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Abstract: Stomatal closure is a vital, adaptive mechanism that plants utilize to minimize water loss
and withstand drought conditions. We will briefly review the pathway triggered by drought that
governs stomatal closure, with specific focuses on salicylic acid (SA) and reactive oxygen species
(ROS). We propose that the non-expressor of PR Gene 1 (NPR1), a protein that protects plants during
pathogen infections, also responds to SA during drought to sustain ROS levels and prevent ROS-
induced cell death. We will examine the evidence underpinning this hypothesis and discuss potential
strategies for its practical implementation.

Keywords: drought; stress response; stomatal closure; reactive oxygen species; cell death; antioxidants;
salicylic acid; NPR1

1. Introduction

Drought stress is a major abiotic constraint that adversely affects plant growth, de-
velopment, and crop productivity worldwide. To withstand water scarcity, plants have
evolved various physiological and molecular mechanisms to regulate water loss and main-
tain cellular homeostasis [1]. Among these mechanisms, stomatal closure plays a pivotal
role in reducing transpiration water loss through the regulation of gas exchange [2]. Stom-
ata, microscopic pores on leaf surfaces, are controlled by a complex signaling pathway
that integrates environmental cues [3] and internal hormonal signals such as salicylic acid
(SA) [4]. This paper aims to provide a comprehensive overview of the stomatal closure path-
way in response to drought stress, focusing on the underlying molecular and physiological
processes that involve reactive oxygen species (ROS), antioxidants, and SA.

2. ROS Responses in Plants

One of the unavoidable results of drought stress is increased ROS production in
plants [5]. ROS are highly reactive molecules that are formed as byproducts of the
metabolism of oxygen. There are many different types of ROS, including hydrogen perox-
ide (H2O2), singlet oxygen (1O2), superoxide (O2

−·), and the hydroxyl radical (HO•). Each
type of ROS reacts within cells differently; superoxide usually reacts with other molecules
to form secondary oxidants [6], hydroxyl radicals can damage DNA [7], hydrogen peroxide
mainly reacts with cysteine residues of proteins [8], and singlet oxygen can react with both
proteins [9] and DNA [10].

In plants, ROS can be generated through multiple different pathways. Under physio-
logical conditions in chloroplasts, the splitting of water at Photosystem II (PSII) during the
light-dependent reactions of photosynthesis can form superoxide and singlet oxygen [11].
Superoxide is also formed by Complex I and Complex III in the mitochondrial electron
transport chain during the formation of ubisemiquinone [12]. From superoxide, hydrogen
peroxide can be formed via superoxide dismutase (SOD) [13]. Under stress conditions, ROS
can be synthesized by cell wall peroxidases and NADPH oxidase [14].
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ROS can function as secondary messenger molecules during signal transduction
processes [15]. In such instances, hydrogen peroxide oxidizes target proteins at their
cysteine residues, leading to alterations in protein structure and function [16]. One intrinsic
limitation of ROS, however, is that, due to their high reactivity, in high concentrations,
ROS can cause irreversible cell damage or even cell death. In the presence of biotic and
abiotic stressors, ROS increases the permeability of mitochondria, leading to the release
of cytochrome C (Cyt C) to the cytosol. The loss of Cyt C subsequently impairs the
functionality of the mitochondrial electron transport chain, exacerbating the buildup of
ROS. This creates a self-perpetuating cycle of ROS accumulation, thereby intensifying the
positive feedback loop triggering programmed cell death (PCD) [17]. To prevent ROS-
induced cell death, ROS are regulated by antioxidants, which include chemicals such as
flavonoids [18] and carotenoids [19], and proteins such as catalase (CAT) and glutathione
peroxidase (GPX) [20]. These antioxidants neutralize ROS by transferring electrons, often
eventually converting ROS into water [21].

3. ROS and Hormone Crosstalk in Stomatal Closure

ROS are directly implicated in the process of drought-induced stomatal closure [22].
This intricate process, which occurs within guard cells, is regulated by various plant
hormones, including abscisic acid (ABA) and salicylic acid (SA) [3]. When confronted with
drought stress, plants generate ABA in their roots [23–25], where drought-induced turgor
loss is detected, and transmit the ABA signal to leaves through the xylem. ABA is derived
from a C40 carotenoid precursor, which is cleaved into the intermediate xanthoxin and then
converted into ABA. ABA binds to its receptor PYR/PYL [26] and induces the recruitment
and inhibition of PP2Cs [27], a group of phosphatases that dephosphorylate and deactivate
the protein kinase OST1 [28]. The inhibition of PP2Cs leaves OST1 phosphorylated, enabling
it to phosphorylate Ser120 of SLAC1 anion channels. However, the phosphorylation of
Ser120 alone is not sufficient to activate SLAC1 [29]. At this juncture, ROS comes into
play. Besides directly phosphorylating SLAC1, OST1 phosphorylates the NADPH oxidase
RBOHF [30], which subsequently produces superoxide that is converted by superoxide
dismutase (SOD) into hydrogen peroxide [31]. Hydrogen peroxide then activates calcium
channels on the plasma membrane of guard cells [32] through the oxidation of extracellular
cysteine residues on HPCA1 kinase, leading to autophosphorylation and the subsequent
activation of the calcium channels, causing calcium influx [33]. The increased calcium
induces calcium-dependent protein kinases (CPKs) to phosphorylate Ser59 of SLAC1. Only
when both serines, Ser120 and Ser 59, are phosphorylated does SLAC1 initiate anion efflux
from the cell [34,35]. The efflux of anions from the guard cell creates a concentration
gradient, compelling water to exit the cell to restore equilibrium, thus causing a decrease
in cell volume and leading to stomatal closure [36]. While most of these studies were
conducted in Arabidopsis thaliana, in rice, hydrogen peroxide production also experiences
a dramatic increase upon ABA induction. Following the calcium influx induced by ABA,
Ca2+/calmodulin-dependent protein kinase (DMI3) phosphorylates Ser191 of RBOHB,
leading to superoxide production. The superoxide flux then activates channels permitting
Ca2+ to flow into the cytosol. This Ca2+ influx, in turn, further induces OsDMI3-mediated
phosphorylation, which further intensifies superoxide production during the ABA response,
creating a positive feedback loop [37,38].

ABA is not the sole hormone to induce ROS production during stomata closure. Under
drought conditions, jasmonic acid (JA) assumes the form of JA-isoleucine (JA-Ile), which
relocates to the nucleus and activates the coronatine insensitive 1 (COI1) protein within the
Skp1p–cullin–F-box protein (SCF) E3 ligase complex, as well as a range of transcription
factors [39]. Under physiological conditions, these transcription factors are sequestered
from DNA by jasmonate-zim-domain (JAZ) proteins. Upon JA-Ile engagement, the JAZ
proteins are degraded by SCF-COI1 and the 26S proteasome. This liberates transcription
factors and activates an array of genes responsible for the JA response [40]. In Hevea
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brasiliensis, the presence of JA leads to the upregulation of the transcription of RBOHF,
aiding in the generation of ROS [41].

Similarly, SA, another hormone, also contributes to drought-induced stomatal closure
through the activation of ROS generating enzymes (Figure 1). Drought stress prompts
the heightened expression of isochorismate synthase 1 (ICS1), a gene essential for SA
biosynthesis [42,43]. The accumulation of SA has been observed to both augment drought
tolerance [44,45] and induce stomatal closure [46,47]. Specifically, SA contributes to stomatal
closure by fostering ROS accumulation [46]. During stomatal closure, SA induces SHAM-
sensitive peroxidases to produce superoxide. The proposed mechanism is that SA reduces
Compound I and II of peroxidase, forming SA free radical species that react with oxygen gas
to create superoxide and SA+ [48,49]. The resulting superoxide is converted into hydrogen
peroxide via SOD [22,46,49]. Simultaneously, SA inhibits the antioxidant catalase, further
increasing ROS levels [50,51]. The ROS generated by SA integrates into the ABA-induced
stomatal closure pathway, activating calcium channels and instigating calcium influx [36].
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While both SA and JA have been demonstrated to induce ROS production in response
to various stress conditions, intriguingly, their interplay does not exhibit synergy; rather, it
displays antagonism. Particularly under pathogen-induced stress, JA prompts the transcrip-
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tion factor MYC2 to directly bind to the promoters of multiple NAC transcription factors,
thereby activating their transcription. These NAC transcription factors subsequently re-
strain the expression of ICS1, a key enzyme in SA biosynthesis [52]. Some proteins such as
UGT76B1 (Table 1) have also been shown to decrease SA response while increasing JA
response. Conversely, SA triggers the upregulation of ROXY19/GRX480, which impedes
the TGA transcription factors from facilitating the expression of JA response genes [53].
The biological subtlety from this complex crosstalk remains elusive, particularly in the
context of drought stress.

Table 1. ROS-related proteins identified in NPR1 condensates [51].

Protein Discovered in NPR1
Condensate Proteomics Study [51] Explanation of Protein Function p-Value in Discovery

Direct ROS scavengers

OPR1 Neutralizes ROS [54] 0.000052

ALDH7B4 Involved in detoxification and is involved
in reducing oxidative stress [55] 0.005

GPX8 Converts H2O2 to H2O [56] 0.007

Selenoprotein family protein Involved in breaking
down H2O2 to H2O [57,58] 0.04

Aldolase-type TIM barrel
family protein

Protects against H2O2, suggests that they
may be involved in scavenging H2O2 [59] 0.042

Thioredoxin superfamily protein Scavenges ROS [60] 0.044

Positive regulators of ROS
scavenger biosynthesis

DMR6
Has flavone synthase activity. Flavones

directly decrease the amount
of ROS [61,62]

0.000025

CYP51 Involved in sterol biosynthesis. Sterol can
serve as an ROS scavenger [63,64] 0.006

SQE3 Required for sterol biosynthesis. Sterols
can serve as ROS scavengers [65] 0.014

Thioesterase superfamily protein
Vitamin K biosynthesis requires

thioesterases. The Vitamin K cycle has
antioxidant activity [66,67]

0.031

ATR4, CYP83B1, RED1, RNT1, SUR2,
cytochrome P450, family 83,
subfamily B, polypeptide 1

Involved in glucosinolate biosynthesis.
Glucosinolate decreases ROS levels [68,69] 0.046

Proteins facilitating ROS
neutralization

GRF6

ANKR2A-APX3 complex is a protein
complex that degrades H2O2, and GRF6 is
found to interact with the complex during

antioxidant defense [70,71]

0.002

GSTU19 Interacts with the protein GPX when GPX
breaks down ROS [72] 0.002

UGT73B2 Glycosylates quercetin, which is
a flavonoid that reduces H2O2 to H2O [73] 0.003

ATMDAR2
Involved in the ascorbate–glutathione

cycle, which serves to break down H2O2
to H2O [74]

0.012

GDH1 GPX is a protein that converts H2O2 to
H2O. GPX requires GDH1 to function [75] 0.016

G6PD6 Reduces ROS under redox stress by
supplying NADPH [76,77] 0.035

Zim-17 type zinc finger protein Essential for facilitating zinc binding. Zinc
acts as a cofactor for reducing ROS [78] 0.04

Hormone crosstalk UDP-Glycosyltransfersae superfamily
protein (UGT76B1)

Reduces SA response and promotes
JA response [79] 0.04
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While it is recognized that SA competitively inhibits antioxidant catalase-2 (CAT2) as
an antagonist [50], numerous other antioxidants, such as GPX, are known to be regulated
by SA during stomatal closure with elusive mechanisms. Another unsolved puzzle is how
guard cells avoid cell death under high ROS levels induced by SA and ABA. However,
potential clues to these questions can be found in the known roles of SA in managing other
stress responses.

4. SA Is a Key Modulator in General Stress Response

SA is a phenolic compound naturally present in plants. SA biosynthesis is tightly
regulated and can proceed via several different pathways, with the phenylpropanoid and
isochorismate pathways being the most prevalent [80]. In the phenylpropanoid pathway,
the amino acid phenylalanine is converted into SA by phenylalanine ammonia lyase,
while in the isochorismate pathway, isochorismate synthase converts chorismate into
isochorismate which then acts as a precursor to SA [81]. SA serves as a key signaling
molecule within various physiological and pathological processes and is primarily known
for its role in regulating defensive mechanisms in plant abiotic stress response pathways
and pathogen immunity [82].

During a pathogen attack, the plant initiates a series of signaling events that lead to
an increase in SA levels. A primary consequence of this SA accumulation is the activation
of defense-related genes. SA acts as a ligand for NPR1 (Non-expressor of Pathogenesis-
Related Genes 1), leading to the activation of downstream defense genes. These genes
produce various antimicrobial compounds, including pathogenesis-related (PR) proteins
that bind to pathogens and inhibit their growth [83].

In response to pathogen invasion, particularly as effector-triggered immunity (ETI)
in plants, apoptosis can be activated in cells neighboring the infection site to isolate the
pathogen. However, if left unregulated, ETI-associated apoptosis can spread, leading
to excessive levels of programmed cell death (PCD). SA-induced NPR1 can counteract
potential spread by conjugating to form salicylic-acid-induced NPR1 condensates (SINCs)
within the cytoplasm. This condensate assembles the NPR1-associated proteins with
Cullin 3 E3 ligase complex, which marks PCD proteins such as EDS1 and WRKYs for
ubiquitination and subsequent protein degradation, thereby promoting cell survival [84].
This mechanism of promoting cell survival is not exclusive to pathogen stress; both SA
and NPR1 are required to support cell survival under other stressors, including heat,
oxidative stress, and DNA damage. This suggests that SA and NPR1 play pivotal roles in
coordinating stress response and cell survival.

5. NPR1 May Coordinate Comprehensive Protection during Drought Stress

The formation of SA-induced NPR1 condensates may also be essential for stomatal
closure and cell survival during drought stress. It has, indeed, been noted that NPR1
expression increases in response to drought, and this increase has been implicated in
promoting ROS generation and stomatal closure [42,85]. Upon SA increase, NPR1-activated
gene expression includes ACS2/6/11, enzymes for ethylene precursor synthesis. Ethylene,
in turn, promotes ROS production by activating ATRBOHD, an NADPH oxidase. The
disruption of ethylene production through the mutation of ethylene biosynthesis genes
inhibits SA-induced stomatal closure, suggesting that ethylene-induced ROS production is
necessary for this process [85].

Furthermore, our literature review revealed that, during pathogen stress, NPR1 con-
densates triggered by SA also incorporate various proteins that potentially contribute to
sustaining ROS responses. In the proteomics data published in an article by Dong and col-
leagues, which studies NPR1’s response against pathogens [84], we identified six proteins
directly involved in ROS scavenging, an additional five proteins participating in antiox-
idant biosynthesis, and seven proteins that assist other antioxidants in ROS scavenging
(Table 1). Among these proteins are Glutathione Peroxidase 8 (GPX8), which has been
shown to have decreased expression during drought [56], and selenoprotein, the absence of
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which has been linked to increased drought tolerance [57]. Given these proteins’ unilateral
roles in ROS scavenging, their degradation by NPR1 would lead to an accumulation of
ROS, thereby inducing stomatal closure and enhancing drought tolerance.

Notablt, during pathogen infection, GSTU19—a member of the GST family—is de-
tected within NPR1-associated complexes, implying potential degradation. GSTU19 is well-
known for its role in catalyzing the degradation of ROS, primarily hydrogen peroxide [86].
Such degradation of GSTU19 could result in increased ROS levels. Yet, under drought
conditions, studies have observed an upregulation of GSTU19 at both the mRNA and
protein levels in Manihot esculenta [87]. This raises two plausible scenarios: (1) NPR1 may
not target or degrade GSTU19 during a drought response; or (2) even if NPR1 condensate
degrades GSTU19 during drought, the degradation might not be robust enough to offset
its amplified expression. Currently, the exact dynamics remain unclear. The regulation of
GSTU19 underscores the nuanced control of ROS during drought responses.

Taking this together, we hypothesize that, in stomatal closure, SA induces NPR1 to
form condensates with antioxidant proteins and precursors and tag them for degradation
via the 26S proteasome. Along with the other functions of SA during stomatal closure, such
as the activation of ROS-generating proteins, the inhibition of ROS-degrading proteins
may be crucial in maintaining cellular ROS at an elevated level, and therefore sustain the
stomatal closure. Meanwhile, SA will also induce NPR1 to form condensates to degrade
multiple key cell death proteins, preventing guard cells from programmed death under the
constant ROS stress (Figure 2).
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6. Perspectives

Research indicates that NPR1 is essential for cell survival during drought stress. En-
hancing the expression of NPR1 in plants might be a potential strategy to boost plant
resistance to drought. However, the perpetual overexpression of NPR1 has been associ-
ated, in some cases, with decreased plant growth and vitality [88]. To circumvent these
fitness costs, in a 2017 study Xu et al. utilized upstream open reading frames (uORFs) to
suppress the translation of NPR1 under normal conditions. Their findings showed that
these genetically modified plants could grow normally while also exhibiting enhanced
pathogen resistance due to the stress-induced overexpression of NPR1 [89]. Utilizing the
same molecular biology maneuver could be an effective approach to improve drought
resistance. Future experiments are needed to determine whether overexpressing NPR1
can prevent plants from death in drought, and whether drought stress is able to overcome
uORF inhibition.
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