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Abstract: Soybean (Glycine max) is a crucial legume crop known for its nutritional value, as its seeds
provide large amounts of plant protein and oil. To ensure maximum productivity in soybean farming,
it is essential to carefully choose high-quality seeds that possess desirable characteristics, such as the
appropriate size, shape, color, and absence of any damage. By studying the relationship between
seed shape and other traits, we can effectively identify different genotypes and improve breeding
strategies to develop high-yielding soybean seeds. This study focused on the analysis of seed traits
using a Python algorithm. The seed length, width, projected area, and aspect ratio were measured,
and the total number of seeds was calculated. The OpenCV library along with the contour detection
function were used to measure the seed traits. The seed traits obtained through the algorithm were
compared with the values obtained manually and from two software applications (SmartGrain and
WinDIAS). The algorithm-derived measurements for the seed length, width, and projected area
showed a strong correlation with the measurements obtained using various methods, with R-square
values greater than 0.95 (p < 0.0001). Similarly, the error metrics, including the residual standard
error, root mean square error, and mean absolute error, were all below 0.5% when comparing the
seed length, width, and aspect ratio across different measurement methods. For the projected area,
the error was less than 4% when compared with different measurement methods. Furthermore, the
algorithm used to count the number of seeds present in the acquired images was highly accurate,
and only a few errors were observed. This was a preliminary study that investigated only some
morphological traits, and further research is needed to explore more seed attributes.

Keywords: image analysis; Python algorithm; soybean; seed number; seed size

1. Introduction

Soybean (Glycine max L. Merr.) is the main legume crop primarily consumed as a
major plant protein source by both humans and livestock [1,2]. To obtain higher soybean
yields, good quality seeds are a major prerequisite. Thus, it is essential to select first-grade
soybean cultivars based on the seed size, shape, color, and absence of physical or pathogen-
derived damage [3]. The seeds’ morphological traits and their correlation are important
tools for genotype discrimination and for breeding high-yielding seeds [4]. Seed size is not
only an important parameter for the identification of quantitative trait loci, detection of
biotic and abiotic stress, and hormonal control, but it also significantly affects the growth of
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seedlings in relation to the external environment [5,6]. The morphological and physiological
properties of seeds play a vital role in germination and plant growth [7]. Apart from seed
size, seed number is another important agronomic parameter used for estimating the grain
weight and yield and has an essential role in soybean breeding [8]. The total number of
seeds per plant, total seeds per selected area, and seeds per pod are the main traits used for
estimating the yield of soybean [9].

With the recent development of different image processing tools, various image-based
studies have been conducted to measure soybean traits. For example, digital RGB images
have been used to estimate the grain yield, leaf biomass, and canopy cover [10]. Lay et al.
reported a method to detect disease in soybean using spectral images [11]. Similarly, another
study used digital image-based machine learning to detect root nodules in soybean [12].
Several studies have used image-based high-throughput phenotyping technology to esti-
mate the morphological traits of soybean seeds, including the shape, length, width, area,
perimeter, and seed coat color [13]. Baek et al. [14] tested the seed viability using hyper-
spectral images. In another study, the image-based subscription software GrainScan was
used to determine the seed size and color in wheat and Brachypodium distachyon [15]. The
WinSEEDLE system (Reagent Instruments Inc., Quebec, QC, Canada) also measures a wide
range of seed parameters based on image analysis, but it comes at a high cost. Tanabata
et al. developed a C++ language-based program known as SmartGrain for the analysis
of seed shape using images [16]. Quantitative-plant.org, a popular website containing
information related to various plant trait analysis software, lists only eight programs for the
analysis of seed traits, three of which require subscription [17]. As a result, very few studies
have analyzed seed traits, although they are among the most important morphological
parameters in plants.

Soybean seeds are small in size and irregular in shape, which makes their manual
measurement particularly tedious. The major seed traits usually measured are the seed
length and width, and the easiest way to measure them is by using calipers. However, this
procedure is time consuming and difficult due to the large volume of data [16]. Similarly,
the manual counting of seeds is also a laborious task prone to human error, and counting
devices are costly for regular researchers. The recent advancements in image processing
and machine learning can overcome these difficulties and greatly facilitate seed trait mea-
surement [18]. For the automatic analysis of seed morphological traits, the present study
aimed to analyze digital images of soybean seeds to measure major morphological traits,
i.e., seed length, seed width, seed projected area (PA), and aspect ratio (or eccentricity
index), and to count the total number of seeds present in each acquired image using a
simple Python algorithm without incurring in any recurring expenses.

2. Results
2.1. General Distribution and Fit of Plot

Data distributions were generally compared using boxplots, as shown in Figure 1.
The algorithm-generated values (seed length, width, aspect ratio, and PA) were compared
with the actual (manually measured), WinDIAS 5.3 (Delta-T Devices, Cambridge, UK), and
SmartGrain [16]-generated values. The box plot for the length (Figure 1a) shows that the
actual, algorithm, and SmartGrain-generated values have almost a similar size indicating
a similar distribution of the data among them. While a slight difference in box size was
observed in the WinDIAS-generated length. A similar result was observed in the box plot
of the width (Figure 1b), where the median line (dark black colored line between the boxes)
also had almost same position. Although, the box size of the ratio (Figure 1c) was similar
in size, the median lines were in different positions along with some outliers indicating a
difference in distribution of the data among the methods. The distribution of data in the PA
was similar, as shown in Figure 1d.



Plants 2023, 12, 3078 3 of 10Plants 2023, 12, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. Comparison of boxplots for data distribution between the actual, algorithm, SmartGrain- 
and WinDIAS-derived measurements: (a) seed length, (b) seed width, (c) aspect ratio, and (d) PA. 
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highly correlated with the SmartGrain-generated values. The R2 was highest among all 
the other methods, i.e., 0.983, 0.975, 0.775, and 0.997 (p < 0.0001) for the length (Figure 2c), 
width (Figure 2f), aspect ratio (Figure 2i), and PA (Figure 2k), respectively. Here, the val-
ues seemed to be predominantly concentrated within the 95% confidence interval with 
very few outliers outside 95% prediction interval. Similarly, a high correlation was ob-
served for the actual (Figure 2a,d) and WinDIAS-(Figure 2b,e,j) derived value, where the 
R2 was greater than 0.95 in all the seed parameters except for the aspect ratio (Figure 2g,h). 
The slope of the line was around 1 with a lower intercept value in all cases except for the 
aspect ratio determined by WinDIAS (Figure 2h), indicating a good conformity between 
the algorithm-derived values and the other derived values. 

Figure 1. Comparison of boxplots for data distribution between the actual, algorithm, SmartGrain-
and WinDIAS-derived measurements: (a) seed length, (b) seed width, (c) aspect ratio, and (d) PA.

To better determine the accuracy of the algorithm-derived values, we created a fit
of the plot within a 95% confidence interval and a 95% prediction interval against the
actual, SmartGrain- and WinDIAS-derived values (Figure 2). The algorithm-generated
value was highly correlated with the SmartGrain-generated values. The R2 was highest
among all the other methods, i.e., 0.983, 0.975, 0.775, and 0.997 (p < 0.0001) for the length
(Figure 2c), width (Figure 2f), aspect ratio (Figure 2i), and PA (Figure 2k), respectively. Here,
the values seemed to be predominantly concentrated within the 95% confidence interval
with very few outliers outside 95% prediction interval. Similarly, a high correlation was
observed for the actual (Figure 2a,d) and WinDIAS-(Figure 2b,e,j) derived value, where the
R2 was greater than 0.95 in all the seed parameters except for the aspect ratio (Figure 2g,h).
The slope of the line was around 1 with a lower intercept value in all cases except for the
aspect ratio determined by WinDIAS (Figure 2h), indicating a good conformity between
the algorithm-derived values and the other derived values.
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WinDIAS width, (f) SmartGrain width, (g) actual ratio, (h) WinDIAS ratio, (i) SmartGrain ratio, (j) 
WinDIAS area, and (k) SmartGrain area. 
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ment had the smallest RMSE at 0.249% and MAE at 0.194% for the same parameter. When 
assessing seed width, SmartGrain exhibited the smallest error, and for the aspect ratio, the 
smallest error was observed compared with the actual measurements. Similarly, for the 
PA, error rates of less than 4% were observed when compared to the SmartGrain and 
WinDIAS measurements. Although the R2 value for the aspect ratio was minimal com-
pared with those for the other traits, the error values (RSE, RMSE, and MAE) were also 
the lowest. This might be due to the fact that the range of data for the algorithm-derived 
ratio was between 1.0 and 1.34, while that for the ratio obtained from other measurements 

Figure 2. Fit of plot for the algorithm-derived values against the actual, WinDIAS-, and SmartGrain-
derived values. (a) Actual length, (b) WinDIAS length, (c) SmartGrain length, (d) actual width,
(e) WinDIAS width, (f) SmartGrain width, (g) actual ratio, (h) WinDIAS ratio, (i) SmartGrain ratio,
(j) WinDIAS area, and (k) SmartGrain area.

2.2. Error Calculation

Different error types, i.e., the residual standard error (RSE), the root mean square error
(RMSE), and the mean absolute error (MAE), were calculated to evaluate the accuracy of
the measurements (Table 1). All the methods exhibited error rates of less than 0.5% for the
seed length, width, and aspect ratio measurements. Among these methods, SmartGrain
yielded the lowest RSE at 0.189% for the seed length, while the WinDIAS measurement had
the smallest RMSE at 0.249% and MAE at 0.194% for the same parameter. When assessing
seed width, SmartGrain exhibited the smallest error, and for the aspect ratio, the smallest
error was observed compared with the actual measurements. Similarly, for the PA, error
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rates of less than 4% were observed when compared to the SmartGrain and WinDIAS
measurements. Although the R2 value for the aspect ratio was minimal compared with
those for the other traits, the error values (RSE, RMSE, and MAE) were also the lowest. This
might be due to the fact that the range of data for the algorithm-derived ratio was between
1.0 and 1.34, while that for the ratio obtained from other measurements was between 1.0
and 1.37. As these error values depend on the mean, having a very small range of data
would generate a lower error.

Table 1. Error values of different seed traits.

Parameters
Actual SmartGrain WinDIAS

RSE% RMSE% MAE% RSE% RMSE% MAE% RSE% RMSE% MAE%

Length 0.198 0.295 0.229 0.189 0.484 0.446 0.209 0.249 0.194
Width 0.243 0.366 0.292 0.200 0.326 0.282 0.418 0.484 0.362
Aspect ratio 0.042 0.049 0.034 0.330 0.039 0.028 0.054 0.066 0.050
PA ---- ---- ---- 0.799 3.849 3.730 1.815 2.080 1.526

2.3. Seed Number

The progressive steps taken to count seed numbers are shown in Figure 3. The images
were first preprocessed by converting the RGB images (Figure 3a) into grayscale images
(Figure 3b); then, the grayscale images were dilated (Figure 3c) and thresholded (Figure 3d).
Contour boundaries were created on the seeds in the thresholded images (Figure 3e); then,
by counting the total number of contours in each image, the total number of seeds per
image was obtained. The total seed numbers derived from manual counting and from
the algorithm are reported in Table S1. While taking the photographs, it was essential to
remove any background noise, as this could be misinterpreted as seeds during analysis.
Similarly, the overlapping of seeds during image acquisition could also generate error as
the overlapped seeds would be considered as a single seed (Figure S1).
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3. Discussion

The size and shape of seeds are key factors in agronomy, as they affect the eating
quality, yield, and market price. Accurate assessment of these morphological traits, both
externally and internally, is important for advancements in plant research areas such
as genetics, physiology, functional analysis, and plant breeding [16]. The seed lengths,
widths, aspect ratio, and PA obtained from the algorithm were almost similar to the
manual, SmartGrain, and WinDIAS measurements showing a good conformity between
the algorithm-derived and differently derived values. The fit of the plot, the high R2 values,
the low error percentages, and the ease of analysis suggest that this Python-based image
analysis of seed traits performs better than the manual method. An android application
platform based upon the OpenCV library was developed by Wu et al. [19], which evaluated
the thousand-kernel weight with an error percentage of less than 3%. Soybean seed
morphological trait evaluation along with the prediction of the hundred-seed weight can
also be conducted using a machine learning algorithm [20]. A similar study based on
a convolution neural network (CNN) for the evaluation of phenotypic traits of soybean
seed along with the identification of damaged and diseased seeds was conducted by
Song et al. [21]. The application of CNN was also used to classify the normal, damaged,
and abnormal soybean seeds with an accuracy of more than 95% in all instances [22].
A previous study of lentils reported similar high R2 values of >0.95 for the seed size
measured both manually and using an image analysis algorithm [23]. Shahin et al. [24] also
reported a high measurement accuracy while measuring the seed size and shape of lentils,
with R2 values of approximately 0.90 and an RMSE of <2%. Likewise, the image-based
measurement of chickpea seed size revealed a correlation coefficient of 0.90 when the
image analysis method was compared to the ground-truth data [25]. A deep learning
method for the estimation of seed size in rice yielded an MSE lower than 0.11 compared
with different imaging programs (ImageJ, GrainScan, and GridFree) [26]. GrainScan an
image-based seed trait analysis program had an average accuracy of 0.993 for the seed area,
0.981 for the length, and 0.990 for the width [15]. Similarly, seed counting based on digital
images also showed high accuracy in the current study, where some errors were observed
due to noise and overlapping seeds. In the case of rice grain phenotyping, Duan et al.
created a labor-free machine that integrated spikelet threshing, grain imaging, and real-time
algorithm-based evaluation of grain traits. This system allowed measuring grain traits,
such as length, width, 1000-grain weight, and seed packing for each rice plant, without the
need for manual intervention, and produced an MAE of less than 5% [27]. A similar, but
slightly less accurate result was obtained for seed counting when the seeds overlapped
each other [28].

As the code runs in the Python environment, there is no requirement of additional
hardware or software for the analysis, and the analysis can be performed in any op-
erating system, for example, Windows, macOS, and LINUX. Programs like GrainScan,
Lemna Launcher, SeedCount, SmartGrain, and WinSEEDLE are supported in Windows
operating systems only. According to Lobet [29], many studies have been conducted in
plant image analysis techniques; however, 25% of them were not validated, only 31%
of them were accessible, and only 39% of the tools were still maintained. Thus, there is
a need for research that does not require regular maintenance, is easily accessible, and
is validated. This study tries to incorporate all the above mentioned parameters. An-
other feature of this set of algorithms is that no manual annotation of the seed image is
needed. Automatic thresholding of the image is performed as result of which manual
annotation is not required. This kind of annotation is required in software like WinDIAS.
Similarly, a manual change in the threshold value can also be made, if the proper con-
tour boundary is not obtained while analyzing the seed image. Likewise, any digital
images can be analyzed using these set of algorithms provided that the calibration value
is set without any additional hardware or accessories requirement. Software like Win-
SEEDLE require accessories like scanners and trays for the analysis of the seed traits
(https://regentinstruments.com/assets/images_winseedle/WinSEEDLE_Brochure.pdf, ac-

https://regentinstruments.com/assets/images_winseedle/WinSEEDLE_Brochure.pdf
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cessed on 11 August 2023). Programs like SeedCount, a digital imaging system, require a
flatbed scanner for analyzing the seed traits, and they are specially designed for the grain
industry [30]. CNN and transfer learning-based phenotyping of seeds, although giving
more phenotypic traits in a large scale, still have a high computational cost and time [31].
Although the study uses well known modules of OpenCV, we incorporated these into a
single platform for the convenient and cost-free analysis of seed traits so that any research
limited due to cost, additional accessories, and computing knowledge could be carried
out easily.

Digital image-based seed counting is a convenient and time-saving approach, but
further research is required to improve its accuracy, as it is still in the development phase.
Currently, seed counting using RGB image analysis is the primary method employed.
However, incorporating deep learning or machine learning techniques in combination
with image processing can serve as an alternative approach to enhance accuracy. Presently,
only four major seed traits are measured, and the total seed numbers are counted. Further
research is needed to accurately quantify more seed traits.

4. Materials and Methods
4.1. Image Acquisition and Thresholding

A total of 20 different soybean cultivars were used for image acquisition and subse-
quent measurement of the morphological traits of seeds (Table S2). These cultivars were
selected based on different seed sizes. Specifically, sizes ranging from 4 to 9 mm in width
and length were selected to minimize biases. The images were acquired using a digital
camera (Canon, EOS 200 M200, Tokyo, Japan) on a black background. The camera settings
were ISO speed, ISO 1600; F-stop, f/6.3; focal length, 45 mm; and image size, 6000 × 4000.
Five seeds per cultivar were photographed, for a total of 100 images. To count the number
of seeds, these were randomly placed on a smooth plain black surface that presented no
background noise.

The thresholding of an image refers to the segmentation of the desired image part from
the background. In other words, it is a method to differentiate the desired portion from the
background using a certain threshold value. In this study, each RGB image (Figure 4a) was
thresholded to differentiate the seed from the background (Figure 4b). The global threshold
of 140,255 was used for the seed length and width evaluation, and 170,255 was used for PA
estimation and seed counting. The high threshold for the PA evaluation and seed counting
was set to avoid any background noise, which can be interpreted as seeds while counting
total number of seeds, hence causing errors.
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More than just one seed can be used to analyze the seed traits by specifying the number
of seeds in the given code; the rest of the steps are the same as those for the analysis of a
single seed. The detail code is provided in the Supplementary File.

4.2. Programing Language

The image analysis algorithm was written using Python 3.9.12 as a programming
language and Spyder 5.2.2 as the working environment. The contour detection function of
the OpenCV module was used for extracting the contour boundaries of the seed images
(Supplementary File). After the image was thresholded, a rectangle contour was drawn
around the seed. Only the contour line corresponding to the maximum area was extracted;
so, the contours made on the noises were automatically eliminated (Figure 4c). For the PA,
the countNonZero function was used to count the total number of pixels of the thresholded
seed image. Similarly, the same contour detection function was used to count the seeds
through the creation of contour boundaries around them, providing the total number of
seeds present in each image (Supplementary File).

The lengths and widths of seeds obtained using the contour detection method and
PA obtained from the countNonZero function were only expressed as pixel numbers.
A separate algorithm was used to convert these numbers into standard measurements.
Specifically, the MousecallBack function of OpenCV was used to calibrate the number
of pixels present on a definite point. This function calculates the total number of pixels
present between two known distances based on the distance between coordinates. Keeping
the same camera position and settings, we photographed a ruler and used the function to
calibrate the number of pixels present within 10 mm. Finally, by dividing the total number
of pixels calculated using the contour detection method (length and width) by the number
of pixels present within 1 mm, we obtained the standard length and width measurements
in mm, and dividing the number of pixels per mm2, we obtained the PA in form of mm2.

4.3. Validation and Statistical Analysis

For the cross validation, the algorithm-generated seed trait values were compared with
actual values (manually measured values by Bluetech digital calipers, China) and two stan-
dard software WinDIAS 5.3 and SmartGrain. Since, the PA cannot be measured manually, it
was compared with only the two-standard software. Similarly, for the validation of the seed
numbers, the seeds were first counted manually and then were randomly placed on a black
surface and photographed, and the values obtained using the two methods were compared.
To compare the algorithm-derived values with the manual and software-derived values,
we used the following statistical parameters: R2, RMSE, RSE, and MAE. The statistical
analysis (box plot and fit of plot) was carried out using RStudio 2023.03.0 Build 386. The
RMSE, MAE, and RSE collectively measure the effectiveness of a linear model in predicting
the observed variable. Their respective formulas are:

RMSE =

√
1
n ∑n

i=1(oi− si)̂2, (1)

where n is the total number of observations, oi is the observed value for the ith observation,
and si is the standard value for the ith observation;

MAE =
1
n ∑n

i=1|oi− si|, (2)

where n is the total number of observations, oi is the observed value for the ith observation,
and si is the standard value for the ith observation;

RSE =

√
∑n

i=1(oi− si)̂2
d f

, (3)
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where n is the total number of observations, oi is the observed value for the ith observation,
si is the standard value for the ith observation, and df represents the degree of freedom.

5. Conclusions

The morphological traits of seeds, such as the length, width, PA, aspect ratio, and seed
number, are essential from both the breeding and agronomic points of view. However, while
these plant traits are important, their manual measurement is tedious and time consuming.
Thus, we developed a user friendly and convenient image-based Python algorithm for
seed trait measurement. The results showed that this simple algorithm, along with the
calibration method, can be effective for seed phenotyping. In addition to quantifying the
morphological traits (i.e., the length, width, PA, and aspect ratio) with a high accuracy, this
method allowed the counting of the total number of seeds present in each acquired image.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/plants12173078/s1, Figure S1: Errors that may arise due to the overlapping
of seeds and noise; Table S1: Number of seeds counted manually and through the algorithm; Table S2:
List of cultivars used for seed image acquisition; Python source code file.
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