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Abstract: Floristic regions, conventionally established using species distribution patterns, have often
overlooked the phylogenetic relationships among taxa. However, how phylogenetic relationships
influence the historical interconnections within and among biogeographic regions remains inade-
quately understood. In this research, we compiled distribution data for seed plants in Gansu, a region
of significant biogeographic diversity located in northwestern China.We proposed a novel framework
for floristic regions within Gansu, integrating distribution data and phylogenetic relationships of
genera-level native seed plants, aiming to explore the relationship between phylogenetic relatedness,
taxonomic composition, and regional phylogenetic delineation. We found that (1) phylogenetic
relatedness was strongly correlated with the taxonomic composition among floras in Gansu. (2) The
southeastern Gansu region showed the lowest level of spatial turnover in both phylogenetic relation-
ships and the taxonomic composition of floristic assemblages across the Gansu region. (3) Null model
analyses indicated nonrandom phylogenetic structure across the region, where most areas showed
higher phylogenetic turnover than expected given the underlying taxonomic composition between
sites. (4) Our results demonstrated a consistent pattern across various regionalization schemes and
highlighted the preference for employing the phylogenetic dissimilarity approach in biogeographical
regionalization investigations. (5) Employing the phylogenetic dissimilarity approach, we identified
nine distinct floristic regions in Gansu that are categorized into two broader geographical units,
namely the northwest and southeast. (6) Based on the phylogenetic graphic regions of China across
this area.

Keywords: floristic regions; phylogenetic relationships; phylogenetic beta diversity; spatial turnover;
seed plants

1. Introduction

Understanding biogeographical regions is vital for exploring species distributions,
biogeographical analyses, and biodiversity conservation and for formulating effective
species conservation programs [1–3]. A central aim of biogeographical regionalization
is to classify groups of organisms into meaningful geographical units at different scales
for a better understanding the patterns of biodiversity [4]. Traditionally, biogeography
regionalization was typically accomplished via the use of qualitative methods frequently
centered around the principle of taxonomic endemism [5]. Qualitative methods based on
taxonomic dissimilarities at species, generic, and familial levels have been applied to the
process of biogeographical regionalization [2,6,7]. Several biomes and biogeographical
regionalization schemes have been proposed, such as the world’s flora [8–10], East Asian
Plants [11], the flora of China [12,13], and the biogeographical framing of the Gansu
area [14,15]. These schemes offered spatially explicit framework to investigate biodiversity
patterns on a large scale [5]. Nonetheless, a notable constraint observed in preceding studies
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is their failure to incorporate a deliberate examination of the phylogenetic interconnections
among species. This oversight has led to an inadequacy in portraying the multifaceted
evolutionary chronicle of floristic territories, as well as a deficiency in bioclimatic and
palaeobiogeographic contextual elucidation [16,17].

At present, the importance of robust systems for classifying biogeographic patterns
has been emphasized, particularly with the proliferation of extensive species distribution
databases [18–23]. The utilization of phylogenetic information has gained momentum in
improving our understanding of floristic assembly from an evolutionary perspective in the
fields of ecology, biogeography, and evolutionary processes. It serves as a valuable tool for
elucidating various aspects, including the phylogenetic composition, spatial phylogenetic
patterns, evolutionary origins and diversification, the phylogenetic regionalization of floral
communities, and the application of phylogenetic information in the realm of biodiversity
conservation [24]. For example, the phylogenetic structure of a regional plant assemblage
refers to the arrangement and distribution of plant species within a specific geographic area
based on their evolutionary relationships. Qian et al. (2013), Li et al. (2014), and Swenson
and Umaña (2014) revealed that the phylogenetic structure of regional plant assemblages is
determined by environmental conditions and biogeographical history, ranging from the lat-
itudinal gradient and latitudinal diversity gradient to environmental heterogeneity [25–27].
Phylogenetic diversity (PD) refers to the measurement of the evolutionary relatedness
and diversity of species within a biological community or ecosystem [28]. Phylogenetic
endemism (PE) pertains to the concentration of unique or endemic lineages in a specific
geographic region [29]. Relative phylogenetic diversity (RPD) is a standardized measure
that compares the observed phylogenetic diversity of a particular site or community to
the phylogenetic diversity expected under a null model, often accounting for factors such
as species richness [30]. Relative phylogenetic endemism (RPE) is similar to RPD. RPE
is a relative measure that assesses the concentration of phylogenetically unique species
within a specific area compared to a null model [30]. Mishler et al. (2014), Thornhill et al.
(2016), and Scherson et al. (2017) used PD, PE, RPD, and RPE to better evaluate the spatial
patterns of diversity and endemism from an evolutionary perspective and to explore the
potential evolutionary and ecological causes of significant concentrations of diversity and
endemism [28–30]. Verboom et al. (2009), Linder (2014), Chen et al. (2018), and Du et al.
(2022) investigated the origins and diversification of floristic assemblages and explored
the patterns of distribution and the dispersal of selected plant lineages from a particular
floristic region using phylogenies and detailed distribution data from selected clades or
entire flora [31–34]. Li et al. (2015), Daru et al. (2016), Slik et al. (2018), and Ye et al. (2019)
used phylogenetic relationships and distribution data to identify distinct floristic regions
globally and within China [4,5,13,35]. Also, in recent years, the evolutionary processes that
maintain and generate biodiversity have been recognized as important factors that need
to be accounted for in conservation planning [36–38]. Preserving a site containing a few
highly diverse, distantly related lineages may be more beneficial than preserving a site with
a large number of closely related taxa [39–41]. These works highlight the importance of
incorporating phylogenetic information to improve our understanding of floristic assembly
from an evolutionary perspective [42].

The phylogenetic approach and traditional methods in biological research exhibit
distinct methodologies and focus areas. Traditional methods rely on observable traits,
historical taxonomic classifications, and characteristics, which include morphology, ecology,
and behavior, to infer relationships, ecological interactions, and species identities [4]. The
phylogenetic approach centers on analyzing genetic diversity and evolutionary history
among organisms using molecular data, revealing shared ancestry and divergence times.
Integrating these approaches can offer a more comprehensive understanding of biodiversity,
blending genetic insights with traditional ecological and taxonomic perspectives. The
quantitative methods of phylogenetic information, rather than qualitative methods that
rely on experts’ experience and knowledge, are more objective and repeatable [5].
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Phylogenetic trees are utilized to quantify the phylogenetic relatedness of taxa across
different geographic regions, which quantifies the phylogenetic turnover (phylogenetic beta
diversity) among them. Furthermore, phylogenetic trees serve as a means to detect phylo-
genetic turnover, facilitating the evaluation of the distinct contributions of evolutionary and
ecological processes in shaping current biodiversity patterns across extensive spatial ex-
tents [43]. Quantifying the spatial turnover of species or phylogenetic composition among
sites is an essential step for identifying floristic regions [44]. Phylogenetic beta diversity
reflects both ecological and evolutionary processes that shape biodiversity patterns [43],
and it is a metric that quantifies the spatial variation in phylogenetic relatedness among
species and is akin to taxonomic beta diversity, which measures the variation in species
composition across space.

Gansu province is characterized by a complex physical geography, a rich biodiversity,
and an ancient floristic component with many endemic taxa [45]. It encompasses four plant
subregions: Holarctic flora, East Asian flora, Tethyan flora, and Qinghai–Tibet Plateau
flora [5]; moreover, it has seven geomorphic types: mountains, plains, basins, plateaus,
valleys, deserts, and the gobi desert [46]. Due to its unique characteristics, Gansu province
serves as a pivotal intersection and transitional zone for the geographical distribution
of numerous plant communities not only within China but also across Asia [47,48]. The
region showcases a rich variety of vegetation types, with each adapted to its specific eco-
logical niche. From lush alpine meadows to arid desert oases, Gansu’s plant communities
span a wide range of altitudes, climates, and soil conditions. This diversity is shaped
by the complex interplay of geographical features, including the Qilian Mountains, the
Hexi Corridor, and the Yellow River. These various plant communities play a crucial role
in maintaining local and regional biodiversity. Early studies on the flora of Gansu have
been predominantly limited to taxonomic approaches, focusing on particular plant taxa or
geographical regions [49–51]. And previous studies in plant phylogenetics have predomi-
nantly concentrated on geographically homogeneous hotspots, such as North America [25],
Southern Africa [35], the Lesser Antillean of Central America [27], and Yunnan of China [4].

However, exploring the differences in plant diversity in the evolutionary dimension
and understanding the distribution boundaries of different plant regions in Gansu with
respect to complex geographical environments, diverse climates, and significant differences
in vegetation is extremely attractive. No prior investigation has integrated both phyloge-
netic and spatial aspects to explore the evolutionary trajectory of the Gansu flora. We lack
an understanding of the critical evolutionary dimension of floristic diversity in this area.
Investigating the phytogeographic regionalization of this area is of great significance and
value in enhancing our understanding of the differentiation and historical progression in
transition zones of Chinese and even Asian floras.

Phytogeographic regionalization holds crucial significance in comprehending the
evolutionary dimension of floristic diversity, particularly in the specified area [1]. By
investigating the distribution patterns and evolutionary histories of plant species, it offers
insights into conservation strategies, biogeographic evolution, ecosystem functioning, and
taxonomic research [52]. To reinforce regionalization, integrating data from various species
groups helps unveil co-evolutionary relationships, predict ecosystem shifts, and enhance
our understanding of the region’s history and potential future changes [53]. This approach
not only aids in delineating phylogenetically informed floristic regions but also deepens
our grasp of phytogeographical establishment and identification [54].

In this study, we investigated the relationship between taxonomic and phylogenetic
beta diversity, with a particular focus on Gansu floristic assemblages. To achieve this, we
analyzed the spatial turnover patterns of Gansu floristic assemblages from both taxonomic
and phylogenetic perspectives, employing a genus-level phylogeny of Gansu seed plants
along with county-level distribution data. Our objective is to provide valuable insights
into the demarcation of phylogenetically informed floristic regions and to enhance the
understanding of the establishment and identification of phytogeographical regions in
Gansu. The study primarily addresses the following key research questions: (1) To what
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extent are phylogenetic dissimilarity and taxonomic dissimilarity patterns in the Gansu
flora interrelated? (2) What are the patterns of spatial turnover in species composition
and phylogenetic composition between floras in Gansu? (3) Does the delimitation of
floristic regions of Gansu incorporating phylogenetic information agree with previous
biogeographic studies of the floristic region? (4) Where are the ranges and intersection
boundaries for the major phytogeographic regions of China across this region?

2. Results
2.1. Beta Diversity

Comparing the sensitivity of our results using Mantel tests, we observed a strong
correlation between βjtu and βsim (r = 0.99; p < 0.001). Similarly, there was a strong
correlation between pβjtu and pβsim (r = 0.99; p < 0.001). Our focus was on the turnover
component of the Sørensen index, specifically βsim and pβsim. We found a strong correlation
between pβsim and βsim (r = 0.96; p < 0.001). However, SES.pβsim exhibited a moderate
correlation with pβsim (r = 0.25, p < 0.001) and no significant correlation with βsim (r = 0.02;
p < 0.31).

The close correlation between phylogenetic dissimilarity and taxonomic dissimilarity
in Gansu’s flora was illustrated by the general spatial congruence in phylogenetic turnover
and taxonomic turnover (Figure 1). The highest taxonomic and phylogenetic turnover
occurred in the northwestern part of Gansu, and the lowest taxonomic and phylogenetic
turnover occurred in the southeastern part of Gansu.
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Figure 1. Patterns of spatial turnover of Gansu flora. Numbers indicate the average values of βsim (a)
and pβsim (b) for the focal region and all other regions. The maps were generated using ArcGIS 10.8.

The null model test indicated that northwestern Gansu exhibited the highest regional
phylogenetic turnover, while the southeast region showed the lowest phylogenetic turnover
in Gansu (Figure 2). Among the 80 counties, the SES values were positive in 59 counties
and negative in 21 counties, and SES values in 3 counties significantly differed from the
null expectation (i.e., SES values > 1.96) (Figure 2).
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Figure 2. Patterns of spatial turnover of Gansu flora. The numbers are the mean standardized
effect sizes of phylogenetic beta diversity (SES.pβsim) for each county compared to all other counties.
Positive values indicate regions with higher phylogenetic turnover than expected, whereas negative
values indicate the opposite.

2.2. Floristic Regions

Among the eight clustering algorithms tested, UPGMA consistently demonstrated
the most effective alignment between the dendrogram and the original distance matrices
for both βsim and pβsim (Table 1). Thus, we selected the UPGMA method to define the
phytogeographical regions. Despite a strong correlation between the βsim and pβsim
values (r = 0.96, p < 0.001), it is noteworthy that the distance matrix for pβsim has a
closer match to the geographical clustering of recognized taxa types compared to the
distance matrix for βsim. As a result, we decided to utilize pβsim for the definition of
phytogeographical regions.

Table 1. Cophenetic correlation coefficient (CCC) and Gower’s distance (GD) for eight different
clustering methods based on βsim and pβsim pairwise distance matrixes.

Clustering Algorithms CCC (pβsim) GD (pβsim) CCC (βsim) GD (βsim)

ward.D2 0.840 13,784.600 0.860 13,779.820
ward.D 0.814 213,347.500 0.830 212,874.300
single 0.856 298.473 0.838 335.790

Complete 0.859 266.409 0.869 230.959
UPGMA 0.872 38.090 0.876 37.130
WPGMA 0.867 44.907 0.873 38.218
WPGMC 0.813 243.142 0.830 409.498
UPGMC 0.813 213,347.500 0.830 212,874.300
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Pairwise phylogenetic beta diversity (pβ) metrics were employed to quantify the
degree of change in phylogenetic composition across species assemblages within Gansu.
Analyses of combined taxa pβsim values identified a total of nine floristic regions that are
nested within two larger realms (Supplementary Figures S1 and S2) and quantified the
phylogenetic relatedness among all pairs of realms and regions (Figure 3). To maintain the
stability of regional names, a nomenclature system was adopted for each region based on
the naming convention established by Zhang et al. (2014) [50]. The regions were classified
as follows: (1) region I—the northern foothills of the Qilian Mountains, including six county
units; (2) region II—the hinterland of the Hexi Corridor, which comprises fourteen county
units in the entire Hexi region except for the northern foothills of the Qilian Mountains;
(3) region III—the Lanzhou–Baiyin wilderness region, which covers nine county units;
(4) region IV—the Loess Plateau in the central region of Gansu, which includes eleven
county units; (5) region V—the Loess Plateau in the east of Gansu, which encompasses
thirteen county units; (6) region VI—the western Qinling Mountains, which comprises
thirteen county units; (7) region VII—the transitional zone from Gannan Plateau to Longnan
Mountainous Region, which includes six county units; (8) region VIII—the Gannan Plateau,
which covers three county units; and (9) region IX—the Longnan Mountainous Region,
which comprises five county units (Figure 3).
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Figure 3. Dendrogram (a) and map (b) resulting from UPGMA hierarchical clustering and the
NMDS ordination of grid cell assemblages based on phylogenetic beta diversity distance matrixes at
the genus level (c). The dendrogram highlights the nine phytogeographical regions, which are also
represented by corresponding colors in the NMDS ordination. Additionally, the map, generated using
ArcGIS 10.8, visually displays the spatial distribution of these regions. I—the northern foothills of the
Qilian Mountains; II—the hinterland of the Hexi Corridor; III—the Lanzhou–Baiyin wilderness region;
IV—the Loess Plateau in the central region; V—the Loess Plateau in the east region; VI—the western
Qinling Mountains; VII—the transitional zone from Gannan Plateau to Longnan Mountainous Region.
VIII—the Gannan Plateau; and IX—the Longnan Mountainous Region.
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The application of pβsim dissimilarity matrixes resulted in the phytogeographical re-
gions being partitioned into two prominent clusters in the dendrogram, with the northwest
regions constituting a distinct cluster (Northwest) and the remaining southeast regions
forming another separate cluster (Southeast) (Figure 3a,b). Given that these two major
clusters were found to be located on either side of the Yellow River, they are commonly
referred to as the Hexi floristic and the Hedong floristic, respectively.

The NMDS ordination method demonstrated a satisfactory projection of the dissimi-
larity matrixes of the Gansu floristic regions in two-dimensional space, as evidenced by
the relatively low stress values (stress = 0.1064) (Figure 3c). The results of NMDS analysis
are consistent with the results of cluster analysis, indicating that our division of the flora is
feasible and reliable.

3. Discussion
3.1. Correlation between Phylogenetic and Taxonomic Patterns

We have presented an analysis of the spatial turnover of Gansu floristic assemblages
in species composition and phylogenetic composition to examine the correlations between
taxonomic dissimilarity and phylogenetic dissimilarity in this area.

The findings from this study revealed a strong correlation between taxonomic and
phylogenetic turnover within the floristic assemblages of Gansu. Moreover, southeastern
Gansu showed the lowest level of spatial turnover in both phylogenetic relationships
and the taxonomic composition of floristic assemblages (Figure 1). The species turnover
rate is low when the relief is complex, and the diversity of climates is high because the
species are adapted to specific environmental conditions and are not able to survive in other
conditions [55]. The complex relief and high diversity of climates create many different
habitats that allow for a greater number of species to coexist without competing with each
other [56]. The southeastern part of Gansu is located at the intersection of the western
Qinling Mountains and the Qinghai–Tibet Plateau (QTP). It also serves as a transitional zone
between the pan-Arctic plant region and the East Asian plant region, and it is connected to
the Hengduan Mountains, which is a center of plant diversity in China [57]. The complex
terrain and diverse humid climate in this region make it a transitional climate zone between
subtropical and temperate zones, which is conducive to the formation of species diversity
and provides a “refuge” for many species of ancient plant communities, where they are
protected from the detrimental effects of severe weather [58]. Moreover, a large number
of plant groups in this area have undergone geographical isolation due to the blocking
effect of mountains, rivers, and gorges, which prevents the exchange of genetic information
between individuals and thus increases the diversity of plant system development [59].
This may partly explain why floristic assemblages have on average a lower degree of spatial
turnover in phylogenetic relatedness and taxonomic composition in southeast Gansu than
in other regions in Gansu. This indicates that this area is a center of wild seed plant
diversity in Gansu.

pβsim was strongly correlated with βsim, which implies that raw phylogenetic beta
diversity is strongly influenced by the underlying patterns of species beta diversity. The
results of the standardized effect size of pβsim (SES.pβsim) show that phylogenetic beta
diversity, except for some areas in the southeast, is higher than expected in most areas
of central and western Gansu, meaning that the taxa turnover between floras in the vast
majority of Gansu occurs between distantly related taxa (Figure 2). The pronounced het-
erogeneity of geographical environments is likely to give rise to significant differentiation
and divergence in plant speciation and evolution across distinct floristic regions [60]. How-
ever, the potential correlation between plant species turnover, encompassing replacement
and overlap, and the intricate geographical environments of Gansu within phylogenetic
lineages necessitates further investigation.

Additionally, within the aforementioned regions, the Altun–Qilian Mountains region
exhibited the most evolutionarily unique flora, featuring genera that displayed a signifi-
cantly greater degree of phylogenetic turnover than anticipated (SES.pβsim > 1.96, Figure 3).
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The plants in the Altun–Qilian Mountain region originated during the Early Cretaceous
period [61,62]. As the Tethys Sea receded and geological and climatic conditions rapidly
deteriorated, the rate of plant differentiation increased, and plant species that were resilient
to drought, salinity, and harsh environmental conditions were only able to survive [61]. The
turnover of preserved plant species occurred at distantly related branches, leading to the for-
mation of typical desert plant groups, such as Ephedraceae, Rhamnaceae, Chenopodiaceae,
Zygophyllaceae, Plantaginaceae, etc. [61].

3.2. Phylogenetic Delimitation of Floristic Regions

Using all native seed plant genera that occur in Gansu, we identified two floristic
regions (northwest cluster and southeast cluster) and nine subregions based on their
phylogenetic affinities (Figure 3).

The prominent split of the primary two clusters indicates the presence of an east–west
split within the floristic region of Gansu (Figure 3a). The floristic composition of the eastern
region may have been shaped by the influences of both subtropical and temperate climates,
while the western region may have been subjected to the impact of desert climate on
vegetation [63,64]. This interpretation is supported by the phylogenetic relationships of the
plant species, which also may reflect the environmental factors that have influenced their
evolution and distribution. From a geographic and elevational perspective, the Wushaoling
Mountains are a significant boundary for the differentiation of the Gansu flora between the
eastern and western regions. The mountain range is situated at the intersection of the Loess
Plateau, Qinghai–Tibet Plateau (QTP), and Inner Mongolia Plateau. It is a convergence
point for three major climatic zones, namely, the high-altitude arid zone, the semi-arid zone
in the temperate zone, and the arid zone in the temperate zone [65]. Moreover, it is the
Wushaoling Mountains that serve as a boundary between the temperate monsoon climate
and the temperate continental climate, and it is also a transition zone from the semi-arid
zone to the arid zone [66].

Our research not only captured the two broader phytogeographic differentiations
among plant assemblages within Gansu Province but also embraced the subtler ecological
nuances inherent in its botanical composition. The incorporation of nine subordinate
subregions within the overarching biogeographic classification serves to underscore the
intrinsic ecological intricacy permeating Gansu Province. We delineated Gansu Province
into multiple levels of biogeographic divisions, encompassing both broader and more
localized scales, to provide a holistic understanding that reflects the true nature of the
province’s biotic diversity and its historical biogeographic significance.

From the nine phytogeographical regionalization schemes obtained (Figure 3), we
found these floristic regions to be similar to the previously published floristic division of
Gansu based on qualitative evidence provided by experts and the modeled distribution of
vascular plant species [50]. However, the range and boundary of the flora that we found
are significantly different from previous studies. First, the northwestern Gansu region
is separated into regions I and II, instead of being a single floristic region as in previous
classifications. The plant communities in the northwest region, although belonging to
the same larger plant group, have evolved and adapted differently over a long period,
resulting in the differentiation of two distinct subgroups in the systematics between the
northern foothills of the Qilian Mountains and the interior of the Hexi Corridor. Warm
and humid Pacific air currents are blocked by the Qinghai–Tibet Plateau and the Qilian
Mountain Range, gradually resulting in an arid climate in the Hexi Corridor [63,67] and
eventually forming an extremely arid desert and plant geographical system [68]. However,
the significant variation in altitude and the complex environment formed by water from
melting snowmelt in the Qilian Mountains have led to the differentiation or specialization
of plant species [50], resulting in a marked increase in species richness and endemism in
the Qilian Mountains region compared to the plains and desert areas of the Hexi Corridor.
Secondly, region VI is a single unit in our floristic region while Zhang et al. (2014) [50]
divided it into two distinct regions. This region is situated in the western Qinling Mountains
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and occupies a transitional zone between the subtropical and warm temperate plant floras,
and the result is that this region is characterized by a wide range and compositions that
include multiple elements [69].

Notably, the clustering tree, based on phylogenetic relationships, revealed an extended
southern distribution range of desert plants in region III. This region is located on the
northern edge of the Loess Plateau, and it has long been affected by the arid desert climate
of the Alashan region [70]. This result aligns with the observations made by Wu et al. [47],
which indicate that Lanzhou serves as the southeastern boundary for the distribution of
desert plants in China. The area of region IV is smaller than the geographic range of the
central Loess Plateau region in Gansu, indicating a significant discrepancy. This disparity
may be attributed to the fact that the biotic diversity pattern of the Loess Plateau region
is predominantly influenced by the north–south dispersal of species, and differentiation
does not play a dominant role in shaping the pattern [71]. It also should be noted that plant
species in zone VI have expanded northward to the Liupan Mountain region (Huating and
Pingliang) (Figure 3b). This may be related to the geographic partitioning effects of the
famous mountain ranges, namely the Qinling and Liupan Mountains [59].

Previous studies revealed that the biodiversity patterns in Gansu were shaped by
historical events, such as the uplift of the QTP and the Hengduan mountain from the end of
the Tertiary period to the beginning of the Quaternary period [44,47,72]. The dendrogram
generated by our pβsim-matrix-based clustering analysis depicts the phylogenetic rela-
tionships among the floras of different regions and underscores the importance of shared
evolutionary histories, which encompass origin, diversification, and dispersal events, in
shaping the spatial distribution patterns of plant species in Gansu [5,33]. The observed
dissimilarities provide compelling evidence that the phylogenetic dissimilarity approach is
an effective tool for capturing the evolutionary history of the Gansu flora, thereby furnish-
ing greater insights than the taxonomic dissimilarity approach into the interrelationships
among different phytogeographical regions [5].

Our findings showed that the phylogenetic dissimilarity approach, which relies on a
comprehensive and robust regional phylogeny at the genus level, is a superior method for
uncovering concealed phylogenetic relationships between biogeographic regions compared
to the taxonomic dissimilarity approaches. This regionalization based on quantitative clus-
tering algorithms could reveal the optimal number of regions and yield clear boundaries,
which is more rational than relying on experts to qualitatively delineate the number of
recognized regions and their boundaries [5,12,22].

3.3. Ranges and Intersection Boundaries of China’s Four Major Phytogeographic Regions

Ye et al. (2019), in a study on the β-diversity of angiosperm phylogeny in China,
grouped the QTP region and the Tethyan region together [5], which is consistent with the
results of our study (northwest cluster) (Figure 3a). Based on the research conducted by
Ye et al. (2019) regarding the phylogenetics of angiosperms in China, it was observed that
the phytogeographic composition of Gansu Province is precisely situated at the confluence
of four major phytogeographic realms within China, namely the Holarctic, the East Asian,
the Tethyan, and the QTP regions (Figure 4). Specifically, (1) regions I, VII, and VIII belong
to the QTP floristic region, with region I located at the northern edge of QTP, and regions VII
and VIII are situated on the eastern edge of QTP; (2) region II belongs to the Tethyan floristic
region, with rich components of the Tethyan flora that evolved differently from those of
the Holarctic and East Asian regions but have a closer relationship with the QTP flora [5];
(3) regions III–V belong to the Holarctic flora region, with rich components of the Holarctic
Tertiary flora and a close relationship to the East Asian floristic region [5]; (4) region IX
belongs to the East Asian floristic region, preserving the once widely distributed tropical
flora of the Northern Hemisphere that became extinct in other areas due to the influence of
the Quaternary ice age [73–75].
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The intricate nexus of phytogeographic regions in Gansu Province exhibits profound
significance [15]. The amalgamation of these regions engenders a heterogeneity of biotic
elements, resulting in a region that is characterized by elevated richness and the intermin-
gling of plant taxa [76]. This conspicuous convergence brings forth the juxtaposition of
diverse flora, each with its own historical trajectory, ecological adaptation, and evolutionary
trajectory, thereby catalyzing a mosaic of ecological niches and selective pressures that
underpin the observed botanical diversity [77]. In summary, the positioning of Gansu
Province as an intricate phytogeographic nexus bears profound implications for botanical
diversity. Its status as an intersection of realms amplifies the significance of this region in
the discourse of plant evolution, biogeography, and ecological adaptation. The intricate
interplay of these realms within Gansu Province warrants sustained scholarly attention,
promising a deeper comprehension of the underlying drivers and consequences of this
unique botanical confluence.

From an evolutionary perspective, this study’s findings open new avenues for ex-
ploring floristic assemblages in Gansu province: (1) Investigating historical biogeographic
processes that shaped plant diversity and distribution patterns by tracing lineage evolution
and geographic spread can reveal key factors driving current trends. (2) Future studies
can uncover how phylogenetic relationships influence community assembly, including
the roles of ecological filters, competition, and coexistence mechanisms. This sheds light
on the evolutionary dynamics of local plant communities. (3) Research into how specific
environmental factors, like climate and topography, influence lineage diversification in
Gansu offers insights into the interplay between ecology and evolution. (4) Comparing
Gansu with diverse regions can elucidate general patterns, unique features, and the relative
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impact of historical processes and contemporary factors on plant diversity. (5) Utilizing
phylogenetic regions for conservation planning enhances the protection of areas with
high phylogenetic diversity, endemism, and evolutionary distinctiveness, preserving both
species and evolutionary history.

4. Materials and Methods
4.1. Study Area

Gansu Province is a long and narrow region in northwest China, occupies an area of
453,700 km2, and is located between 32◦11′– 42◦57′ N and 92◦13′–108◦46′ E, with elevations
ranging from 526 to 5773 m asl (Figure 5) [78]. It has a complex and diverse physical
geography and climate, as it lies at the intersection of three major plateaus: the Loess
Plateau, the Inner Mongolia Plateau, and the Qinghai–Tibet Plateau [49]. It also spans four
major climatic types based on the Rivas-Martínez World Bioclimatic classification: warm
temperate continental and cold temperate continental [79]. It is also an important water
conservation and supply area in the upper reaches of the Yangtze and Yellow Rivers [77].
The geological, topographical, and climatic diversity of the region is believed to have
played a crucial role in the development and establishment of the flora in this area [77].
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4.2. Species Distribution Data

The species distribution data were diligently compiled from national and regional
flora reports, checklists, scholarly literature, and herbarium records (a full reference list is
provided in Supporting Materials). The data were purged of duplicates and records that
lacked reliable georeferencing to the level of the county. Excluding non-native species, the
final matrix consisted of 5244 records belonging to 1131 genera and 170 families. The names
of all species were standardized using the R [80] software package ‘plantlist’ [81], with the
order of families based on the nomenclature of Angiosperm Phylogeny Group IV [82].

To analyze the spatial changes in species composition and phylogenetic relatedness, the
study area was divided into 80 county-level geographical units (Supplementary Figure S3
and Supplementary Table S1). Due to limitations in available data, taxonomic uncertainties,
and hybridization events, species-level identification poses challenges. Hence, we decided
to conduct the analysis at the genus level, in accordance with Li et al. (2015) [4] and
Ye et al. (2019) [5]. The presence or absence of each genus of seed plants in each county
was ascertained by extracting the distribution information of each genus and constructing
a presence–absence matrix (supplementary data matrix).
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4.3. Phylogeny Construction

A phylogenetic tree at the genus level was generated by incorporating the gen-
era within our study area into an existing backbone phylogenetic hypothesis using the
‘V.PhyloMaker’ package [83] in R software. For genera that were not present in the mega-
tree, a placement was assigned based on a closely related genus using scenario 3’s options
for phylogeny generation [83]. Considering the limited availability of comprehensive
time-calibrated phylogenies for families and genera, we followed a similar methodology
as previous studies and treated undetermined genera as polytomies located within their
respective families [4,84]. The constructed phylogenetic tree was visualized using the
Interactive Tree of Life (iTOL) online software application (https://itol.embl.de (accessed
on 20 November 2022 )) (Supplementary Figure S4).

4.4. Phylogeny Diversity Analyses

To quantitatively evaluate the spatial turnover of floristic composition in Gansu, we
utilized the Simpson dissimilarity index (βsim) [85]. The βsim index allows us to assess the
taxonomic turnover that occurred between each pair of regions. The calculation of βsim (1)
is performed as follows:

βsim =
min(b, c)

a + min(b, c)
(1)

where ‘a’ represents the count of shared genera between two regions, while ‘b’ and ‘c’
correspond to the counts of genera that are unique to each respective region. The values
of βsim range from 0 to 1, with 0 indicating an identical generic composition between the
regions and 1 denoting the absence of shared taxa between the regions [65,85]. One no-
table advantage of the βsim metric is its ability to mitigate the impact of species richness
heterogeneity across different regions, thus ensuring a robust assessment of compositional
turnover [85].

To quantify the phylogenetic turnover in our study, we utilized phylogenetic beta di-
versity (pβsim), an adapted version of the βsim index. Instead of considering the proportion
of shared genera, pβsim assesses the proportion of shared phylogenetic branch lengths in
the dated phylogenetic tree between regions [44]. The values of pβsim range from 0 to 1,
where 0 indicates that the genera have identical branch lengths and share the same evolu-
tionary history, while 1 indicates that the genera have distinct branch lengths and do not
share similar evolutionary trajectories. Pairwise distance matrices were calculated for both
pβsim and βsim across all regions. Additionally, we compared the obtained values of βsim
and pβsim with those derived from the Jaccard Index (βjaccard) to assess the sensitivity of
our results (βjtu and pβjtu) [86].

To investigate the potential association between pβsim and βsim, we employed a
null model approach to assess whether county-level assemblages exhibited greater or
lesser phylogenetic similarity compared to what would be expected based solely on the
number of taxa. This null model analysis involved generating a null distribution by
randomly permuting the tips of the phylogenetic tree for a total of 999 times. For each
permutation, pairwise distance matrices were computed for both pβsim and βsim, capturing
the phylogenetic turnover between all regions while preserving the inherent taxonomic
turnover differences among them. Subsequently, pβsim values were calculated for each pair
of compared regions by generating pairwise distance matrices for pβsim [5]. Standardized
effect sizes of pβsim (SES.pβsim) (2) were obtained by comparing the observed pβsim value
to the mean of the null distribution and dividing it by the standard deviation of the null
distribution. Positive values of SES.pβsim indicate a higher level of phylogenetic turnover
than expected under random sampling, while negative values indicate the opposite scenario.

SES.pβsim =
obs.pβsim −mean(pβsim.null)

sd.(pβsim.null)
(2)

https://itol.embl.de


Plants 2023, 12, 3060 13 of 20

Statistical analyses were performed using the ‘betapart’ package in R [86] to examine
the patterns of regional turnover in phylogenetic composition. For each county, we cal-
culated the mean values of βsim, pβsim, and SES.βsim compared to other counties. These
values were then mapped to visually represent the spatial patterns of phylogenetic com-
position turnover [5,12]. Furthermore, we conducted Mantel tests to assess correlations
between species beta diversity, phylogenetic beta diversity, and SES.βsim. The Mantel tests
allowed us to investigate the associations between distance matrices [87]. To determine
the significance of the correlation, permutation tests were employed by randomizing the
distance matrix 999 times. All statistical analyses were performed in R using the ‘vegan’
package [88] and the ‘picante’ package [89].

4.5. Cluster Analysis

In order to define the floristic regions of Gansu by incorporating distribution data and
phylogenetic information, we applied hierarchical clustering to βsim and pβsim pairwise
distances. Given that the choice of clustering algorithms and linkage functions can greatly
impact the results, we initially assessed the performance of eight linkage functions in
agglomerative hierarchical clustering. The linkage functions employed in this analysis
included single linkage (SL), complete linkage (CL), unweighted pair-group method using
arithmetic averages (UPGMA), unweighted pair-group method using centroids (UPGMC),
weighted pair-group method using arithmetic averages (WPGMA), weighted pair-group
method using centroids (WPGMC), and two variations of Ward’s minimum variance
(ward.D and ward.D2). All of these linkage functions were implemented using the ‘cluster’
package in R.

We evaluated the soundness of the clustering outcomes by employing Sokal and
Rohlf’s (1962) [90] cophenetic correlation coefficient and Gower’s (1983) [91] distance. The
cophenetic correlation coefficient gauges the correlation between the terminal branches of
the dendrogram and the original distance matrix with a range of 0 to 1, wherein higher
values indicate a stronger correlation. Gower’s distance computes the sum of squared
discrepancies between the original distances and the cophenetic distances. A clustering
method that minimizes Gower’s distance is deemed suitable for the distance matrix [92]. To
ascertain a reasonable number of clusters for the phytogeographical regions, we employed
the “Silhouette method”. The Silhouette method is an interpretive and validation approach
that provides a concise graphical representation of the classification effectiveness for each
object, assessing the consistency within clusters of data [72,93]. The ‘Silhouette’ method
was executed using the “silhouette” function within the “cluster” package in R.

We employed three criteria to determine the number of clusters and identify the floris-
tic regions based on the clustering results: (1) a preference for the contiguous aggregation
of sites to represent a floristic region, (2) the requirement for each cluster representing
a floristic region to form a monophyletic clade in the dendrogram, and (3) consistency
between the identified floristic region and the geography of Gansu.

4.6. Ordination Analysis

To provide an alternative non-hierarchical depiction of cluster relationships, a two-
dimensional ordination was conducted to visualize the floristic regions of Gansu. This
was accomplished by utilizing a neighbor-joining algorithm in combination with the non-
metric multidimensional scaling (NMDS) method, which is widely regarded as a reliable
unconstrained ordination approach for representing the overall turnover values within
a matrix in a low-dimensional space [94]. The NMDS ordination was performed using
the pβsim pairwise distance for cluster-defined floristic regions, employing the “vegan”
package in R and utilizing one hundred random starts to ensure a stable solution and to
mitigate the influence of local minima. The stress value is commonly employed to evaluate
the correspondence between the NMDS and the original dissimilarity matrix. Stress values
range from 0 to 1, with lower values indicating better NMDS results.
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5. Conclusions

In this study, a novel approach utilizing phylogenetic relationships was employed to
delineate the floristic regions within Gansu. This approach provided a more comprehensive
understanding of the biogeographic patterns and evolutionary history of plant lineages
within the region by incorporating information on the shared ancestry and diversification
history of taxa. The resulting phylogenetic delineation of floristic regions resulted in a
framework for investigating the historical biogeographic processes and environmental
factors that presented the patterns of plant diversity and distribution in Gansu. These find-
ings suggest that historical biogeographic processes have played a crucial role in shaping
the current patterns of plant diversity and distribution in these areas. By accounting for
the phylogenetic relationships among plant lineages, we can gain a deeper understanding
of the underlying ecological and evolutionary mechanisms that have led to the observed
patterns of phylogenetic turnover and beta diversity across the study region.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/plants12173060/s1. Figure S1: Plant phylogenetic flora
fitting; Figure S2: NMDS fitting plot; Figure S3: Map of administrative counties in Gansu. Fig-
ure S4: Phylogenetic tree of seed plant at the genus-level in Gansu. Table S1: Area and floristic regions
for each county in Gansu. References [95–184] are in the supplementary file.
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