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Abstract: The primary determinants of apple (Malus) tree architecture include plant height and
internode length, which are the significant criteria for evaluating apple dwarf rootstocks. Plant
height and internode length are predominantly governed by phytohormones. In this study, we
aimed to assess the mechanisms underlying dwarfism in a mutant of Malus baccata. M. baccata dwarf
mutant (Dwf ) was previously obtained through natural mutation. It has considerably reduced plant
height and internode length. A comparative transcriptome analysis of wild-type (WT) and Dwf
mutant was performed to identify and annotate the differentially expressed genes responsible for the
Dwf phenotype using RNA-seq and GO and KEGG pathway enrichment analyses. Multiple DEGs
involved in hormone signaling pathways, particularly auxin signaling pathways, were identified.
Moreover, the levels of endogenous indole-3-acetic acid (IAA) were lower in Dwf mutant than in
WT. The Aux/IAA transcription factor gene MbIAA19 was downregulated in Dwf mutant due to a
single nucleotide sequence change in its promoter. Genetic transformation assay demonstrated strong
association between MbIAA19 and the dwarf phenotype. RNAi-IAA19 lines clearly exhibited reduced
plant height, internode length, and endogenous IAA levels. Our study revealed that MbIAA19 plays
a role in the regulation of dwarfism and endogenous IAA levels in M. baccata.

Keywords: Aux/IAA; auxin; dwarf; Malus baccata; transcriptome

1. Introduction

Dwarfing and tightly separated planting are the primary modes of modern fruit farm-
ing practices. Over the past century, extensive application of dwarfing rootstocks has led
to increased planting density and production of fruits, even during early years of orchard
development [1,2]. The complex features of plant dwarfism are regulated by multiple
genes, such as PcPIN1, OsBR6ox, PsGA3ox1, WRKY, and GRAS [3–7]. Multiple mutants
with dwarfing associated with phytohormones were uncovered, such as rice, maize, and
apple, and the underlying gene functions were confirmed [8–10]. Phytohormones act as
central players in the regulation of plant growth and development, in which auxin is the
most significant signaling molecule because it is involved in almost all aspects of plant
life. The development and phenotype of several organs could be influenced by auxin,
including the root system, plant height, leaf shape, and reproductive organs, resulting in
cell division and cell expansion at various stages of tissue development [11–14]. Clarifying
the association between auxin and plant phenotypes is essential for understanding the
mechanism of dwarfism in plants.

Auxins modify the expression of downstream genes that encode proteins involved in
a wide range of physiological networks in plants [15–17]. Extensive studies have reported
that auxins regulate the expression of downstream genes through ubiquitin-dependent pro-
teolytic signal transduction system. First, transport inhibitor response1 (TIR1) protein forms
a multi-subunit SCF ubiquitin ligase. Further, the complex interacts with auxin/indole-3-
acetic acid (Aux/IAA), which is a transcriptional repressor that inhibits the expression of
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early auxin-responsive genes, eventually leading to the degradation of Aux/IAA proteins
by the proteasome [18]. The affinity of TIR1 for Aux/IAA is influenced by the concentration
of cellular auxin. High concentration of auxin induces the degradation of Aux/IAA; how-
ever, low concentration of auxin reduces the interaction between TIR1 and Aux/IAA [19].
Aux/IAA inhibits the transcriptional activity of auxin responsive factors (ARFs), which
regulate the expression of genes that respond to auxin, by directly interacting with them.
Thus, Aux/IAAs are crucial for controlling auxin-mediated activities [20,21].

Aux/IAA repressor proteins contain four highly conserved domains (I–IV). Of these,
domain II, also known as the degron motif, is primarily responsible for the auxin-dependent
degradation of Aux/IAAs [22]. Gain-of-function mutations in domain II of the Aux/IAA
in Arabidopsis thaliana provided information on the role played by these proteins in modu-
lating auxin responses and plant developmental processes. These mutations may reduce
or abolish the interactions among TIR1 and Aux/IAAs. Many auxin-related developmen-
tal abnormalities, such as altered lateral root formation, stem hypocotyl elongation, leaf
expansion, apical dominance, phototropism, and gravitropism, are displayed by these
Aux/IAA gain-of-function mutants [23–27]. Genetic studies have revealed various mor-
phological phenotypes in association with Aux/IAA genes in other plant species. Fewer
crown and lateral roots were produced in rice (Oryza sativa) due to the negative regulation
of auxin-regulated root development by Osiaa9 [28]. Tomato (Solanum lycopersicum) plants
with SlIAA15 silencing exhibited reduced apical dominance and number of trichomes;
thick, dark-green leaves with thicker pavement cells; longer palisade cells; and spongy
mesophyll cells that have a wider intercellular space [29]. Plants with SlIAA9 silencing
exhibited abnormally shaped leaves, enhanced stem elongation, and increased leaf vascu-
larization [30]. Brassica napus IAA7 gain-of-function mutant inhibited stem elongation due
to the transcriptional repression of EXPA5 genes [31]. The overexpression of PtoIAA9m in
Populus significantly repressed the development of secondary xylem [32]. When TaIAA15
was ectopically expressed in rice, plant height and leaf angle were reduced [33]. In apple,
MdIAA2 overexpression led to the formation of smaller fruit [34]. The overexpression of
PpIAA19 (from peach (Prunus persica)) in tomato altered the plant development and fruit
shape and substantially lengthened the internodes [35]. OsIAA23-knockout genotypes
in rice exhibited significantly higher dwarfing and abnormalities in lateral root devel-
opment [36]. Aux/IAA genes are extensively involved in determining plant height and
regulating many other phenotypes. They can act as promoters or suppressors.

Apple (Malus domestica) is one of the most important commercial fruits. Generating
dwarfing rootstocks and apple cultivars is important for improving economic yield and
efficient orchard management. NIAB East Malling Research Station, England, conducts
breeding to obtain dwarf rootstocks; after a century of development, many locally adapted
dwarf rootstocks of apple were generated, such as M9, M26, and GC lines [37,38]. In north-
ern China, M. baccata is frequently used as an apple rootstock because of its strong tolerance
to cold and drought stresses. In this study, we aimed to assess the mechanisms underlying
dwarfing in apple. We characterized an M. baccata dwarf mutant (Dwf ), which exhibits
shorter stature and internode lengths than the wild type (WT). RNA-seq, metabolites
analysis, and extensive biological experiments were performed to reveal a novel function
of MbIAA19 associated with the phenotype of Dwf. This study provided a foundation
for clarifying the relationship among MbIAA19, auxin, and dwarfism. Understanding the
mechanism of dwarfism in Dwf will help in breeding rootstocks with better adaptability to
various stresses.

2. Results
2.1. Dwf Mutant Exhibited Variation in the Phenotype of Multiple Organs

The plant height and internode length are important indicators of dwarfism. The spon-
taneous dwarf mutant of M. baccata, namely, the Dwf mutant, exhibited shorter plant height
and internodes and lower leaf index than WT (Figure 1A–C). Observations revealed that
compared with WT, Dwf mutant exhibited 1.6-fold shorter plant height, and its internode
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length, leaf index, and leaf length were reduced by 30% (Figure 1D,E), 34% (Figure 1F),
and 38% on an average, respectively (Figure 1G). However, no discernible variation in leaf
breadth was observed (Figure 1H). Surprisingly, Dwf mutant represents distinct curled
leaves (Figure 1C).
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Figure 1. Morphological characterization of Dwf mutant. (A) Universal morphology of the dwarf
mutant (Dwf ) and wild type (WT) plants of M. baccata after 1 month of culture. Scale bar = 1 cm.
(B) Annual branches of WT and Dwf plants. Scale bar = 1 cm. (C) Apical leaves of the annual branches
of WT and Dwf plants. Scale bar = 1 cm. (D) Plant heights of WT and Dwf plants. (E) Internode
lengths of the annual branches of WT and Dwf plants. (F) Calculation of the leaf length to width
ratio of the WT and Dwf plants. (G) Leaf length of WT and Dwf plants. (H) Leaf breadth of
WT and Dwf plants. (I) Cell areas of stem vessels in longitudinal sections. (J,K) Scanning electron
microscopic observation of the longitudinal section of stems in annual branches of WT and Dwf plants.
Scale bar = 0.2 mm. The asterisks above the error bars in (D–G,I) indicate significant differences at
p < 0.01 using a one-way analysis of variance (ANOVA) and Dunnett’s test.

The cytological differences in the two genotypes were studied using SEM. The cell
area in the xylem regions of annual branches of the Dwf was 42% smaller than the WT
(Figure 1I); it revealed that there were dramatically smaller longitudinal vascular bundles
cells in the annual branches of the Dwf mutant than in the WT (Figure 1J,K).

Furthermore, the root morphology, flowers, and fruits of Dwf mutant were significantly
altered. It exhibited shorter primary roots (PR) (Figure 2A,B), fewer lateral roots (LR)
(Figure 2C,D), and decreased corolla width and fruit diameter (Figure 2E–H).
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Figure 2. Morphological characterization of the root, flower, and fruit of the Dwf mutant. (A) Primary
roots of one-week-old WT and Dwf plants. (B) Length of primary roots. (C) Lateral roots of WT
and Dwf plants after 1 month of culture. (D) Quantitative analysis of primary lateral root number.
(E) Flowers, (F) corolla width, (G) fruits, and (H) fruit diameter of WT and Dwf mutant. The asterisks
above the error bars in (B,D,F,H) indicate significant differences at p < 0.01 using a one-way analysis
of variance (ANOVA) and Dunnett’s test. Scale bar = 1 cm.

2.2. Analysis of the DEGs on Phytohormone RNA-seq Data

To further understand the regulatory mechanism of dwarfism in Dwf plants, RNA-seq
was performed to study the transcription profiles and identify the DEGs responsible for
the Dwf phenotype. Young leaves at the tips of annual branches were collected from six
individual plants (WT 1–3 and Dwf 1–3) for RNA-seq analysis. GO and KEGG pathway
enrichment analysis revealed numerous genes associated with signal transduction via
phytohormones and hormone response processes (Figure S1A,B). Compared with WT,
352 and 460 genes were up- and downregulated, respectively, in the Dwf plants (log2 ≥ 1)
(Figure S1C). A total of 17 hormone-signaling- and growth-related genes were subjected
to qRT-PCR to verify the DEGs (Figure S2A,B). The results of RNA-seq and qRT-PCR
were consistent.

To thoroughly investigate the complete transcriptional pattern of DEGs related to phy-
tohormones, DEGs associated with the signaling and biosynthetic pathways of IAA, ethy-
lene (ET), jasmonic acid (JA), GA, brassinosteroids (BR), cytokinin (CK), and abscisic acid
(ABA) were further functionally annotated. Crucial proteins involved in the auxin signal
transduction pathway were altered. The auxin-responsive genes, including MbAUX/IAA19
and MbSAURs, were overall downregulated (Figure 3A). MbAUX/IAA19 is one of the
major molecular components involved in auxin signaling, and SAURs regulate the cell
expansion which has been demonstreated [39]. In addition, auxin efflux carrier compo-
nents (MbPIN1 and MbPIN6) were significantly downregulated in Dwf mutant (Figure 3A).
DEGs associated with ET signaling such as EIN3-binding F-box genes (MbEBF1s), which
physically interact with EIN3 and EIL1 proteins for degradation, were upregulated in Dwf
mutant [40]. ET-biosynthesis-related genes (MbACO4, MbACS6, and MbACS10) were up-
regulated, whereas three ET-responsive transcription factors genes (MbERF1A, MbERF1B,
and MbERF060) were downregulated in Dwf (Figure 3B). MbTYFYs (JAZs) involved in the
JA signaling pathway were downregulated in Dwf mutant, the depletion of JAZ proteins
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is also associated with reduced growth and development [41]; MYC2, a key transcription
factor (TF) of JA signaling pathway, was downregulated in Dwf mutant (Figure 3C).

Plants 2023, 12, x FOR PEER REVIEW 5 of 16 
 

 

involved in the JA signaling pathway were downregulated in Dwf mutant, the depletion 

of JAZ proteins is also associated with reduced growth and development [41]; MYC2, a 

key transcription factor (TF) of JA signaling pathway, was downregulated in Dwf mutant 

(Figure 3C). 

GA, BR, CK, and ABA signaling pathways were altered in Dwf (Figure 3C). Among 

GA signaling genes, MbDREB1E (dehydration-responsive element-binding protein 1E) 

and MbGA20OX1 (gibberellin 2-beta-dioxygenase 1; responsible for the bioactive trans-

formation of GAs) were downregulated. Additionally, several genes related to signaling 

and biosynthesis of BR, CK, and ABA were altered. BRI1-EMS-SUPPRESSOR1/BRASSI-

NAZOLE RESISTANT4 (BES1/BZR4) plays as key role in BR signaling, was downregu-

lated in Dwf. Similarity, BKI1 act as a negative regulator of BR sinnalling and was up-

regulated in Dwf (Figure 3C). Cytokinin oxidase/dehydrogenase5 (CKX5), a destructor of 

cytokinin, was up regulated in Dwf (Figure 3C). ABA 8′-hydroxylation act as the major 

components involved in catabolic pathway of ABA and was downregulated in Dwf (Fig-

ure 3C). TFs involved in hormone signaling were downregulated in Dwf plants (Figure 

3D). These results demonstrate that the phytohormone signaling and biosynthetic path-

ways were affected in the Dwf mutant. Interestingly, 26% DEGs involved in phytohor-

mone signaling were associated with the auxin signaling pathway. Therefore, auxin was 

observed to be an essential hormone in controlling plant growth in Dwf mutants. 

 

Figure 3. A heatmap of differentially expressed genes (DEGs) associated with phytohormone path-

ways. (A) DEGs associated with the signaling and biosynthesis pathways of auxin. (B) DEGs asso-

ciated with the signaling and biosynthesis pathways of ethylene. (C) DEGs related to the signaling 

and biosynthesis pathways of JA, GA, BR, CK, and ABA. (D) Transcription factors involved in hor-

mone signaling. 

2.3. Endogenous Auxin Levels Were Lower in Dwf Mutant 

To investigate whether DEGs related to auxin signaling and biosynthesis pathways 

are associated with the change in endogenous auxin levels, endogenous IAA levels were 

detected in both genotypes. Endogenous IAA content was substantially lower in the 

leaves of the Dwf mutant than in those of the WT (Figure 4A). We investigated whether 

auxin deficiency in Dwf mutant affected the dwarfing. One-month-old Dwf seedllings 

Figure 3. A heatmap of differentially expressed genes (DEGs) associated with phytohormone path-
ways. (A) DEGs associated with the signaling and biosynthesis pathways of auxin. (B) DEGs
associated with the signaling and biosynthesis pathways of ethylene. (C) DEGs related to the signal-
ing and biosynthesis pathways of JA, GA, BR, CK, and ABA. (D) Transcription factors involved in
hormone signaling.

GA, BR, CK, and ABA signaling pathways were altered in Dwf (Figure 3C). Among
GA signaling genes, MbDREB1E (dehydration-responsive element-binding protein 1E) and
MbGA20OX1 (gibberellin 2-beta-dioxygenase 1; responsible for the bioactive transformation
of GAs) were downregulated. Additionally, several genes related to signaling and biosyn-
thesis of BR, CK, and ABA were altered. BRI1-EMS-SUPPRESSOR1/BRASSINAZOLE
RESISTANT4 (BES1/BZR4) plays as key role in BR signaling, was downregulated in Dwf.
Similarity, BKI1 act as a negative regulator of BR sinnalling and was up-regulated in Dwf
(Figure 3C). Cytokinin oxidase/dehydrogenase5 (CKX5), a destructor of cytokinin, was up
regulated in Dwf (Figure 3C). ABA 8′-hydroxylation act as the major components involved
in catabolic pathway of ABA and was downregulated in Dwf (Figure 3C). TFs involved in
hormone signaling were downregulated in Dwf plants (Figure 3D). These results demon-
strate that the phytohormone signaling and biosynthetic pathways were affected in the Dwf
mutant. Interestingly, 26% DEGs involved in phytohormone signaling were associated with
the auxin signaling pathway. Therefore, auxin was observed to be an essential hormone in
controlling plant growth in Dwf mutants.

2.3. Endogenous Auxin Levels Were Lower in Dwf Mutant

To investigate whether DEGs related to auxin signaling and biosynthesis pathways
are associated with the change in endogenous auxin levels, endogenous IAA levels were
detected in both genotypes. Endogenous IAA content was substantially lower in the leaves
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of the Dwf mutant than in those of the WT (Figure 4A). We investigated whether auxin
deficiency in Dwf mutant affected the dwarfing. One-month-old Dwf seedllings were
sprayed with 0.4 mg·L−1 IAA once a week for 4 weeks and plant growth was observed.
Interestingly, plant height was significantly increased in the Dwf mutant after IAA treat-
ment compared to after water treatment (Figure 4B,C). These findings suggested that the
endogenous auxin levels were altered in the Dwf mutant, and this alteration played a key
role in dwarfing.
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Figure 4. Analysis of endogenous auxin levels and exogenous auxin treatment. (A) Endogenous
auxin levels in WT and Dwf mutant leaves. (B) Dwf mutant plants were sprayed with 2.3 µM IAA
once a week for 4 weeks. Growth status of Dwf mutant before and after auxin treatment. (C) Plant
height increased after treatment with 0.4 mg·L−1 IAA than after that with water for 1 month. The
asterisks above the error bars indicate significant differences at p < 0.01 calculated using a one-way
analysis of variance (ANOVA) and Dunnett’s test.

2.4. Analysis of MbIAA19 Gene Expression and Promoter Sequence

MbIAA19 is a member of the AUX/IAA gene family. Sequence analysis revealed
that MbIAA19 contains an open reading frame of 573 bp, encoding 190 amino acids; the
MbIAA19 sequences from WT and Dwf were identical. After aligning with IAA19 protein
sequences from P. persica and A. thaliana, it was revealed that MbIAA19 proteins contain
four conserved domains (domains I, II, III, and IV; Figure 5A). The expression of MbIAA19
in several tissues was studied using qRT-PCR. It was significantly downregulated in the
roots, stems, and leaves of Dwf plants (Figure 5B). Next, we performed a subcellular
localization analysis of MbIAA19. In contrast to the 35S::GFP protein (which was identified
in both the cytoplasm and nucleus when released alone in vivo in the leaf epidermal cells
of tobacco), the GFP-IAA19 fusion proteins and mCherry protein were primarily located in
the nucleus (Figure 5C). The sequences of the MbIAA19 promoters in WT and Dwf mutant
were compared to identify any mutation in the promoter region. A single nucleotide change
from G to A (−608 bp) was observed in Dwf ; it was a heterozygous mutation in Dwf mutant
and seedlings with Dwf phenotype. The altered promoter creates a novel cis-acting element
[(A/T)GATA(A/G)], a GATA transcription factor binding site. (Figure 5D). Further, GUS
activity was analyzed to assess how variation in the alleles affects the activities of the
MbIAA19 promoter. Interestingly, altered promoters in tobacco leaves exhibited markedly
reduced levels of GUS protein and GUS activity (Figure 5E,F and Figure S3). These findings
suggest that MbIAA19 is a candidate gene responsible for the Dwf mutant phenotype.
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of MbIAA19 and alignment of MbIAA19 with IAA19 protein sequences from Prunus persica and
Arabidopsis thaliana. Four conserved domains (I–IV) of IAA19 are shown. (B) Relative expression
level of MbIAA19 in different organs of Dwf plants compared with WT plants. (C) Subcellular
localization analysis of MbIAA19. (D) Variations of alleles in the MbIAA19 promoter between WT,
Dwf, and seedllings (WT-S1-3# and Dwf -S1-3#), the black box represents the novel cis-acting element
[(A/T)GATA(A/G)]. (E) The GUS activity of MbIAA19 promoter in infected tobacco leaves, GUS:1301
and GUS:1391 served as positive and negative controls, respectively. (F) Quantitative assessment
of relative GUS activity in infected tobacco leaves. Different colors in (A,D) represent sequences
with different levels of conservation. The asterisks above the error bars in (B,F) indicate significant
differences at p < 0.01 using a one-way analysis of variance (ANOVA) and Dunnett’s test.
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2.5. Downregulation of MbIAA19 Inhibited Plant Height and Internode Length in GL-3

The function of MbIAA19 and its role in growth regulation in Malus was confirmed
using GL-3, the open-pollinated cultivar of M. domestica ‘Royal Gala’. GL-3 was transformed
with the vector RNAi-IAA19. From all the regenerated lines, five distinct lines with MbIAA19
downregulation (RNAi-IAA19) were obtained. The phenotypes of all five RNAi-IAA19
plants mimicked the phenotype of Dwf mutant, with clearly reduced stature and fewer
roots (Figure 6A). For the subsequent studies, two RNAi-IAA19 lines (8# and 15#) with
significant reduction in MbIAA19 expression were selected (Figure 6B).
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Figure 6. Morphological characterization of the RNAi-IAA19 lines compared with GL-3. (A) Uni-
versal morphology of GL-3 and five RNAi-IAA19 lines. (B) Expression level of IAA19 in GL-3 and
five RNAi-IAA19 lines. (C) GL-3 and RNAi-IAA19 lines after grown in the incubator for 2 months.
Scale bar = 1 cm. (D) Plant height of GL-3 and two RNAi-IAA19 lines (8# and 15#). (E) Internode length
of GL-3 and two RNAi-IAA19 lines (8# and 15#). (F) Images of the leaves from the third leaves of
2-month-old seedlings of GL-3 and RNAi-IAA19-8#. Scale bar = 1 cm. (G) Comparison of the ratio
of leaf length to width of RNAi-IAA19 lines and GL-3. (H) Adventitious root numbers of GL-3 and
two RNAi-IAA19 lines (8# and 15#). (I) Scanning electron microscopic analysis of longitudinal segment
of the stems of GL-3 (up) and RNAi-IAA19-8# (down), Scale bar = 40 µm. (J) Calculation of cell areas
of the stems of GL-3 and RNAi-IAA19-8#. The asterisks above the error bars in (B,D,E,G,H,J) indicate
significant differences at p < 0.01 using a one-way ANOVA and Dunnett’s test.

After cultivating in a greenhouse for 2 months, compared with GL-3 plants, plant
height dramatically reduced by 34% and 49% in the RNAi-IAA19 lines 8# and 15#, re-
spectively. Their plant height was comparable with that of Dwf mutant (Figure 6C,D).
The internode length was significantly reduced by approximately 43% in 8# and 15#; the
variation in the internode length was wider than that in Dwf mutant (Figure 6E). The leaf
index was lower than that of GL-3; it was similar to that of Dwf mutant, which exhibited
shorter leaf length (Figure 6F,G). The RNAi-IAA19 lines exhibited less adventitious roots
(Figure 6H). According to SEM analysis, the cell areas of longitudinal cells were reduced
by 54%. The effect of inhibition of cell expansion on dwarf plants was further determined
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(Figure 6I,J). Collectively, the results revealed that MbIAA19 indeed corresponds to the
Dwf phenotype.

2.6. Endogenous Auxin Levels Were Lower in the Leaves of RNAi-IAA19-8# Than in Those of GL-3

To investigate whether the endogenous IAA levels were influenced by the expression
level of MbIAA19, the endogenous IAA levels were assessed in GL-3 and RNAi-IAA19-8#
leaves. The endogenous IAA level in RNAi-IAA19-8# leaves was substantially lower than
that in GL-3 leaves (Figure 7). This confirmed that the changes in MbIAA19 expression are
highly associated with the Dwf phenotype.
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3. Discussion

Studies on the development of dwarfing rootstocks and understanding the mecha-
nisms underlying dwarfing are ongoing in apple. Many excellent dwarfing rootstocks have
been developed [42]. Numerous dwarf lines of Malus have been discovered [10,43,44], and
widely accepted standards for evaluating dwarfing rootstocks have been established [38,45].
Additionally, some studies have attempted to explain the mechanism of occurrence of dwarf
phenotypes from various perspectives, including the role of phytohormones and nutrient
metabolism [46,47]. In this study, the Dwf mutant exhibited phenotypic changes in vari-
ous organs (Figures 1 and 2). From the results, it can be concluded that the inhibition of
vessel cell expansion causes the dwarfism in Dwf mutant (Figure 1I); however, due to the
hypodevelopment of vessels, a potential decrease in nutrient transport capability can also
be a cause of dwarfism.

Previous studies have revealed that phytohormones are important factors that regu-
late dwarfism. Increase in the endogenous or exogenous concentrations of auxin [11,48],
gibberellins [49], and brassinosteroid [50] promotes the plant height during suitable levels.
The Dwf mutant exhibits low concentrations of endogenous IAA (Figure 4A), which is
consistent with previous studies [11,48]. RNA-seq revealed several DEGs related to auxin,
ET, gibberellin, and brassinolide signaling in Dwf mutant (Figure 3A–C). However, no
significant DEG related to auxin biosynthesis was identified in Dwf mutant (Figure S4).
Therefore, the reason underlying the lower endogenous auxin levels should be identified.

As one of major molecular components families (Aux/IAAs, ARFs, ABP1 and TIR1)
involved in auxin signaling, increasing the stability of Aux/IAA proteins leads to the
disruption or obstruction of auxin signaling, which could even lead to a mutation that
was unresponsive to auxin [22,51]. We concluded that the majority of Aux/IAA family
members have multiple roles in regulating morphogenesis with regard to the development
of plant organs. As a result, the Aux/IAA gene family may be a suitable candidate and
a starting point to understand the mechanism of multi-organ variation during evolution.
However, Aux/IAA members are rarely studied in the Malus species. Previous studies
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on Aux/IAA in Malus primarily focused on stress resistance, and little attention has been
paid to fruit development and plant phenotypes [52–54]. MbIAA19 was the only major
component involved in auxin signaling identified by RNA-seq with a significant difference
between WT and Dwf, which was uniformly downregulated in different organs of Dwf
(Figure 5B). Changes in auxin content stimulate our interest in the relationship between
auxin accumulation and signaling because numerous studies have demonstrated the es-
sential feedback regulation between auxin accumulation and signaling pathway; auxin
affects the activation of signaling components, while Aux/IAA-ARF affect the accumula-
tion of auxin through further regulating the expression of PINs [55,56]. Sequence analyses
were used to investigate the sequence changes that may affect gene expression of IAA19;
fortunately, a single nucleotide change in the promoter of MbIAA19 resulted in a novel
cis-acting element [(A/T)GATA(A/G)], a GATA transcription factor binding site [57,58].
It is tempting to speculate that reduced promoter activity (Figure 5D–F) was because of
a transcriptional repressor binding to the novel element. These results prompted us to
investigate if MbIAA19 is involved in determining the dwarfing phenotype in Dwf mutant.
In this study, RNAi-IAA19 lines were generated in an attempt to promote the studies on
morphological regulation related to the Aux/IAA members in Malus.

The inhibition of plant height, internode elongation, and root development by the
downregulation of MbIAA19 was confirmed in two stable RNAi-IAA19 transgenic lines.
This indicated that MbIAA19 may act across multiple tissues (Figure 6). However, in
addition to shorter stems, smaller leaves, and fewer roots, the Dwf mutant also exhibits
variation in leaf shape, corolla width, and fruit diameter (Figures 1C and 2E–H). It is
unclear whether these phenotypes related to the reproductive organs will manifest in the
RNAi-IAA19 lines. Similar to the Dwf mutant, low concentrations of endogenous IAA
were exhibited in RNAi-IAA19 lines (Figure 7). This indicated that MbIAA19 is related to
Dwf phenotype and has an impact on endogenous auxin content. The known phenotypic
variations in RNAi-IAA19 did not precisely match with those in Dwf mutant, e.g., curled
leaves were not observed, suggesting that MbIAA19 may not be the only gene responsi-
ble for the variation in Dwf mutant phenotype. Therefore, further studies are needed to
assess other gene families responsible for the dwarfing mechanism in Dwf mutant. Overall,
MbIAA19 regulates the morphology of multiple organs, and the phenotypes of develop-
mental repression are related to the inhibition of IAA19 expression. Sequence analysis
indicated that the closest homolog to MbIAA19 in A. thaliana is AtIAA19/MSG2. In A.
thaliana, AtIAA19 is involved in the regulation of stamen filament development, plays a key
role in the formation of roots, and reveals defects in tropic responses in hypocotyls [59–62].
Indeed, the RNAi-IAA19 lines and msg2 mutant exhibited a reduced number of lateral
roots (Figure 6I) [61]. The RNAi-IAA19 lines exhibited significant changes in plant height,
internode length, and leaf shape in Malus (Figure 6B,E–H), which were not reported in
previous studies. Differences in the expression of MbIAA19 did not cause defective tropic
responses, indicating that functional divergence occurred between Malus and A. thaliana.
PpIAA19 and VvIAA19 function as growth promoters for plant height; over-expressing
PpIAA19 in tomato (Solanum lycopersicum cv. ‘Micro-Tom’) indicated that PpIAA19 was
involved in promoting root length and stem elongation, inhibiting fruit development and
fertilization [35]; over-expression of VvIAA19 in A. thaliana also had a notable effect on
plant growth, which exhibited higher plant and longer roots then the WT [63]. The above
results suggested a new function of MbIAA19 to modulate Malus plants, dwarfing growth.

In conclusion, we identified a differentially expressed transcription factor gene in the
Dwf mutant. This mutant exhibited lower endogenous IAA level and stable downregulation
of MbIAA19. A single nucleotide variation in the promoter of MbIAA19 in Dwf resulted
in lower promoter activity than that in WT. The downregulation of MbIAA19 inhibited
plant height and internode length. The endogenous IAA levels were lower in RNAi-IAA19
lines as well, demonstrating the association between MbIAA19 and the phenotype of Dwf
mutant. In the future, it will be interesting to clarify how MbIAA19 is associated with
endogenous IAA levels.
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4. Materials and Methods
4.1. Plant Material

Dwf mutant, the dwarf mutant of M. baccata, was obtained through a natural mutation
of M. baccata from Hulunbeier League, Inner Mongolia (48.01363 N, 122.73757 E) in China.
Previous genetic analyses have suggested that the dwarfing trait of Dwf is a quality trait
controlled by a dominant heterozygous gene [64]. Therefore, the seedllings of Dwf were
of two types, dwarf and wild type in 1:1 ratio. Fortunately, the dwarf plants exhibit
extremely similar multi-organ linkage variation in the roots, stems, leaves, flowers, and
fruits, providing sufficient materials for the successful execution of this study. This study
included three WT (WT 1–3) and three Dwf plants (Dwf 1–3). After vernalization, the seeds
collected from Dwf plants were sown in soil. The plants were grown in a smart incubator
at 25 ◦C with 12 h:12 h (light: dark cycle) and 70% relative humidity. To establish in vitro
shoot proliferation in GL-3 (the open-pollinated cultivar of M. domestica ‘Royal Gala’),
MS media containing 3% sucrose and 0.7% agar (w/v) supplemented with 0.3 mg L−1

6-benylaminopurine (6-BA), 0.2 mg L−1 indole acetic acid (IAA), and 0.1 mg L−1 gibberellic
acid (GA3) were used.

4.2. Phenotypic and Cytological Analyses

The botanical traits investigated in this study included plant height, internode length,
leaf index, primary roots length, primary lateral root number, corolla width, and fruit
diameter. The leaf index was calculated as the leaf length to width ratio. One-month-old
seedllings were used to measure plant height, whereas two-month-old seedllings were
used to measure the changes in plant height after IAA treatment. The primary root length
was measured using 1-week-old seedllings. The internode lengths were analyzed using
the annual branches of WT and Dwf plants. The leaf length and width, root length, fruit
diameter, and corolla were measured using a vernier caliper. At least three biological
replicates were used for the analysis, and the average of each index was calculated.

Scanning electron microscopy (SEM; HITACHI Regulus 8100, Hitachi, Tokyo, Japan)
was performed to study the stems of WT and Dwf plants. The third internode of annual
branches was prepared as follows. The internodes were rinsed three times with PBS
after fixing in 2.5% glutaraldehyde. Further, the samples were dehydrated using ethanol
gradients and substituted with tertiary butyl alcohol. After they were dried (VFD-30) and
sprayed with gold (MC1000), the images were acquired using SEM. ImageJ2 software (NIH,
Bethesda, MD, USA) was used to measure the cellular areas in the longitudinal section of
vessels of stem.

4.3. RNA-seq Analysis and Gene Expression

Total RNA was extracted from the young leaves of WT 1–3 and Dwf mutant 1–3. RNA
sequencing libraries were constructed and sequenced on an Illumina NovaSeq 6000 system
(Illumina, San Diego, CA, USA). RNA-seq data from the two genotypes were analyzed
according to the Apple Genome (GDDH13 Version 1.1, https://iris.angers.inra.fr/gddh1
3/the-apple-genome-downloads.html, accessed on 5 June 2017). Quality control and trim-
ming processes were performed as previously described [65]. Fragments per kilobase of
transcript per million mapped read (FPKM) values were estimated to analyze the differen-
tially expressed genes (DEGs) between the two genotypes. The genes were considered to be
significantly expressed if the absolute fold change was ≥1 and p was <0.01 as determined by
an R package (R Foundation for Statistical Computing, Vienna, Austria). Gene Ontology (GO,
http://geneontology.org/, accessed on 1 May 2019) and Kyoto Encyclopedia of Genes and
Genomes (KEGG, http://www.kegg.jp/kegg, accessed on 1 May 2019) pathway enrichment
analyses were performed to annotate the DEGs. All raw and processed RNA-seq data from
this study have been released on SRA Run Selector, with the SRA accession number PR-
JNA543379 (NCBI BioProject, https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA5
43379, accessed on 15 June 2020).

https://iris.angers.inra.fr/gddh13/the-apple-genome-downloads.html
https://iris.angers.inra.fr/gddh13/the-apple-genome-downloads.html
http://geneontology.org/
http://www.kegg.jp/kegg
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA543379
https://www.ncbi.nlm.nih.gov/Traces/study/?acc=PRJNA543379
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Total RNA of leaves extraction was conducted using CTAB as described previously [66].
The cDNA was generated using PrimeScriptTM RT reagent Kit with gDNA Eraser (TaKaRa,
Dalian, China). The TB Green® Premix Ex TaqTMII (TaKaRa) and ABI QuantStudio 6
Flex instrument (Applied Biosystems, Waltham, MA, USA) were used for quantitative
PCR (qPCR) analyses. Reaction system and qPCR process were conducted as described
previously [66]. RNA extracted from each plant was used as one biological replicate, and
a total of three technical and biological replicates to calculate the variances of population
(SD). The expression levels were standardized with those of the 18S genes. Specific primers
are listed in Supporting Information (Table S1).

4.4. Determination of the Contents of Endogenous IAA

The contents of endogenous IAA were determined as previously described [67] using
0.5 g young leaves of WT and Dwf mutant plants. The experiment involved three biological
and technical replicates. [13C]6-IAA (OlChemIm Company, Olomouc, Czech Republic) was
used as the internal standard.

4.5. Exogenous IAA Treatment

One-month-old seedllings with Dwf phenotype were sprayed with 0.4 mg·L−1 IAA
once a week for 4 weeks, spraying with water as control. The experiment was performed
in three biological replicates.

4.6. Cloning, Plasmid Construction, and Genetic Transformation

The full-length sequence of the promoter and sense strand of MbIAA19 (MD17G1198100)
was searched in the genomics database for the Rosaceae family (GDR, https://www.rosaceae.
org/, accessed on 7 August 2017). The full length 1600-bp promoter sequence of WT and
Dwf mutant plants was cloned into the binary vector pCAMBIA1391 for sequencing and
GUS activity analysis. The CDSs were subcloned from the leaves of Dwf mutant plants into
35S::GFP to create 35S::IAA19:GFP, and antisense partial sequences were amplified to create
antisense suppression vectors (RNAi::IAA19). Vectors were constructed using ClonExpress II
One Step Cloning Kit (C115, Vazyme, Nanjing, China). The primers are listed in Supporting
Information (Table S1).

4.7. Confocal Microscopy and GFP and GUS Analyses

Constructed vectors were introduced into Agrobacterium tumefaciens GV3101, which
was used to infect the leaves of 4-week-old tobacco (Nicotina benthamiana) plants. Green
fluorescent protein (GFP) and red fluorescent protein (mCherry) were observed using a
laser scanning confocal microscope (TCS SP8, Leica, Wetzlar, Germany). The excited points
of GFP and mCherry were selected as previously [68]. For detecting GUS activity in the
infected tobacco leaves, GUS staining was performed. The infected leaves were incubated
with X-Gluc buffer for 48 h at 37 ◦C and soaked in ethanol to remove chlorophyll. Further,
fluorometric assays were performed for assessing GUS activity as previously described [69].

4.8. Plant Transformation

The RNAi::IAA19 vector was introduced into the A. tumefaciens strain EHA105. The
young leaves of in vitro-grown “GL-3” were used for transformation. The transformed
bacterial cells were incubated in LB medium at 28 ◦C, 180 rpm for 12–15 h, then diluted to
OD600 = 0.5 in MS medium containing 1.5% sucrose and 0.5% glucose (w/v) supplemented
with 100 µM acetosyringone (AS). The young leaves were cut into segments 3 mm wide,
then the segments were gently shaken in bacterial suspension for 8 min. After transforma-
tion, the segments were transferred into co-culture medium for 3 d in the dark. Then the
segments were cultivated on a selective medium containing 50 mg·L−1 kanamycin (Kan),
250 mg·L−1 cefixime (Cef) and 250 mg·L−1 timentin (Tim) for a few months, which were
changed every half a month. The incubation was in the conditions of room temperature

https://www.rosaceae.org/
https://www.rosaceae.org/
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25 ◦C and a photoperiod of 16 h:8 h (light:dark). Finally, mediums were configured as
described by Dai et al. [70].

4.9. Statistical Analysis

The significant differences in the phenotypic data, gene expression, IAA production,
and GUS activity were assessed using one-way analysis of variance (ANOVA) and Dun-
nett’s test (** p < 0.01, * p < 0.05) as specified in the figure legends. Each sample was
evaluated at least three times.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12173097/s1, Figure S1: DEGs between the WT
and Dwf mutant; Figure S2: Confirmation of the DEGs by quantitative real time-PCR (qRT-PCR);
Figure S3: The GUS activity of MbIAA19 promoter in tobacco leaves. Figure S4: A heat map of
seven TAR genes (tryptophan aminotransferase-related gene) and nine YUCCA genes (indole-3-
pyruvate monooxygenase gene) in the WT and Dwf identified using RNA-seq. Table S1: Primers
used in this study.
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