytokines, RANKL, and RANK in the
BMMs Treated with M-CSF and RANKL

Inflammation is closely associated with the osteoclastogenesis of monocytes and
macrophages [16]. Hence, to investigate the OFLEE-mediated-anti-inflammatory effects,
BMMs were stimulated with 10, 25, and 50 µg/mL OFLEE in the presence of 30 ng/mL
M-CSF and 50 ng/mL RANKL for 72 h. As shown in Figure 5A, OFLEE significantly
suppressed the production of ROS production in the BMMs treated with M-CSF and
RANKL. Furthermore, the expression of inflammatory mediators such as inducible nitric
oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) was also
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decreased by OFLEE in the BMMs treated with M-CSF and RANKL (Figure 5B,C). Moreover,
the expression of pro-inflammatory cytokines associated with the osteoclastic differentiation
such as tumor necrosis factor α (TNFα), interleukin (IL)-1β, IL-6, and IL-17 were down-
regulated by OFLEE in the BMMs treated with M-CSF and RANKL, as shown in Figure 6A.
Recently, RANKL has been considered as the final downstream cytokine to induce bone
resorption through the regulation of osteoclastogenesis [17]. Hence, to investigate whether
OFLEE is involved with the expression of RANKL, BMMs were stimulated with 10, 25,
and 50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for
72 h. As shown in Figure 6B, RANKL and M-CSF not only increased the expression of
RANKL, but also up-regulated the expression of its receptor, RANK, in BMMs, whereas
OFLEE counteracted significantly the RNAKL and M-CSF-induced RANKL and RANK
expression in BMMs. Hence, these findings suggested that OFLEE suppressed the M-CSF
and RANKL-induced osteoclastic differentiation through the down-regulation of ROS,
inflammatory mediators, pro-inflammatory cytokines, RANKL, and RANK in BMMs.
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Figure 5. OFLEE suppresses the ROS production and the expression of inflammatory mediators such
as iNOS, COX-2 and PGE2 in the BMMs treated with M-CSF and RANKL. (A) OFLEE suppressed
the M-CSF and RANKL-induced ROS production in BMMs. BMMs were treated with 0, 10, 25, and
50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h. Thereafter,
ROS were detected using H2DCF-DA. Images were taken under an inverted fluorescence microscope.
(B) The expression of inflammatory mediators such as iNOS and COX-2 was down-regulated by
OFLEE in the BMMs treated with M-CSF and RANKL. (C) OFLEE decreased the production of PGE2

in the BMMs treated with M-CSF and RANKL. BMMs were treated with 0, 10, 25, and 50 µg/mL
OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h. Thereafter, Western blot
was performed to verify the expression of COX-2 and iNOS. β-actin was used as the internal control.
In addition, PGE2 production was measured using a PGE2 Parameter Assay kit. Results are mean ±
SD of three independent experiments (n = 3), ** p < 0.01.
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Figure 6. OFLEE down-regulated the expression of pro-inflammatory cytokines associated with
the osteoclastogenesis in the BMMs treated with M-CSF and RANKL. BMMs were treated with 0,
10, 25, and 50 µg/mL OFLEE in the presence of 30 ng/mL M-CSF and 50 ng/mL RANKL for 72 h.
Thereafter, Western blot was performed to verify the expression of TNFα, IL-1β, IL-6, IL-17, RANKL,
and RANK. β-actin was used as an internal control. (A,B) OFLEE down-regulated the expression of
pro-inflammatory cytokines including TNFα, IL-1β, IL-6, IL-17, RANKL, and RANK in the BMMs
treated with M-CSF and RANKL. Results are mean ± SD of three independent experiments (n = 3),
* p < 0.05 and ** p < 0.01.

2.6. The Oral Administration of OFLEE Suppresses Osteoporotic Bone Loss without Hepatotoxicity
in the Animals with Osteoporosis Generated by Ovariectomy

To verify the OFLEE-induced anti-osteoclastogenesis in vivo, experimental animals with
osteoporosis were generated by surgical ovariectomy (OVX). Thereafter, 5 and 10 mg/kg
OFLEE per body weight were orally supplied once daily for 9 weeks to experimental animals
with osteoporosis. As shown in Figure 7A, there were no deaths and the alteration of body
weight caused by the supplementation of vehicle or OFLEE in the animal groups was insignif-
icant during the experiment periods. In addition, as shown in Figure 7B, the concentration of
alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the sera collected
from experimental animals showed no statistical significance between all of the animal groups.
Hence, these data indicated that OFLEE had no hepatotoxicity or hepatic injury in experimen-
tal animals during the experimental periods. The results of micro computed Tomography
(µCT) showed that the bone loss was significantly increased in the femoral bone of animals
with OVX (n = 5), compared with that of the naïve (n = 5) and sham (n = 5) groups, whereas the
oral supplementation of 5 mg/kg (n = 5) or 10 mg/kg (n = 5) OFLEE significantly suppressed
the bone loss in the femoral bone of animals performed with OVX, as shown in Figure 7C.
Moreover, the results of trabecular morphometric parameters included bone mineral density
(BMD), bone volume per tissue volume (BV/TV), trabecular number (Tb.N) and trabecular
thickness (Tb.Th), which were significantly decreased in the OVX group compared with
naive, shame, OVX orally supplemented with 5 mg/kg or 10 mg/kg OFLEE groups, whereas
trabecular separation (Tb.Sp) was increased in the OVX groups, compared with naïve, sham,
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OVX orally supplemented with 5 mg/kg or 10 mg/kg OFLEE groups, as shown in Figure 7D.
Furthermore, hematoxylin and eosin (H&E) staining showed the increase of empty lacunas
and osteoclasts (indicated by a black arrow) in the femoral bones dissected from the OVX
group compared with naïve, sham, OVX orally supplemented with 5 mg/kg or 10 mg/kg
OFLEE groups, as shown in the upper panel of Figure 8. Moreover, Masson trichrome staining
showed that new bone collagen fibers, stained a blue color, and mature bone, stained a red
color, were higher than naïve, sham, OVX orally supplemented with 5 mg/kg or 10 mg/kg
OFLEE groups compared with OVX group, as shown in the lower panel of Figure 8. Hence,
these results indicated that the oral administration of OFLEE suppressed the osteoporotic
bone loss without hepatotoxicity in the animals with osteoporosis.
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Figure 7. The oral supplementation of OFLEE prevented osteoclastic bone loss without hepatotoxicity
in the experimental animals with OP generated by OVX. Animals (female C57BL/6 mice, 8-week-old)
were randomly divided into 5 groups (n = 5/group) as naïve, sham, OVX, OVX supplemented
5 mg/kg, and OVX supplemented 10 mg/kg. In addition, animals were surgically ovariectomized
to generate the animal model with OP. Thereafter, experimental animals were supplied a vehicle
(water 100 µL), 100 µL of 5 or 10 mg/kg OFLEE suspended in water by oral gavage once daily for
9 weeks. Body weights of experimental animals were measured by every week for 9 weeks. To
verify the hepatotoxicity, ALT and AST were measured by mouse ALT ELISA kit and AST activity
assay kit, respectively, in serum collected from experimental animals. The microarchitecture of the
femur dissected from experimental animals was analyzed using the Quantume GX microCT imaging
system. (A) Body weight of experimental animals had no statistical significance between all of the
animal groups, during the experiment periods. (B) the concentration of ALT and AST in the sera
collected from experimental animals had no statistical significance between all of the animal groups.
(C) the oral supplementation of 5 mg/kg (n = 5) or 10 mg/kg (n = 5) OFLEE significantly suppressed
the bone loss in the femoral bone of animals with OVX. (D) Trabecular morphometric parameters,
such as bone mineral density (BMD), bone volume per tissue volume (BV/TV), trabecular number
(Tb.N) and trabecular thickness (Tb.Th), were significantly decreased in the OVX group compared
with naive, shame, OVX orally supplemented with 5 mg/kg or 10 mg/kg OFLEE groups, whereas
trabecular separation (Tb.Sp) was increased in the OVX groups, compared with naïve, sham, OVX
orally supplemented with 5 mg/kg or 10 mg/kg OFLEE groups. Results are mean ± SD of three
independent experiments (n = 3), ** p < 0.01.
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Figure 8. The oral supplementation of OFLEE prevented osteoclastic bone loss via the suppression
of osteoclastogenesis in the experimental animals with OP generated by OVX. To perform the
histological analysis, the femoral bones dissected from experimental animals were decalcified by 15%
ethylenediamine tetraacetic acid (EDTA) for 10 weeks. Thereafter, decalcified femoral bones were
embedded in paraffin and incised into 8 µm slices. The samples were stained with H&E and Masson
trichrome. Hematoxylin and eosin staining showed the increase of empty lacunas and osteoclasts
(indicated by black arrow) in the femoral bones dissected from the OVX group compared with naïve,
sham, OVX orally supplemented with 5 mg/kg or 10 mg/kg OFLEE groups (the upper panel).
Masson trichrome staining showed that new bone collagen fibers, stained a blue color, and mature
bone, stained a red color, were higher than naïve, sham, OVX orally supplemented with 5 mg/kg or
10 mg/kg OFLEE groups compared with OVX group (the lower panel).

3. Discussion

Excessive bone loss caused by increased osteoclast activity acts as a pathogenesis of
OP [16]. Osteoclasts associated with bone resorption are multinucleated giant cells caused
by cell-to-cell fusion through the osteoclastic differentiation of monocyte and macrophages
regulated by M-CSF and RANKL [16]. M-CSF is related to the survival and motility of
RANKL-induced osteoclast [16]. However, the bonding of RANKL to its receptor RANK
induces the phosphorylation of NF-κB and mitogen-activated protein kinases (MAPK) via
the expression of TRAF6 [18]. Sequentially, the activation of NFATc1, a transcriptional
factor, induces the expression of osteoclast specific genes such as TRAP, RANKL and c-fos
in osteoclast precursors [18]. In addition, the maturation of osteoclasts is needed for the
formation of podosomes, which are unique actin structures accumulated in a ring-like
structure called an F-actin ring at terminal osteoclastogenesis [19]. Therefore, the formation
of actin ring is essential for the bone resorption [20]. In the present study, we demonstrated
that the OFLEE suppressed the TRAP-positive cells with multiple nuclei, and that the
formation of F-actin ring and the expression of Cathepsin K and MMPs are associated with
bone resorption through the down-regulation of transcriptional factors such as TRAF6, NF-
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κB, c-fos, and NFATc1 in the BMM treated with M-CSF and RANKL. Hence, our findings
suggest the OFLEE suppresses the osteoclastic bone loss through the inhibition of M-CSF
and RANKL-induced osteoclastogenesis in osteoclast progenitors.

However, osteoporosis is closely associated with inflammation [21]. Many studies
have reported that excessive ROS production is closely associated with RANKL-induced
osteoclastogenesis through the activation of the TRAF6-NF-κB axis or TRAF6-MAPKs
axis [22–24]. Hence, many studies suggest that the down-regulation of ROS-TRAF6 axis
mediated osteoclastogenesis is capable of preventing OP [25,26]. In addition, inflamma-
tory mediators such as iNOS, COX-2 and PGE2 in osteoclast precursors are involved with
RANKL-induced osteoclastogenesis. Kondo et al. reported that the iNOS promoted os-
teoclastogenesis under hypoxic culture condition [27]. Cuzzocrea et al. reported that the
inhibition of iNOS not only prevented OVX-induced bone loss, but also suppressed the
upregulation of pro-inflammatory cytokines such as IL-1β, IL-6 and TNFα [28]. Further-
more, Han et al. reported that RANKL selectively induced COX-2 and its downstream
inflammatory mediator PGE2 via the expression of Rac family small GTPase 1 (Rac1) in
osteoclast precursors [29]. The celecoxib, a COX-2 inhibitor, inhibited the osteoclastic
differentiation of BMM [29]. Thus, these suggest that the suppression of inflammatory
mediators is a preventive strategy for OP via the inhibition of osteoclastogenesis. Sequen-
tially, ROS or inflammatory mediator-dependent pro-inflammatory cytokines are closely
associated with osteoclastogenesis [30]. Similarly to RANKL, TNFα activates the transcrip-
tional factors such as NF-κB, cFos, and NFATc1 to induce osteoclastic differentiation via the
recruitment of TRAFs, including TRAF6, and induces the expression of RANKL [31–33].
De Vries et al. reported that the infliximab, a TNFα antagonist, inhibited the formation
of osteoclasts in peripheral blood monocytes. IL-1β, a representative pro-inflammatory
cytokine, acted as a pathophysiological risk factor in various inflammatory diseases and is
involved with osteoclastogenesis via the expression of RANKL by marrow stromal cells
and osteoblast [34–36]. Kitazawa et al. reported that the IL-1 receptor antagonist (IL-1RA)
suppressed the bone resorption via the inhibition of osteoclastogenesis in OVX mice [37].
Many studies have reported that IL-6 is involved with osteoclastogenesis via the upregula-
tion of IL-1β and TNFα [38,39], whereas He et al. reported that the inhibition of IL-6 using
its neutralizing antibody not only suppressed the TRAP-positive cells with multiple nuclei,
but also alleviated the bone loss in the mice model generated by microgravity [40]. IL-17 is
not only a representative cytokine related with osteoclastogenesis in human monocytes,
but also induced the expression of RANKL [41–43]. Furthermore, Funaki et al. reported
that resolvin E1-mediated anti-osteoclastogenesis was mediated by the suppression of
IL-17-induced RANKL expression. Taken together, these indicate that the down-regulation
of pro-inflammatory cytokines, including TNFα, IL-1β, IL-6, and IL-17, could prevent
bone loss through the suppression of RANKL expression in osteoclast precursors. In the
present study, we demonstrated that OFLEE significantly suppressed the production of
ROS, the expression of inflammatory mediators such as iNOS, COX-2, and PGE2, and
proinflammatory cytokines associated with osteoclastogenesis such as TNFα, IL-1β, IL-6,
IL-17, and RANKL in the BMM treated with M-CSF and RANKL. Thus, our findings
suggest that OFLEE-mediated anti-osteoclastogenesis is mediated by the suppression of
ROS, inflammatory mediators, and pro-inflammatory cytokines.

As a clinical intervention for patients with OP, estrogen as a hormonal therapy, calci-
tonin, bisphosphonates, and teriparaide were administered to increase BMD or to prevent
bone loss. However, there are several limitations, such as the increase of cardiovascular
events and breast cancer risk, limited efficacy and increase of cancer risk for long-term
medication, atypical femur fractures and osteonecrosis of the jaw, and the increase of
osteosarcoma risk [44]. Therefore, it is necessary to develop a therapeutic or preventive
substance with the effective suppression of bone loss, biological safety, and lower side
effects for long-term mediation for patients with OP. In the present study, we demonstrated
that the oral supplementation of OFLEE for 9 weeks significantly alleviated bone loss
without hepatotoxicity and body weight change in the animals with OP generated by OVX.
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Thus, our data indicate that OFLEE prepared from OFL, an edible and medicinal plant, not
only has biological safety for long-term medication, but also prevents bone loss through
the suppression of osteoclastogenesis, resulting in the down-regulation of ROS production,
inflammatory mediators, and pro-inflammatory cytokines in animals with OP.

4. Materials and Methods
4.1. Extraction of OFL

OFL were collected from the garden of the Jeollanamdo Forest Resources Research
Institute (JFRRI; Naju, Jeonnam 58213, Republic of Korea) and identified morphologically
and genetically by JFRRI. Then, 100 g of collected OFL was soaked in 1000 mL of 80%
ethanol (ethanol:water = 80:20, v/v) at room temperature for 7 days in a dark environment.
Collected 80% ethanol containing crude OFL extract was filtered through Whatman filter
paper and concentrated using a rotary evaporator. Thereafter, prepared OFLEE was frozen
at −80 ◦C and dried in a freeze-dryer. Finally, 100 mg of dried OFLEE was dissolved in
1 mL 100% ethanol to be used in this study.

4.2. Isolation and Cultivation of BMMs

All animal procedures were approved by the Chosun University Institutional Animal
Care and Use Committee (approved number: CICUC2021-S0034). BMMs were isolated
from the femurs and tibias of 6-week-old C57BL/6 male mice, as previously described [45].
Briefly, isolated cells were cultured in α-MEM (Welgene Inc., Gyeongsan, Republic of Korea)
supplemented with 10% fetal bovine serum (FBS; Welgene Inc., Gyeongsan, Republic of
Korea), 1% penicillin-streptomycin (Welgene Inc., Gyeongsan, Republic of Korea), and
10 ng/mL M-CSF (Sigma-Aldrich, St. Louis, MO, USA) for 16 h. Thereafter, collected
nonadherent cells were cultured in 30 ng/mL M-CSF for 48 h. Finally, adherent cells were
used as BMM in the present study. To osteoclast differentiation, BMMs were cultured at
a density 1 × 104 cells/mL for 72 h in the presence of 30 ng/mL M-CSF and 50 ng/mL
RANKL (Sigma-Aldrich, St. Louis, MO, USA) with or without 10, 25, and 50 µg/mL
OFLEE.

4.3. Cytotoxicity of OFLSS in BMMs

Both mouse embryonic fibroblast L929 cells used as normal cells to measure the
cytotoxicity and BMMs were cultured at a density of 0.5 × 105 cells/mL in a 96-well
culture plate for 24 h. Thereafter, both cells were treated with 1, 10, 25, 50 and 100 µg/mL
OFLEE for 24 h, followed by the addition of 20 µL of 3-(4,5-cimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) (5 mg/mL; Thermo Fisher Scientific Inc., Waltham,
MA, USA). After additional cultivation for 4 h and removal of the supernatant, 400 µL
of dimethyl sulfoxide (Sigma-Aldrich, St. Luis, MO, USA) was added to dissolve the
MTT crystals. Absorbance was measured at 570 nm using a microplate spectrophotometer
(BioTek, Winooski, VT, USA). The cell viability assay was repeated thrice independently.

4.4. TRAP Staining and Activity Assay

TRAP staining and TRAP activity assay were performed using a TRAP and ALP
double-stain kit (TaKaRa Bio Inc., Kyoto, Japan), according to manufacturer’s instruction.
Stained cells were photographed under a microscope (Leica Microsystems, Mannheim,
Germany). Thereafter, TRAP-positive cells were counted at equal areas. In addition,
the TRAP activity was assessed by a microplate spectrophotometer (BioTek Instruments,
Winooski, VT, USA).

4.5. F-Actin Staining

BMMs were fixed with 4% paraformaldehyde solution (Sigma-Aldrich, St. Louis, MO,
USA) for 15 min, washed with potassium phosphate-buffered saline (PBS, Welgene Inc.,
Gyeongsan, Republic of Korea) and treated with 0.3% Triton X-100 (Sigma-Aldrich, St.
Louis, MO, USA). Thereafter, BMMs were stained with rhodamine-conjugated phalloidin
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(Thermo Fisher Scientific Inc., Waltham, MA, USA) for 1 h and then stained with 4′,6-
Diamidino-2-phenylindole dihydrochloride (DAPI, Vector Laboratories, Inc, Newark, CA,
USA) for 5 min. Images were taken by a confocal laser scanning microscope (LSM 800 with
Airyscan; Carl Zeiss, Oberkochen, Germany).

4.6. Western Blotting

Total proteins were extracted from BMM under previously described culture condi-
tions using a radioimmunoprecipitation assay buffer (RIPA) buffer (Cell Signaling Tech-
nology, Danvers, MA, USA) and quantified using bicinchoninic acid (BCA) protein assay
(Thermo Fisher Scientific, Rockford, IL, USA). Equal amounts of each protein sample were
loaded onto 10% sodium dodecyl sulfate-polyacrylamide gel and then were transferred
onto polyvinylidene fluoride membranes (Millipore, Burlington, MA, USA) for performing
the Western blot using specific antibodies. The following antibodies used in the present
study were purchased from Santa Cruz Biotechnology (Dallas, TX, USA): MMP-2 (sc-13595),
MMP-9 (sc-13520), total-NF-κB (sc-8008), TRAF6 (sc-8409), c-fos (sc-8047), NFATc1 (sc-7294),
cathepsin K (sc-4835), IL-1β (sc-52012), IL-17 (sc-374218), RANKL (sc-377079), RNAK (sc-
374360), and β-actin (sc-8432). The following antibodies used in the present study were
purchased from Cell Signaling Technology (Danvers, MA, USA): phospho-NF-κB (#3036),
COX-2 (#12282), iNOS (#13120S), TNFα (#3707), and IL-6 (#12912). The immunoreactive
bands visualized by the ECL system (Thermo Fisher Scientific, Rockford, IL, USA) were
imaged using MicorChemi 4.2 (Dong-Il Shimadzu Corp., Seoul, Korea).

4.7. Gelatin Zymography

An equal volume of conditioned medium acquired from BMMs under previously
described culture conditions was resolved on zymogram gel composed of 10% polyacry-
lamide gel copolymerized with 0.2% porcine skin gelatin (Sigma-Aldrich, St. Louis, MO,
USA). Zymogram gel was incubated in renaturing buffer at 37 ◦C for 72 h to induce the
reactivation of MMPs, and was stained with Coomassie brilliant Blue R250 (Sigma-Aldrich,
St. Louis, MO, USA). The gelatinolytic bands were captured using a digital camera.

4.8. ROS Detection

After incubation under previously described culture condition for BMMs, ROS were
detected using 2′,7′-dichlorfluorescein-diacetate (H2DCF-DA; Sigma-Aldrich). Thereafter,
images were taken under an inverted fluorescence microscope (Eclipse TE2000; Nikon
Instruments, Melville, NY, USA).

4.9. Measurement of PGE2

After incubation under previously described culture condition for BMMs, PGE2 pro-
duction was measured using a PGE2 Parameter Assay kit (R&D Systems Inc., Minneapolis,
MN, USA), according to manufacturer’s instruction.

4.10. Animal Study

Female C57BL/6 mice (8-week-old) were housed in an experimental housing facility
(23 ± 3 ◦C, relative humidity 55 ± 15%, and 12 h light dark cycle) and supplied with
water and chow diet ad libitum. After adaptation for 1 week, animals were randomly
divided into 5 groups (n = 5/group) as naïve, sham, OVX, OVX supplemented 5 mg/kg,
and OVX supplemented 10 mg/kg. Under anesthesia using isoflurane (Baxter, Deerfield,
IL, USA), the mice were surgically ovariectomized via dorsolateral incisions, as previously
described [46]. In addition, sham was generated by bilateral dorsal laparotomy. One week
later, experimental animals were supplied a vehicle (water 100 µL), 100 µL of 5 or 10 mg/kg
OFLEE suspended in water by oral gavage once daily for 9 weeks. In addition, body
weights of experimental animals were measured by every week for 9 weeks. At the end
of the animal study, experiment animals were sacrificed by carbon dioxide inhalation. To
verify the hepatotoxicity, ALT and AST were measured by mouse ALT ELISA kit (ab285263,
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Abcam, Cambridge, UK) and AST activity assay kit (ab105135, Abcam, Cambridge, UK),
respectively, in serum collected from experimental animals, according to manufacturer’s
instruction. In addition, the microarchitecture of the femur dissected from experimental
animals was analyzed using the Quantume GX microCT imaging system (PerkinElmer, Inc.,
Hopkinton, MA, USA) in Gwangju branch of the Korea Basic Science Institute (Gwangju,
Republic of Korea).

4.11. Histological Analysis

For decalcification of the femoral bones dissected from experimental animals, 15%
ethylenediamine tetraacetic acid (EDTA) was used and replaced every week for 10 weeks.
Then, femoral bones were rinsed with tap-water for 24 h and soaked in a series of 20, 50, 60,
70, 90 and 100% ethanol. Thereafter, decalcified femoral bones were embedded in paraffin
and incised into 8 µm slices. The samples were stained with H&E and Masson trichrome.

4.12. Statistical Analysis

All data are presented as the mean ± standard deviation from at least three indepen-
dent experiments. Differences between groups were examined for statistical significance
using Student’s t-tests and one-way analysis of variance using SPSS software (version 27.0;
SPSS, Inc., Chicago, IL, USA). Statistical significance was set at *p < 0.05 and **p < 0.01.

5. Conclusions

In the present study, we demonstrated that OFLEE induced anti-osteoporotic effects
through the inhibition of osteoclastic differentiation from BMM and the down-regulation of
MMPs expression and activation that was mediated by the suppression of ROS production,
pro-inflammatory cytokines, and the expression of RANK and RANKL. Furthermore, oral
supplementation of OFLEE effectively suppressed bone loss without hepatotoxicity in
osteoporotic animals generated by OVX. Taken together, these findings consistently suggest
that OFLEE may be a promising candidate for the prevention of osteoporosis.
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