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Abstract: Cultivated peanut (Arachis hypogaea L.) is an important economic and oilseed crop world-
wide, providing high-quality edible oil and high protein content. Seed size/weight and oil content
are two important determinants of yield and quality in peanut breeding. To identify key regulators
controlling these two traits, two peanut cultivars with contrasting phenotypes were compared to
each other, one having a larger seed size and higher oil content (Zhonghua16, ZH16 for short),
while the second cultivar had smaller-sized seeds and lower oil content (Zhonghua6, ZH6). Whole
transcriptome analyses were performed on these two cultivars at four stages of seed development.
The results showed that ~40% of the expressed genes were stage-specific in each cultivar during
seed development, especially at the early stage of development. In addition, we identified a total of
5356 differentially expressed genes (DEGs) between ZH16 and ZH6 across four development stages.
Weighted gene co-expression network analysis (WGCNA) based on DEGs revealed multiple hub
genes with potential roles in seed size/weight and/or oil content. These hub genes were mainly
involved in transcription factors (TFs), phytohormones, the ubiquitin–proteasome pathway, and fatty
acid synthesis. Overall, the candidate genes and co-expression networks detected in this study could
be a valuable resource for genetic breeding to improve seed yield and quality traits in peanut.

Keywords: peanut (Arachis hypogaea L.); seed development; transcriptome analysis; co-expression
network; seed size/weight; oil content; hub genes

1. Introduction

Cultivated peanut (Arachis hypogaea L.) is an important grain legume that provides
high-quality edible oil, rich protein, and other nutrients. In legumes, seed development is
precisely modulated by both maternal and zygote signals, which, in coordination, regulate
the growth of the embryo, endosperm, and seed coat [1]. The diploid embryo, triploid
endosperm, and maternal integument grow in concert to control the seed size [2]. Seed
size/weight is a crucial factor determining peanut yield and thus one of the major agro-
nomic traits in peanut domestication and modern breeding. In addition, owing to their
well-balanced fatty acid composition, peanuts are considered a functional food rich in
specific antioxidants and mono- and polyunsaturated fatty acids [3]. Although the oil
content of currently cultivated peanut varieties is usually high, there are still significant
differences among different germplasms, ranging from 31.7 to 57.0% [4]. Hence, developing
novel peanut cultivars with higher oil content is a prime target under the condition of
limited planting area.
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A large number of genes that regulate seed size/weight and/or oil content have
been identified in Arabidopsis thaliana (Arabidopsis), Glycine max (soybean), Oryza sativa
(rice), and Zea mays (maize), including genes related to transcription factors (TFs) and
phytohormones [5–8], as well as genes involved in the ubiquitin–proteasome pathway
and fatty acid biosynthesis [9–11]. For example, GmAP2-1 and GmAP2-4, belonging to
the AP2/ERF family, were identified as positively regulating seed weight and size in
soybean [7]. The overexpression of GmMYB73 was found to increase the oil content
of Arabidopsis seeds by 5.9–17.9% and significantly enhance the 1000-seed weight [5].
Activation of the expression of the Big Grain1 (BG1) gene, which regulates auxin transport,
resulted in a significant increase in rice seed size [6]. Furthermore, the ubiquitin receptor
protein encoding gene DA1, involved in the ubiquitin–proteasome pathway, is an inhibitor
of the regulation of Arabidopsis seed size by restricting the cell proliferation cycle [9].
Suppressed expression of fatty acid dehydrogenase 2 (FAD2) and fatty acid elongase 1
(FAE1) involved in the de novo biosynthesis of fatty acids led to a slight decrease in the
content of rapeseed oil and affected the accumulation of storage products [10]. However,
few genes that influence seed size and/or oil content have been found in peanuts, which
greatly restricts the breeding of high-quality peanut varieties.

In previous studies, genetic mapping was used to identify genomic loci controlling
important traits in peanut, leading to the identification of multiple QTLs associated with
yield [12–15] and oil content [16,17]. Nevertheless, it is challenging to detect candidate
genes in QTLs that determine seed size/weight and/or oil content due to the complexity
of peanut genome structure and the low-level polymorphism of molecular markers across
different tetraploid A. hypogaea cultivars [12,18–21]. Owing to its reduced cost and high
throughput nature, RNA-seq has been widely used to investigate transcriptome profiles in
many plant species to assist in the identification of key genes for traits of interest [22–27].
For instance, comparative transcriptome analyses of wild and cultivated soybean varieties
at the early and middle stages of seed maturation resulted in the identification of two genes
potentially important for seed trait formation, GA20OX and NFYA [23]. A similar transcrip-
tome comparison was conducted between large-seed and small-seed soybean cultivars at
seed formation, growth, and early maturation stages, revealing several candidate genes
that influence seed size, including TFs and phytohormones [24].

In addition, comparative transcriptome studies on peanuts have also been reported.
For example, the transcriptome dynamics at 11 consecutive developmental stages of peanut
pods showed that multiple genes involved in various pathways, such as gravitropism,
photomorphogenesis, and response to stimuli, were differentially expressed along develop-
mental gradients [22]. The transcriptome differences of two peanut varieties with distinct
sucrose contents were explored at seven seed developmental stages, identifying 28 DEGs
involved in sucrose metabolism [28]. Hub genes positively correlated with Aspergillus flavus
resistance were identified in two peanut lines with contrasting genotypes via comparative
transcriptome analysis [27]. Likewise, several candidate genes, including those encoding
transcription factor TGA7, IAA-amino acid hydrolase, and pentatricopeptide repeat protein,
were detected by a transcriptome study on two cultivated peanut accessions and their
wild relative Arachis monticola at four stages of seed development [26]. However, studies
to understand the molecular mechanisms underlying seed size and oil content in peanut
through comprehensive transcriptome analysis are still largely unavailable.

In this study, comparative transcriptome analysis was conducted on two peanut
cultivars with significant differences in seed size/weight and oil content at different stages
of seed development. Transcriptome dynamics and gene co-expression networks associated
with seed development were systematically investigated. Candidate genes potentially
controlling seed size/weight and/or oil content were pinpointed. Overall, this study
provides new insights into the molecular mechanisms underlying peanut seed development
and forms a valuable resource for the genetic improvement of seed size/weight and oil
content in peanut breeding.
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2. Materials and Methods
2.1. Plant Materials and Sampling

Two peanut cultivars (Arachis hypogaea L.) with contrasting phenotypes in seed
size/weight and oil content (namely, ZH16 (larger seed and higher oil content and ZH6
(smaller seed and lower oil content)) were grown in 2017 in an experimental field of the
Oil Crops Research Institute, Wuhan, China. In order to mitigate the effects caused by
environmental factors, we maintained consistent field management practices throughout
the entire growth period. Daytime temperatures range from 25 ◦C to 35 ◦C, and the night
temperature is not lower than 20 ◦C. According to a previous study (Pattee et al., 1974),
seeds were collected with three biological replicates at 10, 20, 30, and 40 days after flowering
(DAF), corresponding to the S1, S2, S3, and S4 stages, respectively. The seeds were very
small and difficult to isolate at the S1 stage, while the entire seed remained flattened and
white, or only one end turned pink, at the S2 stage. The seeds in the S3 stage were torpedo-
shaped and the end of the kernel embryonic axis was generally pink, while the seeds in the
final S4 stage were round-shaped and completely light pink. We sampled at least 30 seeds
for each biological replicate at the S1 and S2 stages and 10 seeds for each biological replicate
at the S3 and S4 stages. The harvested seeds were immediately frozen in liquid nitrogen
and then stored at −80 ◦C until RNA isolation.

2.2. RNA-Seq Library Construction, Illumina Sequencing, and Differential Gene Expression Analysis

Total RNA was extracted using the TGuide plant RNA extraction kit (TIANGEN)
following the manufacturer’s instructions. RNA purity and concentration were deter-
mined using a Nanodrop 2000c spectrophotometer and a Qubit 2.0 Flurometer. All 24 li-
braries (8 samples, 3 biological replicates) were sequenced on the Illumina HiSeq2000
platform. Raw reads in fastq format were firstly filtered using the NGS QC Toolkit
v2.3 [29]. Obtained clean reads were then mapped to the cultivated peanut Tifrunner
genome (https://data.legumeinfo.org/Arachis/hypogaea/ (accessed on 16 June 2023) [20])
by Hisat2 v2.0.5 [30]. Gene expression of known and novel genes was quantified as Frag-
ments Per Kilobase of exon model per million mapped reads (FPKM) using StringTie
v1.3.4 [31]. Principle component analysis (PCA) and correlation analysis were conducted
with the princomp function and corrplot package in R v3.6.2, respectively. Genes whose
expression differences reached the thresholds |log2(FoldChange)| > 1 and padj < 0.05 were
defined as differentially expressed genes (DEGs) by DESeq2 [32]. Raw data of RNA-seq are
available in the NCRI SRA database (PRJNA893583).

2.3. Identification of Stage-Specific Expression Genes

Stage-specific genes of two cultivars were identified using a stage specificity (SS)
scoring algorithm, which compared the gene expression at one stage with the maximum
expression at the other stages of seed development [25,33,34]. The SS scores ranged from 0
to 1. The higher the SS score of a gene at a certain stage, the more specific the expression
of the gene at that stage. Genes with an SS score ≥ 0.5 were defined as being specifically
expressed at a given developmental stage in each cultivar.

2.4. Functional Annotation and Enrichment Analysis

The functional annotation file of the reference genome was downloaded from the
website (https://data.legumeinfo.org/Arachis/hypogaea/ (accessed on 16 June 2023)).
GO enrichment analysis was performed using BiNGO plugins in Cytoscape [35], and GO
terms with p < 0.05 were considered to be significantly enriched.

2.5. Weighted Gene Co-Expression Network Analysis (WGCNA)

To explore the regulatory relationships across genes, WGCNA was performed on
DEGs using R v3.6.2 [36]. Pairwise co-expressed genes with weighted values < 0.2 were
removed via in-house perl scripts, and the resulting significant co-expression networks
were finally visualized in Cytoscape v3.8.2 [37]. Modules were defined as gene clusters

https://data.legumeinfo.org/Arachis/hypogaea/
https://data.legumeinfo.org/Arachis/hypogaea/
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with high correlation coefficients among genes. Hub genes in each module were identified
with the absolute value of kME (eigengene connectivity) greater than 0.8 (|kME| > 0.8).

3. Results
3.1. Phenotype Analysis of Two Peanut Cultivars ZH16 and ZH6 with Contrasting Seed
Size/Weight and Oil Content

In this study, fresh seeds from two cultivars ZH16 and ZH6 at the S1, S2, S3, and
S4 stages were collected to evaluate their seed size, while mature seeds were harvested
to measure the hundred-seed weight and oil content. The results showed no significant
difference in seed size between ZH16 and ZH6 at the S1 stage. With the extension of growth
stages, the seed size of ZH16 was larger than that of ZH6 at the S2 stage, and this difference
was more obvious at the S3 and S4 stages (Figure 1A). This phenomenon is in accordance
with the significant difference in the hundred-seed weight between ZH16 and ZH6, which
were 87.58 g and 61.92 g, respectively (Figure 1B). Moreover, a slight significant variation in
terms of oil content was also found between these two accessions, with 53.44% and 49.13%
in ZH16 and ZH6, respectively (Figure 1C).
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Figure 1. Phenotype differences between ZH16 and ZH6 at four stages of seed development.
(A) Graphical display of seeds at different stages of development (S1–S4) between ZH16 and ZH6.
(B) Average 100-seed weights (g) between ZH16 and ZH6. (C) Average oil content between ZH16
and ZH6. ***, p < 0.001; ****, p < 0.0001 (Student’s t-tests).
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3.2. Comparative Transcriptome Analysis of Seeds of ZH16 and ZH6 at Different
Developmental Stages

To explore transcriptional dynamics of ZH16 and ZH6 during seed development, RNA-
seq analysis was performed on seeds at the S1, S2, S3, and S4 stages of seed development.
In total, about 810 million raw reads were generated, with an average of ~30 million reads
per sample (Supplementary Table S1). After filtering low-quality reads, clean reads were
aligned to the reference genome of cultivated peanut (Bertioli et al., 2019).

To offer a comprehensive overview of the transcriptome dataset and to evaluate
noise effects, we performed a principal component analysis (PCA) based on the average
FPKM values of all expressed genes (Figure 2A). Samples of ZH16 and ZH6 at the same
developmental stage were clustered together, indicating that the overall transcriptome
dynamics of these two cultivars were similar at the same stage of seed development.
Moreover, all samples from the S3 and S4 stages of both cultivars were grouped together,
suggesting higher similarity in their transcriptome profiles. Correlation analysis based
on FPKM showed high correlation coefficients across three different replicates of nearly
all samples, except for ZH16 S2, ZH6 S3, and ZH6 S4, which only had high correlation
between two biological replicates (Supplementary Figure S1A). Collectively, these results
showed that our RNA-seq data were reliable and reproducible, and that they could be used
for subsequent in-depth analyses.
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Figure 2. Global gene expression profiles in ZH16 and ZH6. (A) PCA plot showing clustering of gene
transcript levels at four stages of seed development in ZH16 and ZH6. (B) Proportion of genes with
different expression levels (based on FPKM). (C,D) Venn diagrams of expressed genes amongfour
stages of seed development in cultivars ZH16 (C) and ZH6 (D).
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A total of 53,434 genes were identified as expressed genes with FPKM values higher
than 0.1 in at least one of the eight samples (Supplementary Table S2). Among them, 42,945,
46,025, 44,129, and 42,378 genes were found to be expressed in the ZH16 cultivar at the
S1, S2, S3, and S4 stages of seed development, respectively (Supplementary Figure S1B).
Similarly, 44 909, 46 270, 44 078, and 40 917 expressed genes were found to be expressed
in the ZH6 cultivar at the S1, S2, S3, and S4 stages of seed development, respectively
(Supplementary Figure S1B). Moreover, the proportion of genes with different expression
levels was also similar between ZH16 and ZH6 at the same stage. Approximately 40% of
the genes exhibited a low expression level (0.1 ≤ FPKM ≤ 2) in different developmental
stages of the two cultivars (Figure 2B). With the seed development of each cultivar, the
ratio of highly expressed genes (FPKM ≥ 10) dropped slightly (e.g., from 23% at S1 to
15% at the S4 stage), while the ratio of genes with moderate expression (2 ≤ FPKM < 10)
increased marginally (e.g., from ~35% at S1 to ~42% at the S4 stage) (Figure 2B). The overlap
and specificity of expressed genes in the four stages of ZH16 and ZH6 are displayed in
Figure 2C,D. These results suggested large variations in genome-wide gene expression at
different stages of seed development, which may be related to the observed differences in
seed size/weight and oil content between ZH16 and ZH6.

3.3. Identification of Stage-Specific Expressed Genes during Seed Developmental Stages in ZH16
and ZH6

To explore the different transcriptional characteristics of the two cultivars at each
stage of seed development, a stage specificity (SS) algorithm was used to identify stage-
specific genes with an SS score ≥ 0.5. A total of 22,045 and 20,027 specifically expressed
genes were identified in ZH16 and ZH6 at all stages of seed development, respectively
(Supplementary Table S3). The numbers of stage-specific genes were notably different
across the four different stages, varying from 882 (S4) to 11,433 (S2) for ZH16 and from
684 (S4) to 9529 (S1) for ZH6 (Figure 3A). Accordingly, the common stage-specific expressed
genes in both cultivars ranged from 212 (S3) to 6515 (S1) (Figure 3A). The expression
heatmap of all common stage-specific genes showed that the majority of these genes were
highly expressed at the early developmental stages (S1, S2) in both cultivars (Figure 3B),
which was consistent with a previous study on peanut [28]. Interestingly, more stage-
specific genes were detected in ZH16 than in ZH6 at all stages except S1, with the largest
increase at the S2 stage. These results suggest that each cultivar had its own independent
developmental process, especially at the early stage.

To explore the specific function at different developmental stages, GO enrichment
analysis was performed on common stage-specific genes in each stage of ZH16 and ZH6
(Figure 3C,D, Supplementary Figure S2). At the S1 stage, significant GO terms (p < 0.05) of
common stage-specific genes were related to cell wall organization or biogenesis, cell wall
modification, the carbohydrate metabolic process, the lipid metabolic process, and transport
(Figure 3C). At the S2 stage, common stage-specific genes were mainly involved in cell
cycle and division-related process, various metabolic processes, and the regulation of these
processes (Figure 3D). Furthermore, for the S3 and S4 stages, the top GO terms included a
variety of response and regulation processes, such as the response to hormone/chemical
stimulus, the regulation of photomorphogenesis, and the hormone-mediated signaling
pathway (Supplementary Figure S2).
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and ZH6. (A) Bar graph showing numbers of stage-specific expressed genes specifically or commonly
present in ZH16 and/or ZH6 at each stage of seed development. (B) Heatmap showing the expression
of common stage-specific expressed genes at different stages in ZH16 and ZH6. Color scale represents
Z-score. (C,D) Enriched functional GO terms (biological process) of common stage-specific expressed
genes in two cultivars at the S1 (C) and S2 (D) stages.

3.4. Identification of Differentially Expressed Genes during Seed Development in Two
Peanut Cultivars

To investigate transcriptional differences between ZH16 and ZH6 cultivars, we per-
formed pairwise comparisons of the two cultivars at four seed developmental stages.
Compared with ZH6, a total of 5222 differentially expressed genes (DEGs) were identified
in ZH16 across four stages, among which 1810 genes were up-regulated and 3546 genes
were down-regulated (Supplementary Table S4). The number of DEGs was highest at the S1
stage (3194), followed by the S2 stage (2237), S3 stage (1580), and S4 stage (1300) (Figure 4A).
Notably, the number of up-regulated DEGs was greater than that of down-regulated DEGs
at the S3 and S4 stages, whereas the opposite was found at stage S1 (Figure 4A). DEGs
grouped in accordance with their log2FoldChange (FC) were shown to be unevenly dis-
tributed across all stages. FC values of the most up-regulated genes were between two- and
four-fold or between four- and eight-fold, while the absolute FC values of down-regulated
genes were mostly between one- and two-fold or between four- and eight-fold (Figure 4B).
Of all these DEGs, only 349 up-regulated and 218 down-regulated genes were overlapping
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across all four stages (Figure 4C,D). These results revealed the distinct patterns of gene
expression between ZH16 and ZH6 at different stages of seed development.
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Figure 4. DEGs between ZH16 and ZH6 at different seed developmental stages. (A) Number of
up-regulated and down-regulated genes. (B) Distribution of Log2FC values of DEGs. (C,D) Venn
diagrams showing numbers of DEGs concurrently or specifically expressed among four stages.
(E) Enriched GO terms (biological process) of up- and down-regulated genes. The color scale
represents significance (corrected p-value).

GO enrichment analysis of DEGs showed that several biological processes were com-
monly or uniquely enriched at different seed developmental stages (Figure 4E, Supple-
mentary Figure S3). We observed that in all developmental stages except S1, up-regulated
DEGs were mainly enriched in various functional terms related to cell division, such as the
mitotic cell cycle process, nuclear division, and organic cyclic compound catabolic process.
Various primary and secondary metabolic/biosynthetic processes, including carboxylic
acid, fatty acid, lipid, flavonoid, phenylpropanoid, and lignin, were significantly enriched
for highly expressed genes at the S3 and/or S4 stages. However, genes involved in hor-
mone/cytokinin/phosphatidylcholine metabolic processes were up-regulated at the S1
stage and down-regulated at the S3 stage.
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3.5. Co-Expression Network Analysis of DEGs by WGCNA

To further explore potential key genes that determine differences in seed size/weight
and/or oil content between two cultivars, WGCNA was performed based on the expression
levels of 4367 DEGs at four developmental stages after filtering unknown genes. Based
on the soft threshold power β = 9, a scale-free network was constructed, resulting in the
generation of 11 co-expression modules (Figure 5, Supplementary Figure S4). The modules
were color-coded, and the grey module contained genes not assigned to any other modules.
The gene numbers of different modules varied greatly, ranging from 84 to 1176. Correlation
analysis of module–sample relationships revealed that the magenta module was positively
associated with larger-seed and higher-oil ZH16 at the S1 and S2 stages (r = 0.59, p = 0.005;
r = 0.57, p = 0.007) and the yellow module was positively associated with ZH16 at the S2
stage (r = 0.84, p = 2 × 10−6), while the red module was strongly positively correlated with
smaller-seed and lower-oil ZH6 at the S2 stage (r = 0.8, p = 1 × 10−5) (Figure 5A).
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Plants 2023, 12, 3144 10 of 18

Subsequently, the expression patterns of genes within these three modules at different
stages of seed development in ZH16 and ZH6 were visualized in heatmaps (Figure 5B–D).
During seed development, especially at the S2 stage, the gene expression of the magenta and
yellow modules was higher in larger-seed and higher-oil ZH16 than in ZH6, indicating their
positive effect in seed size/weight and oil content (Figure 5B,C). However, the expression
of genes in the red module was higher in all stages of smaller-seed and lower-oil ZH6,
especially in the S2 stage (Figure 5D), suggesting their negative roles in these two traits.
Overall, the genes within the magenta, yellow, and red modules may be closely related
to the difference in size/weight and/or oil content between ZH16 and ZH6 cultivars, so
further analysis of the genes in these three modules is of high significance. GO enrichment
analysis was performed on the genes belonging to these three key modules to elucidate
their gene function. Magenta and yellow modules positively correlated with ZH16 were
significantly enriched in functional terms of cell cycle, mRNA modification, fatty acid
metabolic process, and ubiquitin-dependent proteolysis process. For the genes with lower
expression within the red module in ZH16, the top terms were enriched in ribosome
biogenesis and rRNA metabolic process.

3.6. Identifying Hub Genes Associated with Seed Size/Weight and/or Oil Content within
Key Modules

To identify key candidates related to size/weight and oil content in magenta, yellow,
and red modules, hub genes were identified based on their high kME values (|kME| > 0.8).
According to functional annotations and reported genes associated with these two traits
in other species (Supplementary Table S5), hub genes involved in TFs, phytohormones,
the ubiquitin–proteasome pathway, and fatty acid synthesis may influence size/weight
and/or oil content (Figure 6A–F; Supplementary Table S6). In addition, we collected known
QTLs or candidate genes associated with seed size/weight and/or oil content reported
in previous studies (Supplementary Table S7). A total of 14 hub genes involved in the
aforementioned pathways were found to overlap with these loci or candidate genes, as
shown in red in Figure 6.
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of hub genes. Genes overlapping with reported QTLs are marked in red. (B,D,F) Co-expression
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3.6.1. TFs

A total of twenty-four TFs in the magenta and yellow modules and six TFs in the
red module were identified as hub genes belonging to the WRKY, AP2, bHLH, MADS-
box, MYB, ARF, SBP, and SNF2 families (Figure 6A–F; Supplementary Table S6). Among
them, two WRKY family genes (arahy.Y7DSHF and arahy.V6NF3H) showed significantly
higher expression in ZH16 than in ZH6. The Arabidopsis wrky10 mutant exhibited smaller
seeds due to early cellularization of the endosperm, which inhibited the proliferation of
embryonic cells [38]. Two genes (arahy.WY3QF4 and arahy.1LT7 × 4), encoding AP2-like
ethylene-responsive TF, had notably higher expression in ZH16; they were previously
shown to play a positive role in regulating seed weight and size in soybean [7,39]. The
overexpression of AP2/EREBP TFs BnWRI1 and GmWRI1a led to enhanced seed oil content
in rapeseed and soybean, respectively [40,41]. Furthermore, the transcript abundances of
three MADS-box TFs (arahy.L7SRZY, arahy.S6RW25, and arahy.7JHN4J) were remarkably
higher in ZH16. These TFs were reported to play a role in seed size via modulating
endosperm cellularization in rice [42]. Two MYB genes (arahy. MRFN9C and arahy. 17JY83)
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and one ARF (arahy.RY1LQQ) with a higher expression level in ZH16 were previously
shown to determine seed size/weight in plants [43,44].

3.6.2. Phytohormones and the Ubiquitin–Proteasome Pathway

Several hub genes related to phytohormones, such as auxin, gibberellin, and cytokinin,
were identified in this study (Figure 6A–F; Supplementary Table S6) and were recently
reported to regulate seed size [45–47]. Three hub genes (arahy.RY1LQQ, arahy.HDV1A7, and
arahy.FDTJ9Q) involved in auxin response or transport were detected to potentially control
the seed size in maize and rice [6,8]. Three histidine kinase 1 encoding genes (arahy.Q4NL7Y,
arahy.DM7MDF, and arahy.K541B7), receptors of cytokinin in Arabidopsis (Riefler et al. 2006),
showed significantly higher expression in ZH16. A gibberellin 20 oxidase 2 encoding gene
(arahy.M32WB3) was found to exhibit strikingly higher transcript level in ZH16. It should
be noted that OsGA3ox2 was remarkably up-regulated in wild-type rice than in sng1 mutant
with reduced grain weight [47].

Furthermore, a number of hub genes involved in the ubiquitin–proteasome pathway
were found (Figure 6A–F; Supplementary Table S6). For example, two genes (arahy.VY3GX3
and arahy.2K1FXD) encoding E3 ubiquitin–protein ligases showed significantly higher
expression in ZH16, which was recently found to influence seed size through the starch
synthesis pathway in wheat [48]. Zinc finger (C3HC4-type RING finger) family protein
encoding genes arahy.B47L6X and arahy.APGH35, functioning as E3 ubiquitin ligases, had
higher transcript abundance in ZH16. Five F-box proteins encoding hub genes derived from
the magenta and yellow modules showed a higher expression level in ZH16 with larger-
seed and higher-oil content. These genes were characterized to have substrate recognition
specificity in ubiquitin-mediated proteolysis [49].

3.6.3. Fatty acid Synthesis

A number of DEGs involved in fatty acid biosynthesis were identified, such as those
encoding fatty acid hydroxylase, fatty acid desaturase, 3-ketoacyl-CoA synthase, long chain
acyl-CoA synthetase, and acyl-CoA thioesterase (Figure 6A–F; Supplementary Table S6).
Two genes (arahy.6AK6JC and arahy.ZVY5TW) encoding acyl-CoA thioesterase were found
to have lower expression level in ZH16 than in ZH6, while fatty acid desaturase encoding
gene arahy.93DW2D showed the opposite. These two enzymes were previously demon-
strated to influence rapeseed oil content [10,50]. In addition, DEGs involved in starch
and sucrose metabolism were also detected, including those encoding beta glucosidase,
glycoside hydrolase, fructose-bisphosphate aldolase, and xyloglucan endotransglucosylase.
Sucrose is used to produce dihydroxyacetone phosphate and acetyl-CoA as raw materials
for TAG synthesis, which is a key step in the formation of seed oil [51].

4. Discussion

In this study, we aimed to determine the molecular mechanisms underlying seed
size/weight and oil content by performing comparative transcriptome analysis on two
peanut cultivars with contrasting phenotypes at four stages of seed development. A
total of 5222 DEGs were identified between ZH16 and ZH6 across the four stages of seed
development analyzed. Combined with co-expression networks analysis, hub genes in
three key modules were identified, which were mainly involved in TFs, phytohormones,
the ubiquitin–proteasome pathway, fatty acid synthesis, cytochrome P450 proteins, ABC
transporters, PPR proteins, and receptor-like kinases.

4.1. Roles of Important Genes in Determining Seed Size/Weight
4.1.1. TFs

TFs play a key role in regulating plant life cycle activities and adaptation to the
environment, such as controlling plant seed development [52–54]. In this study, a total of
30 TFs were identified as both DEGs and hub genes within several co-expression modules
(Figure 6A–F; Supplementary Table S6). Among them, two genes (arahy.Y7DSHF and
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arahy.V6NF3H) belonging to WRKY family showed significantly higher expression in ZH16
than in ZH6. GmWRKY15a and OsWRKY36 were found to regulate seed size in soybean
and rice, respectively [52,55]. Another two bHLH TFs (arahy.7XD9C1 and arahy.48I8DT)
were also identified to have higher transcript levels in ZH16. Functionally deficient mutant
of the bHLH TF RGE1 (ZOU) resulted in slow embryo growth, eventually leading to the
production of small and wrinkled seeds in Arabidopsis and maize [56,57]. Another bHLH
TF TaPGS1 was also reported to positively regulate grain weight and size in rice and
wheat [58]. These results indicate that TFs play an important role in the regulation of plant
seed size/weight.

4.1.2. Phytohormones

Many phytohormones, such as auxin, gibberellin, cytokinin, and brassinolide, have
been reported to regulate plant seed growth and development [46,59–61]. In our study,
six DEGs related to auxin or cytokinin were identified, including those encoding auxin
response factor, auxin transport protein, and histidine kinase (Figure 6A–F; Supplementary
Table S6). ZmARF12 is an inhibitor of cell division during seed development, and its
defective mutant could lead to increased seed size/weight in maize [8], whereas the arf25
mutant resulted in decreased grain weight and size in wheat [62]. The transport of auxin
to maternal tissue is a key driver of seed coat development, thus affecting seed size in
Arabidopsis [63]. Moreover, cytokinins may influence seed size by regulating the growth
of embryonic cells during seed development [64,65]. A gene (BnaA03G37960D) encoding
cytokinin receptor histidine kinase in rapeseed was the candidate gene for 1000-seed weight
by linkage and association analyses [45]. These results illuminate that phytohormones are
crucial for plant seed development and the regulation of seed size/weight.

4.1.3. The Ubiquitin–Proteasome Pathway

It has been reported that the ubiquitin–proteasome pathway is involved in the im-
provement of crop yield by regulating seed agronomic traits, such as seed size/weight [66].
Some DEGs associated with the ubiquitin–proteasome pathway were found in this study
(Figure 6A–F; Supplementary Table S6). The Arabidopsis ubiquitin receptor protein encoding
gene DA1 was an inhibitor that regulated seed size by limiting cell proliferation [9]. Simi-
larly, DA2 encodes an ubiquitin ligase that negatively regulated seed size in Arabidopsis and
cotton [11,67]. TaGW2-6A, encoding an E3 ubiquitin ligase, has been reported to interact
with TaAGPS in wheat to influence seed size through the starch synthesis pathway [48].

4.1.4. Other Important Genes

We also found that two genes (arahy.2F8F1S and arahy.0K456L) encoding cytochrome
P450 proteins had higher expression levels in ZH16. Previously, KLU (CYP78A5) and
EOD3 (CYP78A6) encoding cytochrome P450 monooxygenases were found to positively
regulate seed size in Arabidopsis [68,69]. Overexpression of GmCYP78A72/GmCYP78A5
and TaCYP78A3 could increase seed size in soybean and wheat, respectively [24,70,71].
Three genes (arahy.S5WRJR, arahy.VYP3BN, and arahy.TZU5V7) related to the ABC transport
pathway displayed relatively higher expression levels in ZH16. An ABCC3 transporter gene
CaABCC3 (6) could affect seed size by regulating the transport of glutathione conjugates
in chickpea seed cells [72]. Additionally, we also found other DEGs, including those
encoding PPR proteins and receptor-like kinases. It was previously reported that PPR
protein encoding genes Dek39 and Emp18, involved in RNA editing, were essential for seed
development in maize [73,74]. PPR proteins may also be related to the increase in seed
size/weight of cultivated peanut [26]. The receptor-like kinase ERECTA (ER) and LecRK-
VIII.2 have been shown to positively regulate seed size by modulating the proliferation of
outer integument cells, and they were upstream regulators of MAPK signaling pathway in
Arabidopsis [75,76].
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4.2. Roles of Key Genes Related to Fatty Acid Biosynthesis in Determinating Seed Oil Content

Oil synthesis can be divided into three stages during seed development. Firstly,
acetyl-CoA is used as the initial substrate to synthesize long-chain fatty acids in plastids.
Subsequently, long-chain fatty acids are transported to the endoplasmic reticulum (ER) to
assemble triacylglycerol (TAG). Finally, triacylglycerol combines with oil body proteins to
form oil bodies [77]. In this study, we identified a number of DEGs involved in fatty acid
biosynthesis, including those encoding enzymes and TFs (Figure 6A–F; Supplementary
Table S6). It has been reported that the knockout of KASIII (β-ketoacyl-ACP synthase) and
FATB (acyl-ACP thioesterase) in rapeseed resulted in an increase in contents of medium
chain fatty acids [50]. Reduced expression of FAD2 (fatty acid dehydrogenase 2) and FAE1
(fatty acid elongase 1) in rapeseed using RNAi caused a slight decrease in seed oil content,
an increase in oleic acid content, and a decrease in erucic acid content [10]. Similarly, low
expression of fatty acid desaturase and elongase in crambe could largely increase seed oleic
acid content [78].

AP2-like ethylene-responsive TF encoding genes arahy.WY3QF4 and arahy.1LT7×4
were found to show significantly higher expression in ZH16 in our study. The AP2/EREBP
TF ZmWRI1 was regulated by upstream regulators LEC2 and LEC1 and positively regulated
the downstream target genes PI-PKβ1, BCCP2, ACP1, and KAS1, which were mainly
involved in glycolysis and fatty acid synthesis in maize [79]. Overexpression of BnWRI1
and GmWRI1a led to enhanced seed oil content in rapeseed and soybean via complex
co-expression gene networks related to fatty acid biosynthesis, respectively [40,41,80].
Interestingly, a similar phenomenon was found in our work, where arahy.1LT7×4 and
several genes involved in fatty acid biosynthesis were shown to co-express within the
yellow module. The results suggest that AP2-like ethylene-responsive TF may influence
seed oil content by regulating downstream target genes involved in fatty acid biosynthesis
in plants.

4.3. Genes Affecting Both Seed Oil Content and Seed Size/Weight

In our work, several DEGs were found to potentially contribute to both seed oil
content and seed size/weight, including AP2/EREBP and MYB TFs. AP2 family mem-
bers have been reported to regulate ovule development and fatty acid synthesis in seed,
thereby determining seed size/weight [7,81]. Specific overexpression of the AP2/EREBP
TF (BnWRI1) in B. napus led to enhanced oil content and seed size/weight in matured
seeds [40]. Additionally, overexpression of GmMYB73 could increase seed oil content and
seed size/weight in transgenic Arabidopsis [5]. These results suggest that AP2/EREBP and
MYB TFs may not only increase seed oil content but also seed size/weight.

5. Conclusions

In this study, we performed comparative transcriptome analysis on two peanut culti-
vars with contrasting seed size/weight and oil content to identify the key candidate genes
determining these two important traits. Our results revealed that a number of crucial genes,
including those encoding TFs, phytohormones, ubiquitin-mediated proteolysis related
proteins, cytochrome P450 proteins, and ABC transporters, play a crucial role in regulating
seed size/weight. Several genes involved in fatty acid biosynthesis were detected to con-
tribute to seed oil biosynthesis. Additionally, some genes may both affect oil content and
seed size, such as AP2/EREBP and MYB TFs. Taken together, this study provides compre-
hensive information underlying seed size/weight and oil content and potentially serves as
a beneficial resource for genetic breeding to develop peanut cultivars with enhanced yield
and quality.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12173144/s1, Supplementary Figure S1. Correlation statistics
and number of expressed genes at different stages of seed development between ZH16 and ZH6. (A)
Spearman correlation coefficient (SCC) of RNA-seq data. (B) Bar plot showing number of expressed
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genes. Supplementary Figure S2. Enriched GO terms (biological process) of common stage-specific
expressed genes in two cultivars at the S3 and S4 stages. The x-axis represents -log10 (p-value).
Bubble size represents the number of enriched genes. Supplementary Figure S3. Specifically enriched
GO terms of up-regulated (A) or down-regulated (B) genes at each stage of seed development.
Supplementary Figure S4. Network topology analysis. (A) Sample clustering. (B) Topology and
connectivity based on soft thresholding powers. (C) Hierarchical clustering of co-expression modules.
Each leaf on the tree represents a gene. The major branches form 11 color-coded modules. (D)
Correlation heatmap across different modules. Supplementary Table S1. Summary of RNA-seq data.
Supplementary Table S2. The lists of genes expressed (FPKM > 0.1) in at least one of the eight samples.
Supplementary Table S3. Information regarding stage-specific expressed genes in ZH16 and ZH6.
Supplementary Table S4. Information regarding DEGs between ZH16 and ZH6. Supplementary
Table S5. Information regarding reported genes related to seed size/weight and/or oil content in
other species. Supplementary Table S6. Information regarding hub genes within three key modules.
Supplementary Table S7. Information regarding reported QTL or genes related to seed size/weight
and/or oil content in peanut.
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