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Abstract: Fungal elicitation could improve the secondary metabolite contents of in vitro cultures.
Herein, we report the effect of Fusarium oxysporum on vinblastine and vincristine alkaloid yields
in Catharanthus roseus embryos. The study revealed increased yields of vinblastine and vincristine
in Catharanthus tissues. Different concentrations, i.e., 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35%
(T4), of an F. oxysporum extract were applied to a solid MS medium in addition to a control (T0).
Embryogenic calli were formed from the hypocotyl explants of germinating seedlings, and the tissues
were exposed to Fusarium extract elicitation. The administration of the F. oxysporum extract improved
the growth of the callus biomass, which later differentiated into embryos, and the maximum induction
of somatic embryos was noted T2 concentration (102.69/callus mass). A biochemical analysis revealed
extra accumulations of sugar, protein, and proline in the fungus-elicitated cultivating tissues. The
somatic embryos germinated into plantlets on full-strength MS medium supplemented with 2.24 µM
of BA. The germination rate of the embryos and the shoot and root lengths of the embryos were high
at low doses of the Fusarium treatment. The yields of vinblastine and vincristine were measured
in different treated tissues via high-pressure thin-layer chromatography (HPTLC). The yield of
vinblastine was high in mature (45-day old) embryos (1.229 µg g−1 dry weight), which were further
enriched (1.267 µg g−1 dry weight) via the F. oxysporum-elicitated treatment, especially at the T2
concentration. Compared to vinblastine, the vincristine content was low, with a maximum of
0.307 µg g−1 dry weight following the addition of the F. oxysporum treatment. The highest and
increased yields of vinblastine and vincristine, 7.88 and 15.50%, were noted in F. oxysporum-amended
tissues. The maturated and germinating somatic embryos had high levels of SOD activity, and
upon the addition of the fungal extracts, the enzyme’s activity was further elevated, indicating that
the tissues experienced cellular stress which yielded increased levels of vinblastine and vincristine
following the T2/T1 treatments. The improvement in the yields of these alkaloids could augment
cancer healthcare treatments, making them easy, accessible, and inexpensive.

Keywords: callus induction; elicitation; Madagascar periwinkle; somatic embryogenesis; vincristine;
vinblastine

1. Introduction

Catharanthus roseus, commonly known as Madagascar periwinkle, is a tropical, peren-
nial, medicinal plant belonging to the family Apocynaceae. It is a source of several impor-
tant indole alkaloids of medicinal importance such as vinblastine, vincristine, ajmalicine,
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vindoline, catharanthine, and serpentine [1]. Due to its immense pharmaceutical impor-
tance and low (0.0005%) contents of vinblastine and vincristine, C. roseus has been regarded
as an important model for secondary metabolism studies. In recent decades, an inclu-
sive, multidimensional research study has attempted to improve the alkaloid contents
in C. roseus [2,3]. Birat et al. [4] recently reported that the fungus Nigrospora zimmermanii,
which is present within the leaves of Catharanthus roseus, also produced vincristine success-
fully. The strategies frequently used for enriching the levels of alkaloids are the optimization
of media, plant growth regulators, and cultural practices; the culture of high-yielding cell
lines; the use of precursors; the incorporation of elicitors; and improving the expression of
the regulatory enzymes of metabolic pathways [5–7].

In recent years, researchers have attempted to influence the production of secondary
metabolites from diverse tissue sources through the use of different biotic and abiotic
elicitors [8]. The techniques used drastically reduced the processing times needed to
obtain active compounds [9,10]. Elicitors are a large target group of compounds which
have been added to media at various stages of cultural growth for improving secondary
compounds. Traditionally, an ‘elicitor’ is a molecule which is introduced into a medium
in small levels to improve the biosynthesis of compounds by triggering cellular defense
response genes [11,12]. The process also refers to compounds of various sources which
stimulate physiological and morphological responses in inducing compounds of a defensive
nature [13]. It is well established that the application of an elicitor or the invasion of a
pathogen produces an array of defensive secondary reactions in plant cells. Singh et al. [14]
categorized diverse types of elicitors diverse types: (a) biotic elicitors such as bacterial
and fungal cell walls or glycoproteins, (b) abiotic elicitors like UV irradiation, salt, and
various non-constitutive compounds, and (c) endogenous elicitors, which are signaling
compounds of plant-cell origins. A large number of biotic elicitors have been recognized
to be very efficient at enriching secondary metabolites and are exploited in a variety of
cultures [15]. Yeast extract was used as a biotic elicitor in cultures which induced the
synthesis of a variety of phytocompounds in several investigations into plant–microbe
interactions [16,17]. Endophytic fungi (used as fungal elicitors) isolated from C. roseus could
also be used to enrich indole alkaloid production in culture [18]. The culture filtrate of
Fusarium sporotrichioides Sherbakoff, isolated from Narcissus tazetta var. italicus rhizosphere
and grown on a potato dextrose broth, stimulated the production of alkaloids in cultivated
tissues [19]. A marked increase in vasicine content in Adhatoda vasica was observed via the
amendment of select elicitors like methyl jasmonate (MeJA), chitosan, yeast extract, ascorbic
acid, and sodium salicylate at optimized concentrations [20]. Arbuscular mycorrhizal fungi
(a group of beneficial microorganisms) were reported to play a major role in enhancing
alkaloid production in root organ cultures [21]. In Centella asiatica, the influence of various
elicitors, like the use of Trichoderma harzianum, Colletotrichum lindemuthianum, and Fusarium
oxysporum to improve the accumulation of secondary metabolites, was reviewed and
discussed [22,23].

In addition, a number of abiotic factors have been widely incorporated to augment
product synthesis in cultured tissues, such as elevated temperature, excess salinity, os-
motic stress, ultra-violet (UV) rays, and heavy metal stress [24]. In this specific plant,
C. roseus, a variety of abiotic compounds such as NaCl, cerium (CeO2 and CeCl3), yttrium
(Y2O3), and neodymium (NdCl3) were used successfully to enhance alkaloid yield [25].
CaCl2 was used as an elicitor for the enhancement of vinblastine in a C. roseus embryo-
genic cell suspension [26]. When used, these elicitors caused stresses and improved the
synthesis of secondary compounds in several investigated genera. Elicitor-induced cel-
lular stress is measured by monitoring antioxidant enzymes, which ameliorate stresses
in cultures [27,28]. Various enzymes such as superoxide dismutase (SOD), catalase (CAT),
ascorbate peroxidase (APX), and glutathione reductase (GR) are assayed to ascertain the
level of stress in cultured tissues and were studied in different plant genera [29]. Although
the enhancement of alkaloids is noted to be treatment-specific, the use of elicitors could
be a valuable strategy for enriching phytocompounds. In this study, the fungus Fusarium
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oxysporum was used as biotic elicitor, and the yields of vinblastine and vincristine were
measured in cultures. This is perhaps one of the first fungal (biotic) elicitation studies on
alkaloid yield mediated via embryogenesis. The growth of the callus biomass and the
biochemical alterations/associations during the course of its growth and morphogenesis
were monitored.

2. Results
2.1. Callus Induction and Biomass Growth in a Medium Containing a Fusarium
oxysporum Extract

On MS medium supplemented with 4.52 µM of 2,4-D, the hypocotyls of seedlings
grown in vitro produced profuse calli. The calli were friable, light-yellow, and fast-growing;
they later turned into embryogenic calli (Figure 1a). These hypocotyl calli were subjected
to various levels of F. oxysporum elicitation and routinely subcultured at regular intervals.
Growth is an indicator of cell division with the rapid multiplication of the callus; therefore,
the growth the biomass of each callus was measured in response to the elicitor treatments.
We observed that with the F. oxysporum treatment, the growth of the embryogenic calli
was faster compared to the control. The biomass of each calli increased up to T2, and for
this treatment, maximum fresh, dry, and absolute dry mass % values were observed (1.55,
0.183 g, and 11.803%, respectively). Upon elicitation, the calli appeared friable and white,
especially those that received the T1 and T2 treatments. The calli that received higher
concentrations, i.e., T3 and T4, were less responsive; the calli turned light-brown, were
compact, and showed poor growth.
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Figure 1. (a) Embryogenic callus grown in MS medium containing 4.52 µM of 2,4-D and the T2 fungal
elicitor (bar 2 mm); (b) embryo on a maturation medium containing 2.60 µM of GA3 and an elicitor
(bar 2 mm); (c) germinated embryos at early stage with a root (bar 0.5 cm).

2.2. F. oxysporum Treatments and the Number of Embryos

The embryogenic calli were cultured on MS medium supplemented with 5.37 µM of
NAA and 6.72 µM of BA, and different concentrations of the F. oxysporum extract were
added in order to monitor the influence of the fungus elicitor on the number of embryos
and their growth. The maximum fresh, dry, and absolute dry weight values were observed
for T2 (2.066, 0.237 g, and 11.442%, respectively) compared to the other treatments and
the control, T0. Under all the tested conditions, the embryogenic calli differentiated into
embryos, and for theT2 concentration of the F. oxysporum treatment, the maximum number
of embryos was formed (102.69/culture) (Table 1). The next important treatment was T1
(94.36/culture), which induced a good number of embryos; the embryo numbers declined
gradually at higher elicitor levels.
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Table 1. Number of somatic embryos for various Fusarium oxysporum treatments.

Treatment Number of Somatic Embryos/Culture

T0 82.53 ± 1.074 d
T1 94.36 ± 0.899 b
T2 102.69 ± 0.835 a
T3 84.78 ± 0.868 c
T4 85.14 ± 0.945 c

The different F. oxysporum levels used were a control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4). The
MS was added with the addition of 6.72 µM of BA and 5.37 µM of NAA. The data were scored after four weeks of
culture, and the values are the means ± standard errors of three replicates. Means with the same letters are not
significantly different at p ≤ 0.05, according to DMRT.

2.3. The Maturation and Germination of Somatic Embryos in a Medium Containing F. oxysporum

The cotyledonary embryos were cultured on MS medium supplemented with 2.60 µM
of GA3 for maturation; the medium was additionally supplemented with the fungal elicitors
(Figure 1b). For the concentrations T1 and T2, the embryos were elongated, coiled, and
turned green, and they later germinated into plantlets (Figure 1c). For the concentrations
T3 and T4, however, embryo development was poor; a few remained in an advanced
cotyledonary stage, while the others turned brown. The embryos that reached maturity
were thin and showed poor growth. The embryos germinated into plantlets on the MS
medium containing 2.24 µM of BA. The percent germination and the shoot and root lengths
of the germinated somatic embryos were higher under the F. oxysporum-elicitated conditions
compared to the control (Table 2).

Table 2. The germination of somatic embryos in Fusarium oxysporum-elicitated treatments.

Treatment Germination (%) Shoot Length (mm) Root Length (mm)

T0 38.56 ±1.87 c 3.36 ± 0.30 c 4.34 ± 0.29 b
T1 47.58 ±2.60 b 8.96 ± 0.39 b 4.90 ± 0.23 b
T2 56.63 ±1.88 a 11.16 ± 0.29 a 6.67 ± 0.30 a
T3 16.76 ±1.92 d 1.94 ± 0.22 d 2.12 ± 0.28 c
T4 12.7 ±1.91 e 1.24 ± 0.21 d 2.07 ± 0.31 c

The different F. oxysporum levels used were a control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4). The
MS was supplemented with 2.24 µM of BA. The data were scored after four weeks of culture, and the values
are the means ± standard errors of three replicates. Within each column, the means with the letters are not
significantly different at p ≤ 0.05, according to DMRT.

2.4. Vinblastine and Vincristine Yields

The yields of vinblastine and vincristine were quantified in different in vitro-cultivated
tissues. The mobile phase showed sharp standard vinblastine and vincristine peaks. A
regression analysis also showed a good linearity, with r = 0.999 and 0.993 for vinblastine and
vincristine, respectively. It is evident from Table 3 that the maximum yields of vinblastine
were achieved in the embryos’ maturation (0.788 µg g−1 dry weight; Figure 2a,c) and
germination stages (0.835 µg g−1 dry weight; Figure 2b,d) compared to the other two
stages, i.e., the induction and proliferation stages of the embryo tissues. With F. oxysporum
elicitation at T2, the vinblastine yield was further improved (0.886 µg g−1 dry weight), and
the T1 treatment was equally efficient in promoting its yield. Compared to vinblastine,
the yield of vincristine was low, and the maximum content was achieved in germinating
embryos compared to the other stages. Upon the addition of F. oxysporum, an improved
vincristine yield was noted in the cultured tissues (Table 4), with the maximum identified
for the T2 treatment (0.307 µg g−1 dry weight), followed by the T1 treatment (0.275 µg g−1

dry weight). The maximum increased yields of vinblastine and vincristine, 7.88 and 15.50%,
respectively, were noted for the F. oxysporum-elicitated treatment T2 over the control tissues.
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Table 3. Vinblastine contents (µg g−1 DW) for the different stages of the embryos in Fusarium
oxysporum-elicitated treatments.

Treatment Induction Proliferation Maturation Germination

T0 0.422 ± 0.010 c 0.401 ± 0.001 b 0.788 ± 0.005 c 0.835 ± 0.012 c
T1 0.429 ± 0.011 b 0.406 ± 0.0006 b 0.813 ± 0.0007 b 0.861 ± 0.009 b
T2 0.451 ± 0.007 a 0.417 ± 0.0009 a 0.839 ± 0.002 a 0.886 ± 0.011 a
T3 0.408 ± 0.013 d 0.395 ± 0.001 c 0.775 ± 0.004 d 0.827 ± 0.010 d
T4 0.415 ± 0.011 d 0.392 ± 0.003 c 0.771 ± 0.001 d 0.823 ± 0.018 d

The different F. oxysporum levels used were a control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4). The
MS was supplemented with 2.60 µM of gibberellic acid (GA3). The data were scored after 45 days of culture. The
values are the means ± standard errors of three replicates. Within each column, the means with the letters are not
significantly different at p ≤ 0.05, according to DMRT.
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Table 4. Vincristine contents (µg g−1 DW) in the different stages of the embryos in Fusarium oxysporum-
elicitated treatments.

Treatment Induction Proliferation Maturation Germination

T0 0.083 ± 0.014 c 0.185 ± 0.011 c 0.181 ± 0.002 b 0.254 ± 0.007 c
T1 0.088 ± 0.011 b 0.191 ± 0.008 b 0.184 ± 0.001 b 0.275 ± 0.011 b
T2 0.095 ± 0.010 a 0.199 ± 0.012 a 0.192 ± 0.0007 a 0.307 ± 0.016 a
T3 0.076 ± 0.011 d 0.182 ± 0.013 c 0.170 ± 0.002 c 0.242 ± 0.013 d
T4 0.074 ± 0.009 d 0.177 ± 0.011 d 0.168 ± 0.0006 c 0.239 ± 0.008 d

The different F. oxysporum levels used were the control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4).
The MS was supplemented with 2.24 µM of BA. The data were scored after 45 days of culture. The values are the
means ± standard errors of three replicates. Within each column, the means with the letters are not significantly
different at p ≤ 0.05, according to DMRT.

2.5. Fusarium Oxysporum Elicitation and Biochemical Attributes
2.5.1. Sugar, Proline, and Protein Contents

As the F. oxysporum elicitation, especially at low levels, improved alkaloid yields,
we attempted to monitor various non-enzymatic stress markers for different tissues. The
sugar content was noted to be high during the embryos’ maturation stage compared to
the germination stage. Upon the addition of increased levels of elicitors, the sugar level
increased further, reaching a maximum in T2 (21.663 mg g−1). The proline level was
also high in the maturation stage (8.255 mg g−1), but the proline accumulation declined
with the growth and maturation of the embryos (7.254 mg g−1) at T2. The total soluble
protein, on the other hand, was found to be more or less the same at these two advanced
stages, i.e., maturation and germination,; comparative details of the elicitation doses and
biochemical attributes are presented in Tables 5 and 6.

Table 5. Sugar, protein, and proline contents (mg g−1 FW) during the maturation stage of the embryos
in a Fusarium oxysporum-treated culture.

Treatment Sugar Protein Proline

T0 16.475 ± 0.009 d 4.517 ± 0.018 d 6.692 ± 0.010 d
T1 18.957 ± 0.011 b 5.084 ± 0.011 b 7.745 ± 0.011 b
T2 21.663 ± 0.010 a 5.378 ± 0.013 a 8.255 ± 0.009 a
T3 17.434 ± 0.009 c 4.657 ± 0.019 c 6.947 ± 0.010 c
T4 17.785 ± 0.006 c 4.695 ± 0.016 c 7.016 ± 0.008 c

The different F. oxysporum levels used were a control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4). The
MS medium was supplemented with 2.60 µM of gibberellic acid (GA3). The data were scored after 30 days of
culture. The values are the means ± standard errors of three replicates. Within each column, the means with the
letters are not significantly different at p ≤ 0.05, according to DMRT.

Table 6. Sugar, protein, and proline contents (mg g−1 FW) during the germination stage of the
embryos in a Fusarium oxysporum-treated culture.

Treatment Sugar Protein Proline

T0 12.355 ± 0.011 d 4.675 ± 0.019 d 5.847 ± 0.010 d
T1 13.282 ± 0.008 b 5.116 ± 0.017 b 6.696 ± 0.008 b
T2 14.967 ± 0.010 a 5.457 ± 0.011 a 7.254 ± 0.009 a
T3 12.674 ± 0.011 c 4.817 ± 0.014 c 6.065 ± 0.008 c
T4 12.742 ± 0.009 c 4.863 ± 0.018 c 6.146 ± 0.010 c

The different F. oxysporum levels used were a control (T0), 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35% (T4).
The MS medium was supplemented with 2.24 µM of BA. The data were scored after 30 days of culture. The
values are the means ± standard errors of three replicates. Within each column, the means with the letters are not
significantly different at p ≤ 0.05, according to DMRT.

2.5.2. SOD, CAT, and APX Activities

The germinating and maturated somatic embryos showed enhanced levels of alkaloids,
especially on the F. oxysporum-treated culture. The addition of an elicitor might cause stress



Plants 2023, 12, 3373 7 of 16

for tissues. To better understand the impact of the elicitor treatments on plant defense
and later on secondary metabolism, the antioxidant activities of various enzymes were
investigated as stress markers. The maturated and germinating somatic embryos had
higher levels of antioxidant enzyme activities than the early embryogenic tissues. The
antioxidant enzyme activities were higher upon the addition of the F. oxysporum treatments,
which indicated extra cellular stress on the cultivated tissues. It is evident from Figure 3
that at T2, the levels of SOD activity were high in the maturation (4.115 EU min−1 mg−1

proteins) and germination (3.693 EU min−1 mg−1 proteins) stages of the embryos compared
to the control (3.785 and 3.415 EU min−1 mg−1 proteins respectively), which yielded the
highest levels of vinblastine and vincristine. Compared to SOD, the activities of CAT and
APX were, however, low, i.e., 2.355 and 1.075 min−1 mg−1 protein, respectively, in the
embryos’ maturation stage. The germinating somatic embryos also had similarly low levels
of CAT and APX enzyme activity (Figure 4).
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Plants 2023, 12, 3373 8 of 16

3. Discussion

In the present study, the yields of vinblastine and vincristine were quantified following
F. oxysporum elicitation in embryogenic cultures of C. roseus. The callus was induced from
hypocotyls on MS medium supplemented with 2,4-D in which-high frequency somatic
embryos were formed; other auxins used induced embryos at a slower rate. Here, embryo
differentiation was noted on the embryogenic callus, i.e., indirectly, but in other observed
cases, embryos were also formed directly on explants without an intervening callus [30].
In both embryo-forming developmental pathways, the use of exogenous auxins/auxin
analogues like 2,4-D efficiently promoted embryogenesis. These synthetic auxin analogs
play a central signaling role in the acquisition of embryogenic competence from a somatic
state [31,32]. In our study, an F. oxysporum extract was used at varying concentrations, of
which T2 (0.15%) was observed to be more efficient at promoting callus biomass growth
compared to T1, T3, and T4. We also observed that the callus biomass and the num-
ber of embryos increased significantly in T2 with F. oxysporum elicitation. The induced
embryos were distinct and showed fast growth and development under the elicitated
condition. The results of the present study indicate that the high concentrations (T3 and
T4) of elicitation decreased the growth of the callus biomass by inhibiting cell division,
and this reduction may have been due to the toxicity of the fungal extract or the excessive
availability of stress ions [33]. In the present study, the addition of a low level of the F. oxys-
porum extract improved the number of somatic embryos in the culture. Similar responses,
i.e., stress-induced embryogenesis, were described earlier in a number of previous observa-
tions [34,35]. Once an embryo is induced, the presence of 2,4-D in the medium inhibits the
embryo’s development; therefore, other PGR combinations were tested and suggested to
be necessary [35]. The involvement of cytokinins alone or with low doses of a weak auxin
like NAA successfully influenced in vitro embryogenesis and plant morphogenesis [36,37].

The cultivation of plant cells and tissues or complex, organized structures is practiced
in vitro as an efficient renewable source for the production of a variety of phytochemicals,
and the importance of these methods were reviewed in recent years [38,39]. Calli and
suspensions are cultivated more frequently because of their ease of cultivation and the
possibility of scaling up their production in bioreactors. Aside from bioreactors, a number
of other important strategies such as liquid culture, the use of mist, and liquid overlay-
ing are used to improve biomass/embryogenesis to generate raw materials for alkaloid
synthesis [40]. Liquid overlaying is a technique in which a thin film of a liquid nutrient is
added on a solid medium to improve somatic embryogenesis in cultures [41]. The yields of
active compounds are often high in complex, differentiated structures like shoots, roots,
and leaves [14,42]. The method of extracting metabolites synthesized and accumulated in
specialized cells or tissues is difficult, but genetically constructed biosensors can detect
the precise locations of specialized metabolites at the tissue or cell level [43]. Different
techniques have recently been adopted for the collection of alkaloids from specialized
tissues. In the present study, we noted that compact embryo structures like maturated and
germinating embryos synthesized higher yields of vinblastine and vincristine compared
to embryos in early stages. Upon receiving F. oxysporum elicitation treatment, a 7.88%
increased yield of vinblastine and a 15.50% increased yield of vincristine were noted. The
same low level (T1/T2) of elicitation was noted earlier to be very efficient for improving
the callus biomass. This rapid growth of the embryogenic callus may have been due to fast
cell mitosis triggered by cell-cycle genes which were strongly upregulated in the dividing
cells [44,45]. The influence of F. oxysporum on biochemical attributes was investigated as
the addition of the elicitor improved the alkaloid yield. In the present study, extra sugar,
protein, and proline accumulations were noted; however, these declined with increased
levels of elicitation. Similar increases in protein, phenolics, hydrogen peroxide, and carbo-
hydrates in response to stress were noted in several investigated plant genera, and these
enhancements are considered good adaptation mechanisms in tolerant genotypes [46,47].
The protein level also increases gradually with the progress of tissues, and a change in
protein with a progressing developmental stage was reported earlier in other investigated
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plant materials [42,48]. In tomato, enriched proline and lysine and glutamine accumulation
were noted at an early stage of embryonic development, and this probably confers tolerance
to drought [49]. Here, in the F. oxysporum-elicitated tissues, the increased accumulation of
proline may have been due to the up-regulation of a proline synthesis gene which produced
P5C reductase (PYCR) and proline dehydrogenase/oxidase (PRODH/POX) enzymes par-
ticipating in the interconversion of intermediates in proline biosynthesis pathways [50,51].
Transcriptome data reveal that rice universally downregulates photosynthesis in response
to abiotic and biotic stresses. At the same time, it also upregulates the hormone-responsive
genes of the abscisic acid, jasmonic acid and salicylic acid pathways during stress [52].
In transgenic tobacco, the overexpression of AhCytb6 regulates the expression of various
genes to enhance plant growth under a N2 deficit and abiotic stress conditions by modulat-
ing the plant’s physiology [53]. Enzymes like Cipk6, a Calcineurin B-like interacting protein
kinase (CIPK) of tomato, regulates programmed cell death in immunity, transforming Ca2+

signaling in the formation of reactive oxygen species [54,55].
As the yields of alkaloids were high in the advanced-staged embryos, we tried to

investigate the level of stress by measuring the activities of antioxidant enzymes in these
cultivated tissues. The level of SOD activity was high in both of these two tissues, and upon
the addition of the elicitor, the activity was further elevated. Increased SOD activity under
various stresses was observed in several investigated plant genera [56,57]. CAT and APX
also showed similar trends with added levels of elicitors, although tissue- and dose-specific
variations were not uncommon [58,59]. In addition to the increases in the activities of stress
marker enzymes and the alteration of physiological reserves, a molecular analysis indicated
that the expression of the Salt Overly Sensitive 1 (SOS1) gene is an important event in
response to adaptive stress caused by biotic and abiotic factors [60]. It is very evident from
the present study that the F. oxysporum elicitor promoted cultural growth in C. roseus and
later stimulated enriched levels of alkaloids; however, the underlying mechanism is still
not fully understood. It was reported earlier that the fungus extract in general contained
compounds like sugars and proteins [61]. A chemical analysis showed that the hyphal
walls of F. oxysporum are primarily composed of N-acetyl-glucosamine, glucose, mannose,
galactose, uronic acid, and proteins or peptides [62,63]. The roles of various sugars, sugar
alcohols, and related energy sources in improving synthesis were indicated earlier in several
studies [64,65]. But the roles of protein or truncated proteins like small, moderate, or large
peptides in triggering the synthesis of alkaloids have not been determined in a major
way. Although the best mechanism of improving synthesis is not fully known, the process
may be due to the formation of an ‘elicitor-receptor complex’ [66,67] which stimulates a
cascade of defense genes in promoting alkaloid synthesis [68,69]. Thus, experimentations
on elicitation through the use of various agents are immensely valuable as the technique
promises to promote alkaloid biosynthesis in cultivated tissues.

4. Materials and Methods

The fruits/seeds of Catharanthus roseus (L.) G. Don were procured from the herbal
garden of Jamia Hamdard (Hamdard University). The material was identified earlier, and
a voucher specimen (JH-002-98) was maintained.

4.1. In Vitro Seed Germination and Culture Conditions

Seed germination and the process of establishing a culture of C. roseus L. (G). Don
were carried out using the protocol established in our laboratory by [64]. In a nutshell,
from twenty to twenty-five surface-disinfected seeds were placed in a 250 mL conical flask
(Borosil, Mumbai, India) containing 50 mL of solid MS medium without any plant growth
regulator (PGR). The germinated seedlings were maintained until the shoots attained a
height of 2–4 cm. Various parts (the nodal stem, leaf, and hypocotyl) were used and
inoculated in test tubes (Borosil, India) as explants. For the induction of an embryogenic
callus, the MS medium was supplemented with 4.52 lM of 2,4-Dichlorophenoxyacetic acid
(2,4-D). For the fast proliferation of embryos, the medium was fortified with 6.72 µM of
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N6-Benzyladenine (BA) and 5.37 µM of naphthalene acetic acid (NAA). All the above PGRs
were procured from Sigma-Aldrich, St. Louis, MO, USA. The medium was solidified with
8 g L−1 of agar (Hi-media, Mumbai, India), and each tube contained 20 mL of medium. The
pH of the medium was adjusted to 5.7 before it was autoclaved at 121 ◦C. All the cultures
were incubated at 25 ± 2 ◦C under a 16 h photoperiod provided by cool-white fluorescent
tubes at a photosynthetic photon flux density (PPFD) of 100 µmol m−2 s−1.

4.2. The Procurement and Culture of Fungi and the Preparation of the Elicitor

Fusarium oxysporum (Figure 5) was obtained from the Department of Pathology, Indian
Agricultural Research Institute (IARI), Pusa, New Delhi, India. The fungus was grown
in 100 mL conical flasks containing potato dextrose agar (Hi-media, India). After 7 d, the
conical flasks containing fungal growth were sterilized and filtrated using Whatman no. 1
filter paper. The mycelium was washed several times with sterilized, distilled water and
stored at 4 ◦C after being suspended in 100 mL water; this was designated as the culture
media filtrate. The fungal mat was washed several times with sterilized, distilled water, and
an aqueous extract was prepared [70] via homogenization with a mortar and pestle. This
extract was filtered through centrifugation at 5000 rpm, and the supernatant was taken. It
was later sterilized (designated as the mat extract) and kept at 4 ◦C for future investigations.
Four different fungal elicitor treatments, i.e., 0.05% (T1), 0.15% (T2), 0.25% (T3), and 0.35%
(T4), were prepared and added to the culture medium. A control (T0), i.e., a culture medium
without the fungal filtrate, was also used for comparative evaluations of the elicitor’s
influence. Morphogenetic and biochemical studies were conducted at periodic intervals.
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4.3. Callus Induction under Fungus-Treated and Non-Treated Conditions

Hypocotyls of 5–6 d old seedlings were placed on MS and supplemented with an
optimized 2,4-D concentration (4.52 µM). Four different treatments containing the Fusarium
oxysporum fungal elicitor were added in order to assess the effect of the elicitors on callus
induction and growth. A control, i.e., a medium without fungal filtrate, was also used
for comparison. For a growth index analysis, callus biomass samples, i.e., the fresh and
dry weights of calli at various growth stages, were taken and investigated. For the deter-
mination of the fresh weight, the calli (with or without elicitor treatment) were weighed
immediately after isolation at regular intervals (15, 30, and 45 d). To determine the dry
weight, the calli were dried at 60 ◦C for 18 h and measured, and the absolute dry mass was
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finally calculated using the method and formula of Winkelmann et al. (2004): Absolute dry
mass (%) = Dry weight/fresh weight × 100.

4.4. The Proliferation, Maturation, and Germination of Embryos under the Influence of
Biotic Elicitors

The embryogenic callus (40–50 mg) was cultured on MS supplemented with optimized
concentrations of BAP (6.62 µM) and NAA (5.36 µM) for embryo proliferation. The medium
was additionally amended with the above-mentioned fungus for the treatments indicated
earlier treatments. The somatic embryos were induced in masses and were counted; this
stage was called the proliferation stage. Vincristine and vinblastine alkaloids were extracted
from the proliferation-stage embryos, and some of the proliferated embryos were cultured
in medium for embryo maturation. The somatic embryos on MS supplemented with
2.89 µM of GA3 became larger and turned green, which is a good morphological indicator
of matured embryos. The green, matured embryos were later placed on the same MS,
supplemented with 2.22 µM of BAP for germination. The above two stages (maturation
and germination) of the embryo development media were additionally supplemented
with the Fusarium oxysporum extract for the above-indicated treatments. The somatic
embryos started to germinate within a week or so, and the germination percentage and
shoot and root lengths were measured and compared to assess the impact of the elicitor on
the embryos. Matured and germinating embryos were harvested and oven-dried for the
extraction of vincristine and vinblastine.

4.5. Vinblastine and Vincristine Quantification through HPTLC

Vinblastine and vincristine were extracted following methods described earlier meth-
ods [71,72] and their contents were measured in different in vitro-grown tissues and com-
pared with standard vinblastine and vincristine obtained from Sigma-Aldrich (St. Luis,
MO, USA). The selected tissues/embryos were collected from optimized media with their
best growth. A total of 1 gm (dry weight) of tissues/embryos was refluxed in 30 mL of
methanol for 5 h; later the supernatant was warmed at 60 ◦C, and the volume was finally
reduced to 1–2 mL. Then, 1 mg of vinblastine and vincristine each was dissolved in 1.0 mL
of methanol to make a stock solution concentration of 1.0 mg mL−1. Various concentrations
were prepared from the stock solutions to obtain 200, 400, 600, 800, and 1000 µg per band
of the standard and were assessed separately via HPTLC. A standard curve was plotted
between the peak area (y-axis) and concentration (x-axis), which showed good linearity. For
the stationary phase, thin-layer chromatography (TLC) aluminum sheets which measured
20 × 10 cm and were coated with silica gel (60 F 254, Merck, Bengaluru, India) were used.
The freshly prepared mobile solution (phase) contained toluene, carbinol, acetone, and
ammonia in a ratio of 40:20:80:2. The samples were applied using a 100 µL micro-syringe
via a Linomat 3 (CAMAG) applicator. The silica plates were air-dried for 10–15 min and
kept in a chamber (Twin Through Chamber CAMAG, 20 × 10 cm) filled with mobile
solution. The solvent system was allowed to move up to about 85 mm. The plates were
later removed from the chamber and air-dried again for about 10–20 min. The silica gel
plates were documented using a CAMAG Reprostar under UV light without any chemical
spray applied. The vinblastine- and vincristine-containing stationary phase was scanned
via a CAMAG Scanner 3. The vinblastine and vincristine were scanned at 280 and 300 nm,
respectively. The peaks of vinblastine and vincristine were fixed, and the identification
of the alkaloids in the tissue samples was achieved by comparing the peaks of standard
alkaloids. Finally, the alkaloid yields were measured in µg gm−1 of dry weight.

4.6. Estimation of Total Sugar, Proline, and Protein Contents

The estimation of the total sugar content was carried out according to the Dey
method [73]. Tissues at different stages (0.5 g) were extracted twice with 90% ethanol
(AR, New Delhi, India), and the extracts were pooled. The final volume of the pooled
extract was increased to 25 mL via the addition of double-distilled water. To an aliquot
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of 1.0, 1.0 mL of 5.0% phenol and 5.0 mL of concentrated analytical-grade sulfuric acid
were added and cooled in air. The optical density was measured at 485 nm. A solution
containing 1.5 mL of 55% glycerol (AR, India), 0.5 mL of ninhydrin (AR, India), and 4.0 mL
of double-distilled water was used as a calibration standard. For the measurement of
proline, 0.2 g of specific stages of tissues were homogenized in 5.0 mL of 3% aqueous
sulfosalicylic acid and filtered through Whatman filter paper (No. 1). To 1.0 mL of the
extract, 1.0 mL of acid ninhydrin and 1.0 mL of glacial acetic acid (AR, India) were added,
and the reaction mixture was incubated at 100 ◦C for 1 h. The reaction mixture was placed
on ice and extracted using 2.0 mL of toluene. The proline content in the extract was subject
to the spectrophotometric assay of Bates et al. [74]. The protein content was estimated via
the Bradford method [75]; 0.5 g of tissue was ground in a pre-cooler mortar and pestle with
1.5 mL (0.1 M) of phosphate buffer (pH 7.0), placed on ice, and centrifuged at 5000 rpm
for 10 min. With 0.5 mL of trichloroacetic acid (TCA), the sample was again centrifuged
at 5000 rpm for 10 min. The supernatant was discarded, and the pellet was washed with
chilled acetone and dissolved in 1.0 mL of 0.1 N sodium hydroxide (NaOH). Later, a 0.5 mL
aliquot was added to 5.0 mL of Bradford reagent, and the optical density was measured at
595 nm.

4.7. Assay of Antioxidant Enzyme Activity

The catalase (CAT) activity was measured following the Aebi method [76]. It was
measured by observing the decay in H2O2, and a decrease was measured at an absorbance
of 240 nm in a reaction mixture containing 1.0 mL of a 0.5 M phosphate buffer (Na-
phosphates, pH 7.5, AR, India), 0.1 mL of EDTA (AR, India), 0.2 mL of enzyme extract,
and 0.1 mL of H2O2. The chemical reaction was continued for 3 min. The enzyme activity
was represented as EU mg−1 protein min−1. A single unit of enzyme represents the
amount used to decompose 1.0 µmol of H2O2/min. The enzyme activity was registered
using the coefficient of absorbance at 0.036 mM−1 cm−1. The superoxide dismutase (SOD)
activity was measured following the method of Dhindsa et al. [77]. Different stages of
tissues/embryos (0.1 g) were homogenized in 2.0 mL of extraction solution (0.5 M of sodium
phosphate buffer, pH 7.3, + 3.0 mM of EDTA + 1.0% (w/v) polyvinylpyrollidone (PVP, AR,
India) + 1.0% (v/v) + Triton X100, AR, India), and the mixture was centrifuged (10,000 rpm)
at 4 ◦C. The enzyme activity was measured by the ability to inhibit photochemical reduction.
The assay mixture contained 1.5 mL of reaction buffer, 0.2 mL of methionine, 0.1 mL of
enzyme extract, an equal amount of 1.0 M NaCO3 and 2.25 mM Nitro Blue Tetrazolium
(NBT) solution, 3.0 mM of EDTA, riboflavin, and 1.0 mL of Millipore H2O. The whole
mixture was kept in test tubes and incubated at 25 ◦C for 10 min under light. A 50% loss in
color was considered 1.0 unit, and the enzyme content was expressed as EU mg−1 protein
min−1. For ascorbate peroxidase (APX), the Nakano and Asada [78] method was used. The
assay mixture contained 1.0 mL of 0.1 M sodium buffer, pH 7.2, + 0.1 mL pf EDTA + 0.1 mL
of enzyme extract. The ascorbate was added to the solution and the reaction mixture was
run for 3 min at 25 ◦C. The APX activity was measured by observing the reduction of
absorbance by ascorbate mediated breakdown of APX. Enzyme activity was measured by
using co-efficient of absorbance 2.81 mM−1 cm−1. Similar to other enzymes, the activity
was expressed in EU mg−1 protein min−1 i.e., one unit of enzyme determines the amount
necessary in decomposing 1.0 µm of ascorbate/min.

4.8. Statistical Analysis

The data on the effect of Fusarium oxysporum elicitor on callus growth and embryogene-
sis and differences in biochemical attributes, antioxidant enzyme activity, the alkaloid yield,
and other parameters were analyzed via a one-way analysis of variance (ANOVA). The
data or the values are the means of three replicates from two experiments and the presented
mean values were separated using Duncan’s multiple range test (DMRT) at p ≤ 0.05.
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5. Conclusions

Low doses of an F. oxysporum extract proved effective for improving callus biomass
growth, embryogenesis, plant regeneration, and alkaloid yield in C. roseus. The percent
germination and shoot and root lengths of somatic embryos were high at a low level
(from 0.05% to 0.15%). Maturated and germinating somatic embryos had high levels of
vinblastine and vincristine, which were further improved (to 7.8 and 15.5%) via elicitation.
The addition of the elicitor caused cellular stress, which was evidenced by the biochemical
attributes and high levels of antioxidant enzyme activities. We therefore recommend
low doses of the fungal extract for enhancing the synthesis of alkaloids in C. roseus. The
improvement in the yields of alkaloids could augment cancer healthcare in an easy and
inexpensive manner.
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