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Abstract: The influence of drought induced by polyethylene glycol (PEG) and the alleviatory ef-
fect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought
stress reduced plant height, dry weight, total chlorophylls, carotenoids and the content of nitrogen,
phosphorous, potassium and sulphur. The foliar applications of NO and sulphur each individually
alleviated the decline, with a greater alleviation observed in seedlings treated with both NO and
sulphur. The reduction in intermediates of chlorophyll synthesis pathways and photosynthesis
were alleviated by NO and sulphur. Oxidative stress was evident through the increased hydrogen
peroxide, superoxide and activity of lipoxygenase and protease which were significantly assuaged
by NO, sulphur and NO + sulphur treatments. A reduction in the activity of nitrate reductase,
glutamine synthetase and glutamate synthase was mitigated due to the application of NO and the
supplementation of sulphur. The endogenous concentration of NO and hydrogen sulphide (HS) was
increased due to PEG; however, the PEG-induced increase in NO and HS was lowered due to NO and
sulphur. Furthermore, NO and sulphur treatments to PEG-stressed seedlings further enhanced the
functioning of the antioxidant system, osmolytes and secondary metabolite accumulation. Activities
of γ-glutamyl kinase and phenylalanine ammonia lyase were up-regulated due to NO and S treat-
ments. The treatment of NO and S regulated the expression of the Cu/ZnSOD, POD, CAT, RLP, HSP70
and LEA genes significantly under normal and drought stress. The present study advocates for the
beneficial use of NO and sulphur in the mitigation of drought-induced alterations in the metabolism
of Vigna radiata.

Keywords: oxidative damage; nitrogen metabolism; antioxidants; secondary metabolites; gene
expression; drought; nitric oxide; sulphur

1. Introduction

Drought stress is a global problem and one of the key threats to global food security. It
adversely affects the growth, development and distribution of plants [1]. Drought results
in significant declines in root growth, photosynthesis, transpiration, nutrient uptake and
assimilation, enzyme activity and yield productivity [1–3]. Drought triggers symptoms
including leaf senescence, drooping and rolling, etiolation, wilting, premature flower fall
and yellowing of leaves [4]. Drought is characterised by significant declines in tissue water
potential, turgor, stomatal movements and cellular proliferation and enlargement [5]. In ad-
dition to this, drought stress triggers the excess generation of reactive oxygen species (ROS)
and methylglyoxal (MG), thereby resulting in oxidative damage to key macromolecules
including proteins, amino acids and nucleic acids [1]. This oxidative stress-induced modula-
tion can be damaging to plant growth and development, reflected in significant alterations
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in physiological and biochemical attributes [1]. These ROS- and MG-induced alterations are
alleviated by up-regulating the tolerance mechanisms including the antioxidant system, os-
molyte accumulation and glyoxylase system [6]. It has been reported that the up-regulation
of tolerance mechanisms results in an enhanced potential to withstand the damaging effects
of drought stress [7–9].

Sulphur (S) is an important mineral element required for the growth and development
of plants, as well as tolerance to stresses. Sulphur forms a key constituent of amino acids
like cysteine and methionine; vitamins like biotin and thiamine; and other compounds
like glutathione, lipoic acid, glucosinolates, etc. [10]. It has been reported that sulphur
modulates the tolerance mechanisms to alleviate the damaging effects of stresses on key
metabolic pathways, and hence, plant performance is the least affected [11]. Stresses
affect the uptake, transport and assimilation of sulphur significantly, thereby imposing a
significant damaging influence on key pathways like photosynthesis and stress-tolerant
mechanisms [12]. The supplementation of sulphur has been reported to strengthen the
tolerance mechanisms in different plants individually as well as interactively with other
molecules [13].

Nitric oxide (NO) is an important redox-active signalling molecule regulating germi-
nation, enzyme functioning, mineral uptake and assimilation, photosynthesis, osmolyte
accumulation, gene expression and stress tolerance [14–16]. The production of NO in plants
occurs through the nitric oxide synthase (NOS) pathway, the nitrate reductase pathway and
other enzymatic and non-enzymatic pathways [14,17,18]. Stresses trigger the generation of
NO, and the exogenous treatment of NO has been reported to optimise the endogenous NO
for better stress tolerance [19,20], aside from the maintenance of NO concentration through
the supplementation of mineral elements and phytohormones [19,21]. It has been reported
that the treatment of NO through foliar applications or priming potentiates the tolerance
mechanism to alleviate the damaging effects of stresses in different plants [15,22]. The
application of NO alleviated the damaging effects of heavy metal [15], salinity [19], heat
stress [20] and drought [23] by up-regulating the antioxidant system, thereby preventing
damage to key macromolecules and their functioning. Transcriptomic studies of sulphur
and NO-treated plants have revealed significant modulation in the genes regulating key
metabolic pathways, including the tolerance mechanisms [24,25]

Vigna radiata, commonly known as mung bean, is an important edible legume crop
grown throughout the world for seeds and has a long history as a traditional medicine. It
is rich in proteins, minerals, vitamins, dietary fibre and bioactive compounds, including
polyphenols, peptides, etc. Mungbean has been used in the treatment of several disorders
including hyperglycaemia, hypertension, cancer, melanogenesis, etc. [26]. Drought reduces
its growth and productivity significantly. The present study was aimed at investigating
the beneficial role of sulphur and NO in alleviating the damaging effects of drought
stress by assessing the modulation of tolerance mechanisms and gene expression patterns.
Modulations in tolerance mechanisms, oxidative stress parameters, photosynthesis and
enzyme functioning due to S and NO were evaluated.

2. Results

Results showing the effects of NO and sulphur under drought stress on the δ-ALA,
GSA, total chlorophylls, carotenoids and photosynthesis are shown in Figure 1. Relative to
the control, drought stress reduced δ-ALA by 37.12%, GSA by 47.67%, total chlorophylls by
40.29%, carotenoids by 41.91% and photosynthesis by 39.35%. Both NO and S alleviated
this decline to significant levels, with S being much more effective. The maximal alleviation
of the drought-induced decline was observed in plants treated with both NO and sulphur.
Relative to the control, the decline in δ-ALA, GSA, total chlorophylls, carotenoids, photo-
synthesis and Fv/Fm was only 7.78%, 5.91%, 11.44%, 12.20% and 13.66%, respectively, in
PEG + NO + sulphur-treated plants (Figures 1 and 2A–E).
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Figure 2. Effect of NO and sulphur (individual and combined) on the content of (A) glutamate 1-
semialdehyde, (B) amino levulinic acid, (C) total chlorophyll, (D) carotenoids and (E) photosynthesis
in Vigna radiata cultivar Jin 8 under PEG-induced drought stress. Data are mean (±SE) of three
replicates and different letters show significant difference at p < 0.05.
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Drought stress resulted in significant increases in H2O2 (101.37%), O2
− (47.10%) and

lipid peroxidation (139.04%) compared to the control. The foliar application of NO and
the supplementation of sulphur through roots declined the levels of H2O2, O2

− and lipid
peroxidation, with maximal reduction observed in plants treated with both NO and sulphur.
Relative to drought stress plants, a decline of 73.25% in H2O2, 71.21% in O2

− and 80.81% in
lipid peroxidation was observed in D + sulphur + NO-treated plants (Figure 3A–C).
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Figure 3. Effect of NO and sulphur (individual and combined) on the content of (A) hydrogen
peroxide, (B) superoxide and (C) lipid peroxidation in Vigna radiata cultivar Jin 8 under PEG-induced
drought stress. Data are mean (±SE) of three replicates and different letters show significant difference
at p < 0.05.
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The activity of protease and lipoxygenase was reduced due to the treatment of NO and
sulphur compared to the control plants. Drought stress resulted in a significant increase in
the activity of protease (79.24%) and lipoxygenase (148.93%) compared to the control. The
application of NO and sulphur to drought-stressed plants reduced the activity of protease
and lipoxygenase by 36.04% and 46.37%, respectively, compared to the drought-stressed
plants (Figure 4A,B).
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Figure 4. Effect of NO and S sulphur (individual and combined) on the activity of (A) protease and
(B) lipoxygenase in Vigna radiata cultivar Jin 8 under PEG-induced drought stress. Data are mean
(±SE) of three replicates and different letters show significant difference at p < 0.05.

The content of proline, sugars and glycine betaine increased by 49.53%, 35.92% and
33.77%, respectively, due to drought compared to the control plants. The treatment using
NO and sulphur for drought-stressed plants further increased the content of proline,
sugar and glycine betaine and the activity of γ-glutamyl kinase. Relative to the control,
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proline, sugars, glycine betaine and activity of γ-glutamyl kinase showed an increase of
78.82%, 68.93%, 59.45% and 47.13% in D + NO, 103.31%, 83.98%, 79.97% and 59.08% in D
+ sulphur and 141.25%, 105.33%, 97.06% and 74.90% in D + NO + sulphur-treated plants
(Figure 5A–D).
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Figure 5. Effect of NO and sulphur(individual and combined) on (A) free proline, (B) activity of
γ-glutamyl kinase, (C) glycine betaine and (D) sugars in Vigna radiata cultivar Jin 8 under PEG-
induced drought stress. Data are mean (±SE) of three replicates and different letters show significant
difference at p < 0.05.

The activity of NR, GS and GOGAT was reduced by 31.45%, 48.97% and 48.68% due to
drought; however, the application of NO and the supplementation of sulphur individually,
as well as combinedly, alleviated the decline. The combined application of NO and sulphur
maximally alleviated the decline in NR, GS and GOGAT by 27.32%, 67.10% and 62.53%,
respectively, compared to the drought-stressed plants (Figure 6A–C).

The activity of SOD, CAT, APX, DHAR and GR increased by 63.39%, 23.35%, 19.83%,
38.89% and 34.41%, respectively, due to drought stress and the application of NO and
sulphur to drought-stressed plants further enhanced the activities of these enzymes. Rela-
tive to the control, maximal increases in the activities of SOD, CAT, APX, DHAR and GR
were158.03%, 97.81%, 119.28%, 94.52% and 78.26%, respectively, in D + NO + sulphur-
treated plants (Figure 6). The content of AsA, GSH and tocopherol increased by 23.09%,
21.32% and 30.00%, respectively, due to drought stress compared to the control. The foliar
application of NO and the supplementation of sulphur further increased the content of
AsA, GSH and tocopherol attaining maximal increases of 71.47%, 86.20% and 95.00% in D +
S + NO-treated plants (Figure 7).

Drought stress resulted in increases of 122.36% and 191.63% in hydrogen sulphide
and nitric oxide compared to the control. The treatment using NO, sulphur and NO +
sulphur for drought-stressed plants increased the hydrogen sulphide and nitric oxide
content compared to the control. Relative to the control, hydrogen sulphide and nitric
oxide increased by 65.46% and 103.08% in D + sulphur+ NO-treated plants (Figure 8).
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Figure 6. Effect of NO and sulphur (individual and combined) on activity of (A) nitrate reductase,
(B) glutamate synthase and (C) glutamine synthetase in Vigna radiata cultivar Jin 8 under PEG-
induced drought stress. Data are mean (±SE) of three replicates and different letters show significant
difference at p < 0.05.
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Figure 7. Effect of NO and sulphur (individual and combined) on activity of (A) superoxide dismu-
tase, (B) catalase, (C) ascorbate peroxidase, (D) monodehydroascorbate reductase, (E) glutathione
reductase and (F) content of ascorbic acid, (G) reduced glutathione and (H) tocopherol in Vigna radiata
cultivar Jin 8under PEG-induced drought stress. Data are mean (±SE) of three replicates and different
letters show significant difference at p < 0.05.
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Figure 8. Effect of NO and sulphur (individual and combined) on endogenous concentration of
(A) nitric oxide and (B) hydrogen sulphide in Vigna radiata cultivar Jin 8under PEG-induced drought
stress. Data are mean (±SE) of three replicates and different letters show significant difference at
p < 0.05.

Drought increased phenols (14.01%), flavonoids (13.93%) and the activity of PAL
(26.00%) compared to the control. The treatment with NO and sulphur significantly en-
hanced the phenols, flavonoids and the activity of PAL. The maximal enhancement of
50.12% in total phenols, 45.45% in flavonoids and 90.66% in the activity of PAL was ob-
served in D + sulphur+ NO-treated plants compared to the control (Figure 9).
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Figure 9. Effect of NO and sulphur (individual and combined) on content of (A) total phenols,
(B) flavonoids and activity of (C) phenylalanine ammonia lyase in Vigna radiata cultivar Jin 8 under
PEG-induced drought stress. Data are mean (±SE) of three replicates and different letters show
significant difference at p < 0.05.

Drought reduced the content of N, P, K and S by 47.26%, 42.63%, 45.67% and 40.91%, re-
spectively, compared to the control; however, the application of NO and sulphur alleviated
the decline to significant levels. Compared to drought-stressed plants, maximal allevia-
tions of 55.19%, 47.35%, 66.83% and 38.72% were observed in N, P, K and S, respectively
(Figure 10).
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Figure 10. Effect of NO and sulphur (individual and combined) on content of (A) nitrogen,
(B) phosphorous, (C) potassium and (D) sulphur in Vigna radiata cultivar Jin 8 under PEG-induced
drought stress. Data are mean (±SE) of three replicates and different letters show significant difference
at p < 0.05.

The expression of VrCu-Zn/SOD, VrPOD and VrCAT in the leaves of drought-stressed
plants increased by 1.69-, 4.15- and 7.35-fold, respectively, compared to the control. The treat-
ment with NO and sulphur significantly enhanced the gene expression of VrCu-Zn/SOD,
VrPOD and VrCAT. The maximal enhancement in the expression of VrCu-Zn/SOD, VrPOD
and VrCAT was observed in D + sulphur + NO-treated plants compared to the control
(Figure 10). Drought stress markedly reduced the expression of VrRLP genes compared to
the control; however, NO and sulphur treatment significantly enhanced gene expression
of VrRLP. Maximal enhancement by3.62-fold in VrRLP was observed in D + sulphur+ NO-
treated plants compared to the control. Drought stress resulted in an increase of 1.83- and
2.67-fold in the expression of VrHSP70 and VrLEA compared to the control. The treatment
with NO, sulphur and NO + S for drought-stressed plants decreased the expression of
VrHSP70 and VrLEA compared to drought. Relative to drought, the expression of VrHSP70
and VrLEA decreased by 66.53% and 60.95% in D + sulphur+ NO-treated plants (Figure 11).
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Figure 11. Effect of NO and sulphur (individual and combined) on content of gene expression of
(A) Cu/ZnSOD, (B) POD, (C) CAT, (D) LEA, (E) HSP70 and (F) RLP in Vigna radiata cultivar Jin 8 under
PEG-induced drought stress. Data are mean (±SE) of three replicates and different letters show
significant difference at p < 0.05.

The correlation analysis showed highly negative correlations among H2O2, O2
•−and

proline, SOD, GB, Chl and Car. The content of H2O2 was negatively correlated with SOD
(p < 0.05) and O2

•− was negatively correlated with proline (p < 0.05). MDA was signif-
icantly negatively correlated with flavonoids (p < 0.05). In contrast, significant positive
relationships were found among NO, N and GR. Overall, photosynthetic and other physio-
logical parameters of mungbean leaves are regulated by sulphur and NO under drought
stress (Figure 12).
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peroxide; H2O2, hydrogen peroxide; Toc, tocopherol; SOD, superoxide dismutase; CAT, catalase; APX,
ascorbate peroxidase; GR, glutathione reductase, DHAR, dehydroascorbate reductase; AsA, ascorbic
acid; GSH, reduced glutathione; δ-ALA, δ-aminolevulinic acid; GSA, glutamate 1-semialdehyde; GS,
glutamine synthetase; GOGAT, glutamate synthase; NR, nitrate reductase; Chl, total chlorophylls;
Car, carotenoids; Pn, photosynthesis; N, nitrogen, P, phosphorous; K potassium; S, sulphur; H2S, hy-
drogen sulphide; NO, nitric oxide; γ-GK, γ-glutamyl kinase; LOX, lipoxygenase; PAL, phenylalanine
ammonia lyase.

3. Discussion

Drought is a global problem and immensely affects global food security. Rapid cli-
mate change has aggravated the situation, and in the near future, it is expected to worsen.
Therefore, management strategies have been devised to tackle the drought-induced growth
changes in plants. In the present study, the role of the exogenous application of NO and the
supplementation of sulphur was individually and combinedly evaluated under drought
stress in Vigna radiata (Figure 1). The foliar application of NO and the supplementation of
sulphur enhanced plant growth with a more obvious effect demonstrated in plants treated
by their combined treatments. Drought reduced the content of GSA, δ-ALA, total chloro-
phyll and carotenoids significantly; however, it was observed that NO and S treatments
alleviated the decline by a considerable extent, with maximal alleviation observed due
to their combined treatment. Individually, S proved much more effective than NO. An
earlier drought stress-induced decline in GSA, δ-ALA, total chlorophyll and carotenoids
has been reported in rice [27], pea [28] and tomato [3]. Stress-exposed plants exhibiting a
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decline in the intermediates of the chlorophyll biosynthesis pathway and carotenoids show
a significant decline in photosynthesis and water-use efficiency [29]. It has been reported
that stresses down-regulate the activity of enzymes and the expression of genes involved
in the chlorophyll synthesis pathway [27,29,30]. The reduced chlorophyll synthesis was
under stress, including drought results from the up-regulation of chlorophyllase [28]. In the
past, the alleviation of the decline in chlorophyll and carotenoid synthesis due to NO [31]
and S [32] under drought stress has been reported. However, the alleviatory effect of the
combined treatment of NO and sulphur against a drought-induced decline in chlorophyll
synthesis and photosynthesis has not been reported. In salt-stressed Brassicajuncea, the
combined treatment of NO and sulphur has been reported to enhance chlorophyll synthesis,
Rubisco activity and photosynthesis [19]. In the present study, the alleviation of a drought-
induced decline in total chlorophylls, carotenoids, photosynthesis and PSII activity due
to NO and sulphur may be attributed to a reduction in the ROS accumulation, improved
water content, increased Rubisco synthesis and mineral assimilation. A drought-induced
reduction in water potential and D1 protein levels significantly contributes to declined
chlorophyll and photosynthetic functioning [33].

Reduced growth due to PEG-induced drought stress was related to the excessive
generation of ROS, including H2O2 and O2

−, resulting in oxidative damage to key macro-
molecules including proteins and lipids. In addition, the oxidative effects of drought
were also evident in terms of increased lipid peroxidation and the activity of protease and
lipoxygenase. Drought-induced enhancement of the ROS has previously been reported by
Antonic et al. [34] in Impatiens walleriana and Hajihashemi and Sofo [35] in Stevia rebaudiana,
resulting in a significant decline in growth. Recently, in PEG-stressed Cucumis melo geno-
types, Mehmandar et al. [36] have demonstrated a significant enhancement in the H2O2
and lipid peroxidation resulting in declined growth, biomass and yield production. Excess
ROS affects membrane stability, electron transport, photosynthesis, protein cross-linking,
protein synthesis, ion transport and enzyme activity [37]. Exogenously applied NO and
S supplementation alleviated the oxidative effects of PEG by reducing the H2O2, O2

−

and lipid peroxidation to significant levels. Excess ROS in chloroplasts affects the PSII
assembly, thereby significantly influencing the photosynthetic functioning; however, the
NO- and sulphur-mediated decline in ROS reflects their beneficial role in the prevention
of damage to the photosynthetic apparatus. The reduced generation of ROS and lipid
peroxidation due to NO [23] and sulphur [38] has been reported earlier. However, the
influence of their combined application has not been reported. Plants maintaining lower
ROS levels following NO and sulphur treatments have been reported to exhibit increased
photosynthetic functioning, and as a result, increased water-use efficiency [22,38–40]. In
addition, NO- and sulphur-treated plants exhibited a significant decline in the activity of
lipoxygenase and protease, which were up-regulated due to drought stress. An earlier
increase in the activities of protease and lipoxygenase due to drought stress has been
reported by Ahanger et al. [3] and Shreya et al. [41]. The increased activity of protease
and lipoxygenase reflects the increased damage to proteins and lipids, thereby causing
animbalance in key cellular structures and their functioning [42,43]. However, a NO- and
sulphur-mediated decline in the activities of protease and lipoxygenase confirms their
beneficial impact in protecting the sensitive molecules in plants. Lipoxygenase mediated
oxidation-generated fatty acid hydroperoxides from the polyunsaturated fatty acids [43]
and proteases degrade proteins that have been denatured, damaged and aggregated due
to stress [40]. Reduced activity of lipoxygenase due to exogenous treatment of NO has
been reported in Hordeum vulgare [44]. Reports showing the effects of S and NO + sul-
phur supplementation on protease and lipoxygenase activity under drought stress are
not available.

The damaging effects of excessive ROS are generated due to drought-stressed plants
up-regulating the antioxidant system. In the present study, the activity of antioxidant
enzymes, including SOD, CAT, APX, DHAR and GR, was significantly increased due to
PEG-induced drought stress. The up-regulation of the activity of antioxidant enzymes due
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to PEG-induced drought stress has been reported in different crop plants including Triticum
aestivum L [7], soyabean [45], Stevia rebaudiana [22] and Arachis hypogea [39]. Recently, it
has been reported that the PEG-induced drought significantly up-regulates the activity of
antioxidant enzymes, and plant genotypes exhibiting increased activities better tolerate the
adverse growth conditions [36]. Increased functioning of antioxidant enzymes results in
quick scavenging of toxic radicals, which reflects the protection of membranes, enzymes,
proteins, lipids, nucleic acids, etc. [46–48]. In the present study, the exogenous application of
NO and the supplementation of S to PEG-stressed seedlings significantly up-regulated the
activities of antioxidant enzymes assayed, thereby strengthening the potential to neutralise
ROS. This leads to greater protection of major cellular structures and their functioning. In
corroboration of our results, the findings of Rezayian et al. [49] and Usmani et al. [50] have
also demonstrated that NO and S application, respectively, up-regulates the antioxidant
enzyme activity under drought stress. However, the effect of combined NO and S treat-
ments on the antioxidant system under drought has not worked. Among the antioxidant
system, the enzymes SOD specifically neutralise the superoxide while H2O2 is eliminated
by the efficient functioning of CAT in cytosol or ascorbate-glutathione cycle in mitochon-
dria and chloroplast [48].The ascorbate-glutathione cycle functioning depends on the APX,
DHAR, GR, AsA and GSH components. In the present study, AsA and GSH were increased
significantly due to NO and sulphur treatments, thereby contributing to photosynthetic
protection by maintaining low concentrations of ROS, NADP/NADPH ratio and redox
homeostasis. Ascorbate, glutathione and tocopherol scavenge radicals, thereby protecting
plants from oxidative effects. Increased levels of AsA [51], GSH [52] and tocopherol [53] due
to drought have been reported earlier, thereby assisting in neutralising the toxic radicals
and protecting the major plant functions. The alteration of the functioning of biosynthesis
and the degradation-related genes result in the accumulation of tocopherol [54].

Drought induced by PEG resulted in are duction in the activities of the enzymes of
nitrogen assimilation including NR, GS and GOGAT. Drought potentially reduced the
activities of NR, GS and GOGAT in Triticum aestivum [55] and Brassica juncea [56]. In-
creased uptake and the subsequent metabolism of N contribute to growth improvement
and stress tolerance by improving the synthesis of metabolites and amino acids [57]. In-
creased N uptake and metabolism significantly contributes to drought tolerance through
enhanced osmolyte synthesis and antioxidant functioning [58], resulting in improved
photosynthesis [59]. Similar to our results, the alleviation of PEG that triggered a decline
in the activities of NR, GS and GOGAT due to the exogenous application of NO has been
shown in alfalfa [60]. The sulphur-mediated enhancement of the NR activity is strongly
correlated with yield [61]. A deficiency in S adversely affects the N assimilation, and hence
affects the N use efficiency [62]. The combined treatments of NO and sulphur maximally
enhanced the activity of the N assimilation pathway enzymes.

Drought stress resulted in an increase in the phenolics and flavonoids, and similar
to these findings, earlier published reports are also available [63–65]. The accumulation
of phenolics and flavonoids effect the antioxidant potential of plants, thereby contribut-
ing to stress mitigation and the regulation of growth under adverse conditions [7,64].
Phenylalanine ammonia-lyase is one of the enzymes essential for allocating enough carbon
from phenylalanine for the biosynthesis of secondary metabolites [66,67], and NO- and
sulphur-induced increases in PAL activity contributed considerably to phenol and flavonoid
synthesis under PEG stress. An increase in secondary compounds due to NO treatments
under drought has been observed in Viciafaba [68] and soybean [69]. Treatments of sulphur
increase the content of secondary metabolites in plants under water-deficit conditions [70];
however, reports discussing the influence of combined NO and sulphur treatments are not
available. The improved functioning of an antioxidant system due to the supplementation
of S and the foliar application of NO was also evident in the expression patterns of SOD,
CAT and POD. Similar to our results, Danyali et al. [71] and Rahimi et al. [72] have also
observed the up-regulation of the expression of antioxidant genes, including Cu/ZnSOD,
CAT and POD under drought stress. The increased expression of antioxidant genes in
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NO- and sulphur-treated plants justifies their beneficial interactive role in drought stress
alleviation. An increase in the expression of antioxidant genes due to NO [73,74] and
sulphur [38] has been reported in several crops under different stresses. However, the
combined effect under drought has not been evaluated. In addition, the expression of
LEA [75] and HSP70 significantly increased due to drought exposure, while S and NO
treatments imparted a decline under drought. LEA is a drought-responsive gene and its
overexpression improves drought tolerance [76], and it has a key role in protecting cells
from adverse effects of stresses [77]. Drought triggers the expression of HSP70 [78], and
the overexpression of HSP70 has been demonstrated to protect plants from the ill effects
of drought stress [79]. Moreover, drought reduced the expression of RubisCO-like protein
(RLP), while sulphur and NO treatments resulted in increased activity of RLP, reflected in
the increased photosynthetic assimilation.

Plants treated with NO and sulphur exhibited an increase in proline, sugars and
glycine betaine. Research reports corroborating our results of increased proline, sugar
and glycine betaine under drought are available [80–82]. The osmolytes help plants to
maintain tissue water potential, protect enzyme degradation and functioning, prevent pho-
tosynthetic inhibition and scavenge ROS [83–85]. Exogenous NO resulted in an increased
proline accumulation in barley causing an increase in photosynthesis and fluorescence
parameters [86]. Exogenous NO modulates the functioning of glycine betaine biosynthesis
pathways, resulting in its increased accumulation and improved drought tolerance [87].
The increased accumulation of proline by NO and sulphur application may have resulted
due to the significant enhancement in the activity of γ-glutamyl kinase activity. Earlier
plants exhibiting the enhanced activity of γ-glutamyl kinase also accumulated increased
proline [88].

The endogenous concentration of NO and HS showed significant increases due to
drought stress. It was interesting to note that the exogenous NO application and sulphur
supplementation reduced both NO and HS compared to the drought-stressed plants; how-
ever, they were higher than the control. Both NO and HS act as signalling molecules and
share crosstalk for the regulation of plant processes, including germination, senescence,
ripening and stress alleviation [89,90]. Several reports are available showing increased
NO [86] and HS [87] under drought stress conditions. The treatment of NO increases en-
dogenous HS, and maintaining optimal levels of NO and HS is essential for stress signalling
and the activation of tolerance mechanisms [91,92]. Sulphur increased endogenous HS
in Brassica juncea by up-regulating the functioning of biosynthesising enzymes [93]. The
treatment of NO improves sulphur-use efficiency and the photosynthetic functioning of
rice under heat stress [20]. Our study showed that exogenous NO and sulphur enhanced
endogenous NO and HS more due to their combined treatments. It is often the case that
both NO and HS share a crosstalk mechanism that regulates their endogenous levels and
also influences the tolerance mechanisms; however, further studies are required.

4. Material and Methods

Seeds of mungbean (Vigna radiata cultivar Jin 8) were surface-sterilized using
0.001% HgCl2 for 5 min followed by washing five times with distilled water. Sterilized
seeds were sown in earthen pots. The pots (22 cm diameter) were filled with sand and
compost (3:1), and at the time of sowing, the pots were wetted with 300 mL full-strength
Hoagland solution. After germination, thinning was carried out and three healthy and
uniformly growing seedlings were maintained in each pot. The composition of Hoagland
solution was 1. 0 mM NH4NO3, 0.4 mM KH2PO4, 1.0 mM K2SO4, 0.5 mM K2HPO4, 3.0 mM
CaCl2, 0.5 mM MgSO4, 0.2 mM Fe-NaEDTA, 14 µM H3BO3, 5.0 µM MnSO4H2O, 3.0 µM
ZnSO4.7H2O, 0.7 µM CuSO4.5H2O, 0.7 µM (NH4)6Mo7O24 and 0.1 µM CoCl2. Ten days
after seedling growth, drought stress was induced by 20% polyethylene-6000 (PEG-6000)
dissolved in the Hoagland nutrient solution, and the foliar application of nitric oxide
(50 µM NO in the form of sodium nitroprusside) was also started after ten days. Pots
receiving the Hoagland solution without K2SO4, PEG and NO served as the control. The



Plants 2023, 12, 3082 17 of 25

Hoagland solution was added to each pot on alternate days. The foliar application of NO
was also carried out on every alternate day. Hence, the overall treatments in the present
experiment included: (a) control, (b) drought (D; PEG (20%), (c) D + S (1 mM K2SO4), (d) D
+ NO and (e) D + S + NO.

4.1. Estimation of Total Chlorophylls, Carotenoids and Net Photosynthesis

For the extraction of photosynthetic pigments, 100 mg of fresh leaf tissue was ho-
mogenised in 80% acetone. After centrifuging, the extract optical density of the supernatant
was taken at 480, 645 and 663 nm [94]. For the measurement of net photosynthesis (Pn), the
LI-6400 photosynthesis system (Li-Cor, Lincoln, NE, USA) was used and measurements
were carried between 09:00–12:00 h.

4.2. Estimation of Glutamate 1-Semialdehyde (GSA) and δ-Amino Levulinic Acid (δ-ALA)

The content of GSA was estimated according to Kannangara and Schouboe [95]. Fresh
(200 mg) two sets of tissue were taken, in which one set was extracted in 0.1 N HCl while an-
other one was incubated in 500 µM gabaculine in 100 mM 2-(4-morpholino)ethanesulfonic
acid (MES; pH 7.0) for hours under light. After extraction, homogenate was centrifuged
for 10 min at 15,000× g at 4 ◦C. The supernatant was mixed with HCl and 3-methyl-2-
benzothiazolinonehydrazone (MBTH), followed by incubation in a boiling water bath for
2 min. After cooling the samples, distilled water and FeCl3 were added, and the mixture
was thoroughly mixed. The optical density was recorded at 620 nm.

The method described by Harel and Klein [96] was followed for the estimation of
δ-ALA content. Briefly, two sets of fresh leaf samples (200 mg) were taken, in which one
set was incubated for 4 h in 60 mM levulinic acid (LA) under light while another was
immediately extracted in 5 mL 1 M sodium acetate buffer (pH 4.6). Homogenate was
centrifuged for 10 min at 15,000× g, and to 1 mL supernatant, distilled water and acetyl-
acetone were added. The mixture was kept in a boiling water bath for 10 min. After cooling
the samples at room temperature, Ehrlich’s reagent was added, and samples were vortexed
and optical density was read at 555 nm. ALA synthesized during a 4 h incubation period
was measured by subtracting the 0 h ALA from a 4 h ALA content.

4.3. Estimation of Proline and Glycine Betaine, Free Sugars and Activity of γ-Glutamyl
Kinase Activity

For the estimation of proline content method of Bates et al. [97] was used and dry
powdered tissue was extracted in 3% sulphosalicylic acid. Toluene was used to separate
proline and the absorbance was taken at 520 nm. Glycine betaine (GB) and free sugars were
estimated according to Grieve and Grattan [98] and Jain and Guruprasad [99], respectively.
The activity of γ-glutamyl kinase (γ-GK, EC 2.7.2.11) was assayed by extracting the fresh
500 mg tissue in a Tris buffer (pH 7.5). After centrifuging the extract for 30 min, the
activity of γ-GK was measured according to Hayzer and Leisinger [100] in an assay mixture
containing a 50 mM Tris buffer (pH 7.0), L-glutamate, MgCl2, ATP, hydroxamate–HCl and
the enzyme. After terminating the reaction with a stop buffer containing FeCl3 and TCA,
the absorbance was read at 535 nm.

4.4. Measurement of Oxidative Stress Parameters

Lipid peroxidation was measured following the method of Heath and Packer [101].
Fresh 100 mg leaf tissue was macerated in 1% trichloro acetic acid (TCA) and the extract was
centrifuged at 10,000× g. The supernatant (1.0 mL) was reacted with 4 mL thiobarbituric
acid for half an hour at 95 ◦C. After cooling the samples in an ice bath, centrifugation was
carried out at 5000× g for 5 min and the absorbance was measured at 532 and 600 nm.

For the estimation of hydrogen peroxide content, 100 mg fresh tissue was extracted in
0.1% TCA and homogenate was centrifuged at 12,000× g. After mixing the supernatant
with potassium phosphate buffer (pH 7.0) and potassium iodide, the optical density was
taken at 390 nm [102]. The superoxide (O2

−) was determined by extracting 100 mg fresh
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tissue in 65 mM potassium phosphate buffer (pH 7.8) and the absorbance was taken at
530 nm [103].

4.5. Assay of Protease and Lipoxygenase Activity

For assaying activity of protease (EC 3.4.21.40), the method of Green and Neurath [104]
was used and fresh tissue was extracted in a chilled 50 mM sodium potassium buffer
(pH 7.4) containing PVP. After centrifuging the homogenate at 5000× g for 5 min at 4 ◦C,
the supernatant was incubated with casein at 40 ◦C and the amount of tyrosine released
was determined by reaction with Folin–Ciocalteu’s reagent. The absorbance was taken at
660 nm. For measuring the activity of lipoxygenase (LOX; EC, 1.13.11.12), the method by
Doderer et al. [105] was employed and the absorbance was taken at 234 nm using linoleic
acid as a substrate, and the extinction coefficient of 25 mM−1 cm−1 was used to calculate.

4.6. Assay of Antioxidant Enzymes

For the extraction of antioxidant enzymes, fresh 1.0 gm leaf tissue was extracted
in cold phosphate buffer (100 mM; pH 7.8) and supplemented with 1% PVP, 1 mM
EDTA and 0.1 mM PMSF using a prechilled pestle and mortar. The homogenate was
centrifuged at 12,000× g for 15 min at 4 ◦C and the supernatant was collected and used as
the enzyme source.

The activity of superoxide dismutase (SOD, EC 1.15.1.1) was measured according to
Bayer and Fridovich [106] and the photoinhibition of nitroblue tetrazolium by the enzyme
was read at 560 nm after incubating the samples for 15 min under light.

For assaying the activity of ascorbate peroxidase (APX, EC 1.11.1.11), the method by
Nakano and Asada [107] was followed and the absorbance was taken at 290 nm for 3 min.

The activity of glutathione reductase (GR; EC 1.6.4.2) was assayed according to Foyer
and Halliwell [108] and the absorbance was taken at 340 nm for 2 min.

The activity of dehydroascorbate reductase (DHAR; EC 1.8.5.1) was measured accord-
ing to Nakano and Asada [107] and the absorbance was taken at 265 nm for 2 min.

4.7. Estimation of Content of Ascorbate, Reduced Glutathione and Tocopherol

For the determination of ascorbic acid content, the method by Mukherjee and Choud-
huri [109] was employed while the reduced glutathione (GSH) content was determined
according to Ellman [110]. For calculation standards, AsA and GSH were used. Tocopherol
was extracted in ethanol and petroleum ether (1.6:2) and the optical density was measured
at 520 nm [111]. The standard curve of tocopherol was used for calculation.

4.8. Estimation of Nitric Oxide and Hydrogen Sulphide

Nitric oxide (NO) was determined according to Zhou et al. [112]. Briefly, 500 mg of
fresh tissue was extracted in an ice-cold 50 mM acetic acid buffer (pH 3.6) supplemented by
4% zinc diacetate. The extract was centrifuged at 11,500× g for 15 min and the supernatant
was neutralised by charcoal. After filtering the samples, 1 mL Greiss reagent was added to
the filtrate and left at room temperature for 30 min, followed by measurement of optical
density at 540 nm. The standard curve of sodium nitrite (NaNO2) was used for calculation.

For the estimation of hydrogen sulphide (HS), the method described by Nashef et al. [113]
was followed. After extracting, 300 mg tissue in 100 mM potassium phosphate buffer
(7.0) was used containing EDTA (10 mM). Homogenate was centrifuged at 15,000× g for
15 min and supernatant (100 µL) was mixed with 1880 µL extraction buffer and 20 µL of
5, 5-dithiobis (2-nitrobenzoicacid). After incubating the mixture at 25 ◦C for 5 min, the
absorbance was taken at 412 nm and a standard curve of NaHS was used for calculation.

4.9. Measurement of Nitrate Reductase, Glutamine Synthetase and Glutamate Synthase Activity

The method described by Shrivastava [114] was used for assaying the activity of
nitrate reductase (NR; EC 1.6.6.1) by incubating freshly cut leaf tissue in 100 mM potassium
phosphate buffer (pH 7.5) containing 200 mM KNO3 and 0.5% n-propanol (v/v) for 3 h. The
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absorbance was taken at 540 nm. For measuring the activity of glutamine synthetase (GS;
EC 6.3.1.2), the method described by Agbaria et al. [115] was followed and the formation of
γ-glutamylhydroxamate was read at 540 nm. The activity of NADH-glutamate synthase
(NADH-GOGAT; EC 1.4.1.14) was determined by the method by Lea et al. [116] and the
absorbance was taken at 340 nm.

4.10. Estimation of Total Phenols, Flavonoids and Activity of Phenylalanine Ammonia Lyase

The method by Malick and Singh [117] was used for the estimation of total phenols in
a dry powdered (500 mg) sample. After extraction in 80% ethanol, the supernatant was
reacted with a 1N Folin–Ciocalteu reagent and 1 mL Na2CO3. The absorbance was taken at
650 nm and the standard curve of catechol was used for calculation.

For the estimation of flavonoid content, the method by Zhishen et al. [118] was fol-
lowed. Briefly, after extracting 100 mg dry powdered sample in methanol, 1 mL supernatant
was reacted with 5% NaNO2 and 10% AlCl3, followed by the addition of NaOH and dis-
tilled water. Absorbance was taken at 510 nm and catechin was used as the standard.

The activity of phenylalanine ammonia lyase (PAL) was measured according to
Zucker [119] and optical density was taken at 290 nm.

4.11. Estimation of Ions

Nitrogen was estimated according to micro-Kjeldahl method [120] and P, K and S were
determined using an atomic absorption spectrophotometer.

4.12. Total RNA Extraction and Gene Expression Analysis (qRT-PCR)

Leaf samples collected from plants subjected to each treatment were rapidly frozen
in liquid nitrogen and stored at −80 ◦C until use. The total RNA was extracted using
TRIzol reagent (Invitrogen, Carlsbad, CA, USA), with the quality of the extracted RNA
being examined using RNAse-free 1% agarose gel and an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). The quantity of extracted RNA was determined using
a NanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA).
The mungbean reference genome was downloaded from Ensembl (https://plants.ensembl.
org/info/website/ftp/index.html (accessed on 15 August 2023 ). The primers used for
RT-qPCR are listed in Table S1. The sequences of all primers were designed using Primer
5.0 software. Using a Primer Script RT Reagent Kit (Takara, Dalian, China), cDNA was
prepared from 1 µL RNA in a total reaction volume of 20 µL. RT-qPCR was performed
in a 10 µL reaction mixture consisting of 0.5 µL SYBR Green (Bioer Technology Co., Ltd.,
Hangzhou, China), 0.2 µL forward and reverse primers, 0.4 µL cDNA, and 8.9 µL water.
PCR was carried out at 94 ◦C for 3 min, followed by 40 cycles of 94 ◦C for 10 s and 60 ◦C for
30 s, and finally, at 72 ◦C for 5 min. The mungbean β-Actin gene were used as an internal
control in RT-PCR experiments [121]. Relative gene expression was calculated according to
the 2−∆∆Ct method [122]. The experiment was performed with three biological replicates,
each with three technical replicates.

4.13. Statistical Analysis

The mean (±SE) value of three replicates is given and the least significant differ-
ence (LSD) among the mean values was determined at p < 0.05 using one-way ANOVA.
Correlation analyses were performed using the R v.3.5.2 (Development Core Team R, 2016).

5. Conclusions

Conclusively, exogenous NO and the supplementation of S proved beneficial in al-
leviating the damaging effects of drought stress in Vigna radiata. Drought stress reduced
chlorophylls synthesis, photosynthesis and the activity of N-metabolising enzymes. Treat-
ments of NO and S up-regulated the tolerance mechanisms to alleviate the PEG-induced
oxidative effects on membranes, photosynthesis and enzyme activity. The alleviation of
oxidative damage was correlated with up-regulated antioxidant functioning, osmolyte and
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secondary metabolite accumulation. The mineral uptake and assimilation also benefited
from NO and S treatments.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12173082/s1, Table S1: Sequences for primers used in
quantitative real-time RT-PCR.
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