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Abstract: The collar region plays a crucial role in leaf angle formation and plant architecture, which
is important for improving crop yield given the challenges of diminishing arable land and changing
environmental conditions. To determine collar region-preferential genes (CRPGs) affecting plant archi-
tecture and crop yield, we conducted genome-wide transcriptomic analysis. By integrating our RNA
sequencing data with public rice anatomical expression data, we identified 657 CRPGs. Verification
involved testing six randomly selected CRPGs, all of which exhibited collar-preferential expression.
The functional significance of CRPGs was assessed via Gene Ontology enrichment analysis, utiliz-
ing MapMan and KEGG, and literature analysis provided additional information for characterized
CRPGs. Our findings revealed links between manipulating leaf angle and phytohormone-related
pathways and stress responses. Moreover, based on the CRPGs, five transcription factors downstream
of the liguleless 1 (LG1) gene were identified. Overall, the identified CRPGs provide potential targets
for further research and breeding applications aimed at improving crop productivity by manipulating
leaf architecture.
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1. Introduction

Improving crop yield is an urgent priority owing to complex environmental issues
and growing populations [1–3]. To meet the global demand for food, efforts to enhance
productivity in rice (Oryza sativa L.), one of the world’s most important crops, have focused
on manipulating leaf architecture [4]. Rice leaf architecture consists of two distinguishable
organs: the vibrant green leaf area and the degenerated white-collar region (Figure 1a). The
former facilitates photosynthesis and respiration, whereas the latter shapes the crucial mor-
phological structure known as leaf angle (LA) [5]. Accumulated evidence suggests that the
erect leaf phenotype, a key trait in plant leaf architecture, is beneficial for enhancing light
capture and photosynthesis efficiency under dense planting, thereby increasing yield [4,6,7].
On the other hand, LA plasticity provides plant flexibility in adapting to rapidly changing
environmental conditions [8,9]. Therefore, understanding the collar region comprehen-
sively may contribute to fine-tuning LA for improved breeding applications.

Sequential sectioning has been used to investigate morphological changes and the
cytological basis of the collar region during its development [10,11]. The cell type diver-
gence and cytological transitions of sclerenchyma and aerenchyma from parenchyma cells
and the asymmetric cell constitutions and elongation at the antithetical sides of the cell
resulted in LA formation. Dynamic changes in LA are influenced by associated processes,
including cell division, cell expansion, and cell wall compositional change [12–14]. For
instance, overexpression of ILI1 promotes leaf inclination through cell elongation on the
adaxial side [15]. Moreover, extensive studies revealed the involvement of multiple fac-
tors like various phytohormone-associated genes and transcription factors (TFs) in the
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leaf angle determination. Intricate phytohormone regulatory networks are an important
aspect of collar region development and LA regulation. FISH BONE (FIB) acts as an auxin
biosynthesis gene and decreases indole-3-acetic acid content, and thus, enlarged LA was
caused by the mutation of FIB [16]. Also, the overexpression of auxin signaling genes,
including OsGH3-2 [17], OsIAA1 [18], and OsARF19 [19], indicated that auxin negatively
affects leaf inclination. Conversely, the promoting effect of brassinosteroids in leaf angle
enlargement and its crosstalk control with other phytohormones, such as auxin, gibberellin,
and abscisic acid, have been revealed by functional studies [20–24]. Among many TFs,
LIGULELESSs play dominant roles in initiating collar region organogenesis, which is fun-
damental to LA formation. OsLG2/2L gene-edited plants exhibit localization perturbations
in the boundary between blade and sheath, which further disrupt OsLG1-mediated col-
lar differentiation [25,26]. This organogenesis initiation triggers well-ordered cytological
changes to occur, leading to leaf bending.
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Figure 1. Illustration of the collar region and heatmap showing the expression of 657 collar region-
preferential genes (CRPGs). (a) The collar region adjacent part in 5-week-old rice plants (cv. 
Dongjin). The collar region is marked by a red triangle. Scale bar = 0.5 cm. (b) Expression of CRPGs 
in eight anatomical tissues, including the collar region, leaf region, shoot, root, anther, pollen, seed, 
and callus. The color scheme ranging from blue to black to yellow represents the strength of nor-
malized log2 intensity values. The red rectangle highlights collar region-preferential expression. 

Via systemic dissection with a focus on collar region development, many stage-spe-
cific genes have been identified, and they have been proposed to be potential targets for 
LA manipulation [10,11]. It is helpful for illustrating the complex regulatory mechanisms 
of collar region development. However, despite a few examples of success in yield en-
hancement by modulating these genes, the pleiotropic expression still hinders their 

Figure 1. Illustration of the collar region and heatmap showing the expression of 657 collar region-
preferential genes (CRPGs). (a) The collar region adjacent part in 5-week-old rice plants (cv. Dongjin).
The collar region is marked by a red triangle. Scale bar = 0.5 cm. (b) Expression of CRPGs in eight
anatomical tissues, including the collar region, leaf region, shoot, root, anther, pollen, seed, and callus.
The color scheme ranging from blue to black to yellow represents the strength of normalized log2
intensity values. The red rectangle highlights collar region-preferential expression.

Via systemic dissection with a focus on collar region development, many stage-specific
genes have been identified, and they have been proposed to be potential targets for LA
manipulation [10,11]. It is helpful for illustrating the complex regulatory mechanisms of
collar region development. However, despite a few examples of success in yield enhance-
ment by modulating these genes, the pleiotropic expression still hinders their practical
engineering and application. This multi-functional phenomenon of a single gene is often
accompanied by negative effects on plant growth, making it difficult to obtain the ideal
leaf phenotype without affecting other developmental processes. For example, although
RNA interference mutants of OsBUL1 exhibit the erect leaf phenotype, their grain size is
significantly reduced, adversely affecting final productivity [27]. To mitigate these adverse
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impacts, it is important to identify tissue-preferential genes. Modifying these genes may
achieve the desired phenotype while mitigating the negative effects.

In the present study, we performed global identification of collar region-preferential
genes (CRPGs) by integrating our RNA sequencing (RNA-Seq) data with various anatomi-
cal transcriptome datasets. Subsequently, 657 CRPGs were identified, and after validating
the collar-preferential expression pattern through qRT-PCR, functional enrichment analysis
using Gene Ontology (GO) and MapMan toolkit was conducted. Five regulatory genes
identified from the transcription term in GO were suggested as downstream TFs of OsLG1,
a key regulatory gene in the initiation of collar development in rice. Based on these findings,
a conceptual regulatory model for collar development was proposed. Our findings could
accelerate the modification of compacted leaf structure in rice to improve productivity
while efficiently using energy, aligning with sustainable agriculture trends.

2. Results
2.1. Genome-Wide Identification of Collar Region-Preferential Genes

To investigate CRPGs, we grouped tissues according to their properties. The collar and
ligule were grouped as the collar region, whereas the leaf blade and sheath were grouped
as the leaf region (Figure 1a). RNA samples from collar, ligule, and sheath were collected
from 5- to 6-week-old rice plants in the vegetative stage, and the expression raw data of
leaf, shoot, root, anther, pollen, seed, and callus were collected from NCBI Sequence Read
Archive (SRA; http://ncbi.nlm.nih.gov/sra/, accessed on 28 December 2022). Further, they
were normalized using a previously described method all at once [28]. By comparisons
of collar and leaf regions, we preliminary identified 4554 differentially upregulated genes
in the collar region, with a log2 fold change > 1 and a p-value < 0.05. These genes were
further classified into 12 distinct clusters using K-means clustering (KMC) analysis. Two of
the twelve clusters showed collar region-preferential expression patterns. After manually
filtering genes with a log2 intensity value >3 in the collar region, we finally identified
657 CRPGs (Figure 2). The expression heatmap of the identified CRPGs was reconstructed
using MeV software (Figure 1b).
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genes (DEGs) were identified by comparing the collar region with the leaf region. In the left panel, the
output shows the log2 fold change combined with anatomical expression data of upregulated DEGs
(collar region vs. leaf region), where the red color indicates upregulation in the collar region. The
color scheme ranging from blue to black to yellow represents the strength of normalized log2 intensity
values. The right panel displays a centroid graph with expression images of collar region-preferential
gene clusters obtained from KMC analysis. The number of genes in each cluster is shown, and
expression in the collar region is highlighted with a red rectangle. Collar region1: collar1 and ligule1;
leaf region2: leaf2 and sheath2; other tissues3: shoot3, root3, anther3, pollen3, seed3, and callus3.

2.2. Authentication of Tissue-Preferential Expression Patterns of Six CRPGs

To verify the reliability of the collar region-preferred expression patterns of our candi-
date genes, we randomly selected six genes and performed in silico expression and quanti-
tative real-time PCR analysis. The genes included one secondary metabolism related gene
(CRPG15, Os04g01810), one TF (CRPG32, Os11g02520), one hormone-related gene (CRPG33,
Os09g16030), one transferase (CRPG70, Os10g04400), one unannotated gene (CRPG160,
Os03g41480), and one protein kinase (CRPG348, Os04g15630). Anatomical expression data
were downloaded from the CAFRI-Rice database [28] by entering locus IDs retrieved from
the Rice Genome Annotation Project website (RGAP; http://rice.plantbiology.msu.edu/,
accessed on 28 December 2022). The data were reconstructed using MeV software. Real-
time PCR experiments confirmed the expression of the six genes (Figure 3). As expected,
all these showed preferential expression patterns in the collar tissue, corroborating our
previous identification results.
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(c) CRPG33/Os09g16030, (d) CRPG70/Os10g04400, (e) CRPG160/Os03g41480, and (f) CRPG348/Os04g15630.
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Expression heatmaps were constructed using the MeV program, and numeric values represent the
average normalized log2 intensity values obtained from the CAFRI-Rice database. Collar region-
preferential expression pattern was examined using real-time PCR analysis in seven distinct tissues
(collar, leaf, shoot, root, seed, young panicle, and anther). Ubi5 (Os01g22490) was used as an internal
control in real-time PCR experiments.

2.3. Literature Analysis of Functionally Characterized CRPGs

Detailed archives of functionally characterized genes are useful for interpreting the
functional significance of genes identified from large-scale datasets, and they provide a
valuable resource that may facilitate further application. We used two databases, funRice-
Genes (http://funricegenes.github.io/, accessed on 28 December 2022) [29] and Overview
of Functionally Characterized Genes in Rice Online (OGRO; http://qtaro.abr.affrc.go.jp/
ogro/table, accessed on 28 December 2022) [30] to identify 31 characterized genes among
657 CRPGs (Table 1; Figure S1). In terms of collar region development and LA formation,
three CRPGs have been reported previously. Mutations in OsLG1 lead to complete loss
of collar, ligule, and auricle tissues, resulting in the erect leaf phenotype [25]. A bHLH
transcription factor, namely OsBC1, regulates LA development by forming a trimeric com-
plex [27], whereas its interaction partner, OsBUL1, was excluded from analysis in this
study owing to its ubiquitous expression. Epigenetic modification of RAV6 affects LA
and grain size in a brassinosteroid-dependent manner [31]. Additionally, OsGA2ox6 [32],
OsMPH1 [33], and RePRP2.1 [34] alter cell elongation in other tissues, hinting the possi-
bility that their parallel function in the collar region is to be expected. Further, more than
half of the characterized CRPGs were phytohormone-related or stress-responsive genes,
emphasizing the intricate internal signaling networks coupled with the development and
regulation of collar region plasticity in rice.

Table 1. Summary of functionally characterized genes among 657 CRPGs in rice.

Locus Symbol Category Keyword References

LOC_Os01g43650 OsWRKY11 R, T Heat and drought tolerance, Disease resistance [35,36]
LOC_Os01g48290 OsDof4 P Flowering time [37]
LOC_Os02g02930 OsLIS R, T Blast resistance, JA [38]
LOC_Os02g12350 HDA703 M Panicle development, Fertility [39]
LOC_Os02g12680 OsAOS3|OsHPL2 R, T Blight resistance [40]
LOC_Os02g26430 OsWRKY42 P, R, T Leaf senescence, Blast susceptibility, JA [41,42]
LOC_Os02g35970 CPT1 M Root phototropism, Auxin [43]
LOC_Os02g41954 GA2ox9 M Dwarfism, GA [44]
LOC_Os02g43330 OsHOX24|OsSLI1 R, T Abiotic stress response, ABA [45,46]
LOC_Os02g45850 RAV6 M Leaf angle, Seed size, BR [31]
LOC_Os03g12500 OsAOS2 R, T Defense response, JA [47]
LOC_Os03g44710 OsSh1 M Seed shattering [48]
LOC_Os04g01950 BLEC-Str8 R, T Salt stress [49]
LOC_Os04g20330 OscZOG1 M Grain-yielding traits, Cytokinin [50]
LOC_Os04g44150 OsGA2ox6 M Dwarf, GA [32]
LOC_Os04g48350 OsDREB1E R, T Drought tolerance [51]
LOC_Os04g52310 OsZIP3 P Zn distribution [52]
LOC_Os04g56170 OsLG1 M Liguleless, Closed panicle [25,53]
LOC_Os05g01140 OsJMT1 R, T Defense response, JA [54]
LOC_Os06g03670 OsDREB1C M, R, T Abiotic stress tolerance, Growth retardation [55]
LOC_Os06g45890 OsMPH1|OsMYB45 M, R, T Grain yield, Plant height, Cadmium tolerance [33,56]
LOC_Os07g05940 OsNCED4 R, T Drought tolerance, ABA [57]
LOC_Os07g23660 RePRP2.1 M Root cell elongation, ABA [34]
LOC_Os09g26999 OsDEP1|DN1|qPE9-1 M Erect panicle, Dwarf, Grain yield, GA [58,59]
LOC_Os09g28440 OsEATB M Dwarf, Tillering, Panicle branching, Ethylene, GA [60]

http://funricegenes.github.io/
http://qtaro.abr.affrc.go.jp/ogro/table
http://qtaro.abr.affrc.go.jp/ogro/table
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Table 1. Cont.

Locus Symbol Category Keyword References

LOC_Os09g33580 OsBC1 M Grain size, Leaf angle [27]
LOC_Os09g37400 OsSAUR45 M Plant growth, Auxin [61]
LOC_Os10g39260 OsAP77 R, T Defense response, ABA, SA [62]
LOC_Os11g02520 OsWRKY89 R, T Abiotic and biotic stress, JA [63]
LOC_Os11g29840 LA1|LAZY1 M Tiller angle, Auxin [64]
LOC_Os12g03050 ONAC300 M Shoot apical meristem [65]

Category: R, resistance; T, tolerance; M, morphological trait; P, physiological trait.

2.4. Functional Enrichment Analysis and Classification of CRPGs

To explore the biological role of the candidate genes, we conducted GO enrichment
analysis using the Rice Oligonucleotide Array Database (ROAD; http://www.ricearray.org/,
accessed on 28 December 2022) [66]. Based on the criteria query number >2, hypergeo-
metric p-value <0.05, and fold-enrichment value >2, we found that 15 GO terms were
over-represented in CRPGs. These included five terms associated with lipid metabolism:
oxylipin biosynthetic process (13.69; GO:0031408); fatty acid biosynthetic process (5.02;
GO:0006633); lipid biosynthetic process (4.66; GO:0008610); steroid biosynthetic process
(4.50; GO:0006694); and lipid metabolic process (3.05; GO:0006629). In addition, seven terms
were associated with response and regulation: response to stimulus (9.02; GO:0050896);
regulation of nitrogen utilization (7.76; GO:0006808); negative regulation of catalytic activ-
ity (4.08; GO:0043086); transcription (2.86; GO:0006350); regulation of transcription (2.73;
GO:0045449); response to stress (2.66; GO:0006950); and apoptosis (2.19; GO:0006915). Also,
three other terms were enriched: auxin-mediated signaling pathway (4.35; GO:0009734);
metal ion transport (4.21; GO:0030001); and protein ubiquitination (3.43; GO:0016567)
(Figure 4).

Terms for oxylipin biosynthetic process were the most enriched, as represented by
lipoxygenase (LOX) and the specialized cytochrome P450 enzyme, allene oxide synthase
(AOS). Their expression is consistent with the elevated expression of rice jasmonic acid (JA)
biosynthetic genes, such as OsLOX2 and OsAOS1, in the collar compared with the adjacent
leaf region [10]. The only enriched pathway in our KEGG analysis was alpha-linolenic acid
metabolism (Figure S2). Alpha-linolenic acid serves as the substrate for LOX in the biosyn-
thesis of JA, which is the most extensively studied oxylipin in plants [67]. The subsequent
process is taken over by AOS [68]. This finding was further supported by the regulation
overview visualized through MapMan analysis (Figure S3). The aforementioned genes
were classified into functional groups associated with jasmonate synthesis, indicating the
active biosynthesis of JA and its crucial biological functions in the collar region. In addition,
the identification of auxin-related genes in the MapMan overview analysis was consistent
with the terms “response to stimulus” and “auxin-mediated signaling pathway” in the
GO analysis results. Other hormone-related genes were also observed in the hormone
metabolism category. Additionally, approximately half of the total mapped CRPGs were
associated with transcription (GO:0006350) and regulation of transcription (GO:0045449),
highlighting the importance of TFs in tissue-preferential regulation. Overall, our functional
analysis revealed the tissue-preferential regulation by TFs and phytohormones, particu-
larly JA and auxin, and emphasized their intricate networks in relation to collar region
development and LA formation.

http://www.ricearray.org/
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2.5. Case Study Using the lg1 Mutant Revealed Downstream Regulatory Elements

Among the functionally characterized CRPGs, LIGULELESS1 (LG1) is a key gene
that initiates collar region organogenesis. Knockout of the LG1 gene leads to the entire
loss of the collar region and an erect leaf structure in rice. We identified a T-DNA inser-
tion line (3A-12312) of OsLG1/LOC_Os04g56170 in our T-DNA mutant pool (Figure 5e).
T-DNA was inserted into the first exon of OsLG1, and wild-type plants and oslg1 mutants
were segregated through genotyping experiments (Figure 5f). Quantitative real-time PCR
analysis showed that there was no OsLG1 mRNA detected in 3A-12312 line homozygous
plants (Figure 5g). As previously reported, oslg1 plants exhibited a complete absence of
the collar region, and 4-week-old lg1 plants showed a more obvious erect leaf structure
than wild-type plants (Figure 5a–d). LG1 is a member of the SQUAMOSA PROMOTER
BINDING-LIKE (SPL) TF family. In Arabidopsis and wheat, LG1 orthologous genes directly
bind to the promoter region containing the GTAC core motif [69,70] (Figure 5h). Consider-
ing the conserved function of LG1 in multiple crops (rice, maize, and wheat) [70,71], we
hypothesized that CRPGs containing GTAC motifs in their promoters could potentially be
regulated by LG1. To identify potential targets, we used Find Individual Motif Occurrences
(FIMO), which is embedded in the MEME tool, to screen for TFs among CRPGs that possess
the GTAC motif within their 2 kb promoter region. As a result, we identified five TFs
as potential downstream regulatory genes of OsLG1. The expression levels of the genes
encoding these five TFs were significantly reduced in the oslg1 mutant compared with wild-
type plants, supporting our hypothesis regarding the regulatory pathway (Figure 5i–m).
However, the direct binding ability of OsLG1 to the GTAC motif of the five CRPGs requires
further investigation.
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Figure 5. Phenotype of the rice lg1 mutant and discovery of downstream regulatory factors of OsLG1.
(a–d) Comparison of wild-type (WT) plant (left) and lg1 mutant (right) collar region, showing the
adaxial side (a), abaxial side (b), lateral side (c), and overall features (d). Scale bars in (a–c) indicate
1 cm, and in (d) indicate 10 cm. (e) Schematic diagram of T-DNA insertional line 3A-12312 for OsLG1.
White boxes represent the 5′ and 3′ UTR regions, and black boxes represent the exon region. T-DNA
was inserted in the first intron. F, R, and NGUS are primers used for genotyping. EP_F and EP_R are
primers for checking expressions. Scale bar: 0.5 kb. (f) Segregation analysis of the lg1 mutant through
genotyping. (g) Expression validation of OsLG1 in WT and lg1 mutant. (h) Sequence logo for GTAC
core motif. (i–m) Expression of five candidate genes in the WT and lg1 mutant. The internal control
used in this study was OsUbi5 (Os01g22490). The experiment included three biological replicates,
and the t-test was conducted on independent samples with Bonferroni correction. ** 0.001 < p ≤ 0.01;
*** 0.0001 < p ≤ 0.001; **** p ≤ 0.0001.
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3. Discussion

Manipulating LA is an important trait for the efficient use of limited land and energy
resources. Due to its importance, several studies have illuminated the organogenesis
process of the collar region, which is a determinant organ of LA, and the involving genetic
factors in different perspectives [10,11]. Despite the collar region mRNA profiling in
prior studies, it is necessary to identify additional candidate genes with organ-preferential
expression owing to the developmental and positional dynamics of the collar region. Also,
previous studies have predominantly focused on stage-specific genes during collar region
development, but the pleiotropic expression of these genes poses a major challenge for
practical applications. To overcome this challenge and offer a more comprehensive set of
potential candidates, we performed genome-wide identification and functional analysis of
CRPGs in rice.

Through the integration of our RNA-Seq analysis with NCBI SRA datasets, we suc-
cessfully identified 657 CRPGs. To validate the reliability of our in silico expression anal-
ysis data, we conducted expression testing on a randomly selected subset of six CRPGs
(Figures 1–3). Functional enrichment analyses using GO and KEGG provided valuable
insights into the biological implications of these genes (Figure 4). Notably, the most
prominent terms among genes exhibiting preferential expression in the collar region were
phytohormone-related, particularly JA biosynthesis and auxin signaling. Previous studies
have shown that auxin has a negative effect on collar region development and regulation,
including biosynthesis and signaling, while also interacting with other phytohormones or
nutrients [72]. Given the complexity of this regulatory system, it may be more effective
to maximize the responsiveness of tissue-specific signaling genes rather than fine-tuning
hormone levels to control leaf inclination. Regarding JA, except for MeJA, which represses
leaf inclination through a brassinosteroid-dependent mechanism [73], there is limited in-
formation on the action of JA-related genes, specifically in the collar region, while the
involvement of JA in collar region development has been hinted. In line with this notion,
although no previously functionally characterized genes related to programmed cell death
(PCD) have been identified, the term “apoptosis” was enriched in our study. Notably,
Zhou et al. (2017) [10] highlighted the crucial role of PCD in the overall development
of the collar region, yet PCD-related terms were not specifically identified in their study.
This discrepancy may be attributed to the unspecified expression of the genes analyzed.
In summary, the functional assessment of CRPGs in relation to these relevant terms may
provide insights into the molecular mechanisms underlying JA or PCD in the collar region
that are yet to be elucidated.

The LG1 gene (Table 1) is renowned for its involvement in the erect leaf phenotype in
crops, making it a promising target for crop improvement [26]. However, the research on
the downstream mechanisms of LG1 has not advanced proportionally to its significance. In
our study, we identified five downstream regulatory genes of OsLG1 among the CRPGs
(one each from the MYB, NAC, bZIP, bHLH, and Dof TF families) (Figure 5). Previous
studies have documented the role of these TF families in governing LA regulation. For
example, OsMYB7 contributes to leaf inclination by modulating auxin levels and promoting
cell elongation on the adaxial side [74]. Although the erect leaf phenotype offers advantages
in terms of enhanced yield under certain conditions, for the adaptation of crops to diverse
geographical environments, it is considered more desirable to have erect leaves while
retaining some degree of plasticity rather than a complete loss of structural flexibility.
From this perspective, the five CRPGs downstream of OsLG1 hold potential as promising
candidates for exhibiting the desired phenotype without negatively impacting plant growth.
Although further investigation into the underlying molecular mechanisms is necessary, we
present an overall hypothetical model that will be valuable for future studies (Figure 6).
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(b) Detailed developmental processes in the sequence of leaf angle formation, along with potential
molecular regulators that could serve as candidates for crop improvement.

Direct-sowing cultivation has garnered considerable attention as a strategy to reduce
carbon emissions. However, direct-sowing often involves dense planting, which presents
challenges in terms of energy utilization efficiency and disease management [75]. As a
consequence, the stress-related CRPGs identified in our study, along with the aforemen-
tioned candidates, hold potential not only for uncovering molecular mechanisms but also
for practical applications. Moreover, the development of the collar region exhibits a certain
level of conservation across various crops, providing a valuable foundation for expanding
research to other crops that have received comparatively less attention than rice. Collec-
tively, comprehensive investigations and dissections of currently identified CRPGs will be
the cornerstone of biotechnological applications and crop breeding to achieve the so-called
geo-adapted crops with optimal plant ideotype.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Dongjin rice (O. sativa ssp. japonica) and T-DNA insertional line (3A-12312, cv. Dongjin)
seeds were respectively sterilized with 50% sodium hypochlorite and germinated on half-
strength Murashige and Skoog medium for one week in an incubator at 28 ◦C/22 ◦C
(day/night) under continuous light conditions. Seedling plants (7 days old) were trans-
ferred to the soil condition in a greenhouse or artificial growth chamber (28 ◦C/25 ◦C
day/night, 14/10 h light/dark, and 80% relative humidity) at the Kyung Hee University,
Yongin, Republic of Korea, for further development.

4.2. RNA-Seq Analysis and Data Collection

The collar, ligule, and sheath from 5- to 6-week-old WT vegetative-stage plants (cv.
Dongjin) cultivated under greenhouse conditions were sampled for RNA-Seq analysis.
We used a RNeasy Plant Mini Kit from Qiagen to extract RNA from samples and then a
TruSeq Stranded mRNA LT Sample Prep Kit for library construction. The libraries were
sequenced on an Illumina platform (Illumina NovaSeq 6000) [76], with two biological
replicates for each sample. Raw expression datasets for leaf, shoot, root, anther, pollen,
seed, and callus tissues were downloaded from NCBI SRA (http://ncbi.nlm.nih.gov/sra/,
accessed on 28 December 2022). An identical pipeline was used for preprocessing and
reference genome alignment of the sequenced raw data of the abovementioned tissues,

http://ncbi.nlm.nih.gov/sra/
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followed by normalization, as described previously [28]. The accession number for the
collar, ligule, and sheath is E-MTAB-11005 in ArrayExpress; that for leaf, shoot, root, anther,
pollen, seed, and callus tissues is DRP000391 in NCBI SRA.

4.3. Identification of Candidates Coupled with Heatmap Analysis

Using the DESeq2 package, we conducted statistical testing based on normalized
read counts to identify differentially expressed genes (DEGs) upregulated in the collar
region compared with the leaf region. We selected genes with a log2 fold change >1 and
a p-value < 0.05. The integrated log2 intensity values of the resulting upregulated DEGs
were then loaded into the MeV program (version 4.9.0), where KMC analysis was per-
formed using the Euclidean distance algorithm [77]. This clustering analysis grouped the
upregulated DEGs into 12 distinct clusters, from which two that exhibited a preferential ex-
pression pattern in the collar region were selected. Subsequently, we applied an additional
filter requiring a log2 intensity value >3 in the collar region. Finally, a heatmap showing
the expression patterns of these final candidates was generated using the MeV program
(version 4.9.0) and employing the single-color array method. Information regarding the
657 CRPGs identified is listed in Table S1.

4.4. Literature Analysis

The OGRO (http://qtaro.abr.affrc.go.jp/ogro/table, accessed on 28 December 2022) and
funRiceGenes (http://funricegenes.github.io/, accessed on 28 December 2022) databases
were searched to identify functionally characterized CRPGs. Detailed information regard-
ing these functionally characterized CRPGs is provided in Table 1.

4.5. Enrichment Analysis Via GO, KEGG, and MapMan

The Gene IDs of the 657 CRPGs were used as entries for query mapping in ROAD
(http://ricephylogenomics-khu.org/road/home.php, accessed on 28 December 2022). To
identify significant GO terms (GO type: biological process), certain criteria were applied:
query number >2; fold-enrichment value >2; and hypergeometric p-value < 0.05 [78]. The
fold-enrichment values were obtained by dividing the query number by the query-expected
value. To conduct KEGG enrichment analysis, we used R studio (2023.06.0+421) along
with the clusterProfiler package version 4.8.1. The input data included cluster information
and Rice Annotation Project Database IDs (http://rapdb.dna.affrc.go.jp, accessed on 28
December 2022), with the organism code for rice specified as “dosa”. The results were
filtered by employing an adjusted p-value threshold of <0.05 [79]. For visualization, R
studio version 4.3.0 and the ggplot2 package version 3.4.2 were used [80]. MapMan version
3.6.0RC1 was used for visualizing CRPGs mapped to various pathways or processes [81].
An overview of metabolism and regulation was analyzed. Detailed information regarding
GO and MapMan analysis is presented in Table S2 and Table S3, respectively.

4.6. RNA Extraction and qRT-PCR

Wild-type plants (cv. Dongjin) and lg1 mutants were grown under growth cham-
ber conditions prior to RNA extraction. Subsequently, 1 cm of the collar region was
collected and immediately frozen in liquid nitrogen. Total RNA was isolated manually
(RNAiso; Takara Bio, Shiga, Japan) and quantified using a NanoDrop Spectrophotometer
ND-2000 [82]. After synthesizing cDNAs using SuPrimeScript RT Premix [with oligo (dT),
2×] (GeNet Bio, Daegu, Republic of Korea), qRT-PCR was performed on a Rotor Gene Q
instrument system (Qiagen, Hidden, Germany) using SYBR Green I (GeNet Bio, Republic
of Korea). All reactions were conducted in three biological replications, and data analysis
was performed using the 2−∆∆Ct method, as previously described [83]. For other tissues,
samples were collected as previously reported [84]. All the primers used in this study are
listed in Table S4.

http://qtaro.abr.affrc.go.jp/ogro/table
http://funricegenes.github.io/
http://ricephylogenomics-khu.org/road/home.php
http://rapdb.dna.affrc.go.jp
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4.7. Motif Scanning

The motif matrix profile of the GTAC core motif (MA0578.1) was downloaded from
JASPAR 2022 in MEME format [85]. The function FIMO (Find Individual Motif Occurrences)
in MEME suite (version 5.5.3) was used for scanning the 2 kb upstream promoter sequence
of TFs [86] among CRPGs that matched with the GTAC motif [87]. The resulting information
is in Table S5.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12162959/s1, Figure S1. Venn diagram of functionally charac-
terized CRPGs. Figure S2. KEGG enrichment analysis for 657 CRPGs. Figure S3. MapMan analysis
for 657 CRPGs. Results of mapping 657 CRPGs to (a) metabolism overview and (b) regulation
overview. Table S1. Detailed information of 657 collar region-preferential genes. Table S2. Summary
of enriched GO terms for 657 CRPGs. Table S3. Summary of functional classification of 657 CRPGs
using MapMan analysis. Table S4. Summary of primers used in this study. Table S5. Motif scanning
result for TFs among CRPGs.
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