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Abstract: The rising predominance of type 2 diabetes, combined with the poor medical effects seen
with commercially available anti-diabetic medications, has motivated the development of innovative
treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion
enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with
fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates
digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose.
It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result,
scientists are being urged to target α-amylase and create inhibitors that can slow down the release of
glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial
plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity
as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory
actions of various plant extracts have been identified through phytochemical research, paving the
way for further development and application. The majority of the findings, however, are based on
in vitro investigations. Only a few animal experiments and very few human investigations have
confirmed these findings. Despite some promising results, additional investigation is needed to
develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This
review summarizes the most recent findings from research on plant-derived pancreatic α-amylase
inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers
insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their
interactions with inhibitors.

Keywords: alpha-amylase; anti-diabetic activity; postprandial hyperglycemia; extract; natural com-
pounds; type 2 diabetes

1. Introduction

Diabetes mellitus is a group of metabolic disorders marked by persistent increases in
blood glucose levels. This condition is caused by a defect in insulin production, insulin
function, or both factors. Insulin insufficiency and its resistance to the intended target
tissues cause abnormalities in the metabolic processing of carbohydrates, lipids, and pro-
teins [1–3]. Diabetes is linked to several short- and long-term health ramifications. Acute
health problems include diabetic ketoacidosis, malignant hyperthermia-like syndrome
with rhabdomyolysis, and hyperosmolar hyperglycemia, all of which carry a significant
risk of morbidity and fatality in the near term [4,5]. The long-term ramifications might
entail hypertension, lipid disorders, retinopathy, renal malfunction, nonalcoholic fatty liver
disease, neurological diseases, cardiovascular and atherosclerotic problems, and others [4,5].
The most prevalent signs of hyperglycemia include polyuria, excessive thirst, unexplained
weight loss, hyperphagia, and a lack of visual acuity [6]. Depending on the mode of its
manifestation, there are several different types of diabetes, which include: (1) type 1 dia-
betes (T1D), which is caused by the destruction of pancreatic β-cells by the body’s immune
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system; (2) type 2 diabetes (T2D), which is characterized primarily by reduced insulin
receptor sensitivity; (3) gestational diabetes (GD), which is recognized in the second or
third trimester of pregnancy but was not concisely identified as diabetes prior to gestation;
and (4) particular kinds of diabetes caused by different factors [7]. Diabetes mellitus is a
major global disease, affecting over half a billion individuals in 2021, and the number of
adults affected is expected to reach nearly 800 million by 2045 [8,9]. T2D, which is the most
prevalent type (~90%), is a metabolic disorder that involves carbohydrate, lipid, and protein
metabolic abnormalities as well as deficiencies in insulin secretion, typically accompanied
by insulin resistance [10]. These chronic metabolic disorders may result in neuropathy,
retinopathy, angiopathy, and nephropathy [11]. In this perspective, carbohydrate-digesting
enzyme inhibition is regarded as a therapeutic strategy for the management and treat-
ment of T2D. The most abundant carbohydrate in meals is starch, which is composed of
two distinguished polysaccharides: one is linear with α-(1→4) glycosidic bonds (amylose),
and the other is branched with α-(1→6) glycosidic bonds (amylopectin) [12]. Pancreatic
α-amylase (EC 3.2.1.1) is the most essential digestive enzyme. It is a calcium-based metal-
loenzyme that acts as a catalyst and facilitates the hydrolysis of the α-1,4 glycosidic bonds
of polysaccharide molecules such as amylose, amylopectin, glycogen, and other maltodex-
trins and is accountable for the majority of starch digestion in humans. Another digestive
enzyme, α-glucosidase or maltase (EC 3.2.1.20), catalyzes the final phase of carbohydrate
digestion, acting on 1,4-alpha bonds to generate glucose (Figure 1) [13].
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Figure 1. Schematic depiction of the involvement of α-amylase in postprandial hyperglycemia linked
with starch hydrolysis.

Scientific investigations have shown the association between the activities of human
pancreatic α-amylase (HPA) and postprandial glucose levels, highlighting the importance
of lowering postprandial hyperglycemia (PPHG) in the management of T2D [14]. The
capacity of α-amylase enzyme inhibitors to prevent the digestion and absorption of dietary
starch has led to their being categorized as starch blockers. Nevertheless, α-pancreatic
amylase activity inhibition should be moderated to avoid bacterial fermentation of non-
digested carbohydrates in the colon caused by excessive suppression of the activity of this
enzyme, which gives rise to diarrhea and flatulence [15]. There are already certain diabetes
medications that work primarily by limiting carbohydrate digestion and absorption. The
first α-glucosidase inhibitor accessible for diabetic therapy was acarbose, a microbial
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inhibitor that inhibits α-amylase, maltase, and sucrase (EC 3.2.1.48) activities. Voglibose is
a novel bacterial α-glucosidase inhibitor that suppresses maltase, isomaltase (EC 3.2.1.10),
and sucrase activities, whereas miglitol is a 1-deoxynojirimycin derivative that functions
by inhibiting the activities of glucoamylase (EC 3.2.1.3), sucrase, and isomaltase [16,17].
Although these medicines are effective in stabilizing postprandial blood glucose levels in a
large number of individuals, they are frequently linked with substantial gastrointestinal side
effects [16]. Furthermore, the undesirable clinical outcomes associated with marketed anti-
hyperglycemic drugs are partly to blame for the common medication failure to comply that
occurs in diabetes patients [18]. Because of the significant side effects of such medications,
researchers have been looking for substitute therapies with minimal or no harmful effects.
Although these anti-diabetic medicines are commercially available, several attempts have
been made to produce non-cytotoxic anti-diabetic synthetic molecules [19–21]. From such
a perspective, herbal chemicals intend to offer milder techniques of controlling metabolic
problems and have been employed in traditional medical systems such as Indian Ayurveda
(alternative medicine), Chinese herbal medicines, and Arabic Unani (traditional medicine
used by the Muslims) since ancient times [22]. As a result, there is evidence suggesting the
potentially helpful impact of a vast variety of medicinal herbs in T2D management [23].
Aside from their efficiency, herbal therapies appear to have few side effects and offer a
cost-effective alternative to ingested commercial hypoglycemic medications. The World
Health Organization (WHO) suggested in 1990 that extensive studies be conducted on
the positive benefits of these plants [24]. In this regard, the current review highlights
research on the α-amylase inhibitory action of plants and their phytochemical components,
which may be effective in the treatment of diabetes. The review was conducted utilizing a
scientific database composed of web search engines, including SciFinder, Scopus, Google
Scholar, PubMed, and Science Direct, to examine published material between 2019 and 2023.
Search criteria included ‘amylase inhibitor’, ‘anti-diabetic characteristics’, ‘plant extracts’,
and ‘pancreatic amylase’. The latest articles related to pancreatic amylase (porcine and
human) inhibition by plant extracts were also included. Medical plants having a folkloric
background and α-amylase activity met the inclusion requirements.

2. Alpha-Amylase Structure and Mechanism of Action

In the human diet, starch serves as the main energy source. Dietary sugars and
starch are broken down to glucose by α-glucosidase and α-amylase enzymes. α-amylase
metalloenzymes can be found in the saliva and pancreatic juice and are members of the
glycoside hydrolase family 13 (GH13) [25–28]. Metalloenzymes are a diverse collection of
enzymes that utilize a metal cation as a co-factor in the enzyme’s active site. These enzymes
stimulate a wide range of reactions, including hydrolytic activities [29]. α-amylase is a
metalloenzyme that needs an important calcium ion for structural integrity and is activated
by chloride ions [30–32]. Although this family’s overall amino acid sequence homology is
low, it has short regions of highly conserved residues, and structural investigations have
shown that its members do have comparable three-dimensional structures [33]. These
isozymes are members of a multigene family located on chromosome 1 that is controlled
such that the various isozymes are only expressed in the pancreas or salivary glands [34].
The genes AMY1 and AMY2 produce both salivary and pancreatic α-amylase isozymes,
each of which has 496 amino acids in one polypeptide chain [35–37]. Before starch is
absorbed, salivary and pancreatic α-amylases hydrolyze it in the mouth and small intes-
tine [25,38,39]. Through the cleavage of 1-4-α-glycosidic bonds, these isozymes hydrolyze
carbohydrate polymers into shorter oligomers, such as maltose, a-limit dextrins, and mal-
totriose. An early partial cleavage into smaller oligomers (10–30%) is provided by the
salivary isozyme [37,40]. When partially digested saccharides enter the gut, pancreatic
amylase, which is produced in the pancreas and secreted into the lumen, extensively hy-
drolyzes them into smaller oligosaccharides [38]. Subsequently, α-glucosidases located in
the brush border hydrolyze the α-amylase products further into glucose in the lumen of



Plants 2023, 12, 2944 4 of 28

the small intestine [25,39,41,42]. Afterward, glucose transporters take the glucose from the
intestinal mucosa and transport it into the blood circulation [42].

The 3D structures of the α-amylase enzymes from human saliva, pancreas, and pig
pancreas have been determined using X-ray crystallography [33,43,44]. These enzymes’
architectures are all quite similar to one another. Three structural domains (A, B, and C)
make up mammalian amylases, the biggest of which, Domain A, creates a standard core
of (β-α)8 barrel fold (Figure 2a), one end of which is positioned at the crucial active site
residues (the catalytic triad of two aspartate (D197 and D300) and one glutamate (E233)
residue) (Figure 3b). The active site is located in a substantial cleft that separates the
carboxyl termini of the A and B domains. A bound chloride ion is present in Domain A as
well, and it has been long recognized to activate amylase [32,45]. The bound chloride ion
was found to form ligand interactions with R195, N298, and R337 in close proximity to the
active site (Figure 2c) [33]. Domain B, the smallest domain, creates a calcium-binding site
against Domain A’s β-barrels. The bound Ca2+ ion in Domain B, which also borders the area
of the active site, is likely crucial in preserving the active site region protein configuration.
N100, R158, D167, and H201, which make ligand interactions with calcium, may greatly
contribute to its function (Figure 2b). Anti-parallel β-structure makes up Domain C, which
is only tangentially related to Domains A and B. Notably, a stable pyrrolidone derivative
is created by post-translational alteration of human pancreatic a-amylase’s N-terminal
glutamate residue, which may offer defense against other digesting enzymes. It does not
seem plausible that the molecule’s N-terminal Domain C will directly contribute to the
catalytic process as it has a weaker connection to Domains A and B [33,46].
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Figure 2. (a) Ribbon diagram of the structure of human pancreatic α-amylase as a representative for
GH13 α-amylase. The three structural domains (A, B, and C) are indicated and colored as follows:
Domain A in blues, greens, yellows, and oranges; Domain B in lime green and pale cyan; and
Domain C in red. The N and C terminals are colored blue and red, respectively. The calcium and
chloride ions are shown as magenta and cyan spheres, respectively. (b) Human pancreatic α-amylase
calcium binding site; the sticks represent residues making ligand interactions with calcium, which
is represented as a magenta sphere. (c) Human pancreatic α-amylase chloride binding site; the
sticks represent residues making ligand interactions with chloride, which is represented as a cyan
sphere. From the structure, (a–c) were adopted with PDB entry code 1HNY [33] and produced using
PyMol [47].
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ribbon diagram. The chloride and calcium ions are represented as orange and magenta spheres,
respectively, in (a,b). (b) The active site of the human pancreatic α-amylase/acarbose complex;
residues located within a 4-A◦ radius of acarbose are represented as sticks (the catalytic triad of
D197-D300-E233). The acarbose, shown as sticks in (a,b), is colored cyan. From the structure,
(a,b) were adopted with PDB entry code 1B2Y [48] and produced using PyMol [47].

The catalytic processes in amylases are excellent representatives of a twofold dis-
placement mechanism, in which the carboxyl groups of Asp and Glu residues serve as
acid-base catalysts and a nucleophilic reactant in the creation of a covalent intermediate
during the catalysis sequence. Through the use of a charge relay mechanism, a Cl− ion
may facilitate the protonation of a catalytically significant carboxyl group, leading to the
activation [49–51]. With maltotriose and maltose as the main short oligomer yields (very
little production of glucose), α-amylase is an endoenzyme that attacks linear sections of
amylose and amylopectin several times [52–54]. According to kinetic studies, the pig
pancreatic enzyme’s active site may take up to five glucose molecules, meaning that there
are five sub-sites where glucose molecules can bind [52]. Several three-dimensional struc-
tures demonstrated the presence of multiple sites, but the pig pancreatic amylase structure
complexed with acarbose showed a sixth site [44]. The target of anti-diabetic drugs such
as α-amylase and α-glucosidase inhibitors is to reduce postprandial hyperglycemia, with
the most widely used ones being acarbose, voglibose, and miglitol. However, when used
in therapy, the inhibitors of α-glucosidase and α-amylase have been associated with gas-
trointestinal adverse effects such as diarrhea, bloating, and flatulence. The quest for the
development of novel α-amylase and α-glucosidase inhibitors is therefore crucial for the
management of PPHG in T2D. Such insights into α-amylase’s structure can be used to
better understand the interaction of α-amylase with various inhibitors in order to develop
anti-diabetic medicines with fewer adverse effects.

3. Plant Extracts as an α-Amylase Inhibitor Source

Several traditional medicines, in addition to the existing therapeutic options, have
been promoted for diabetes therapy. Traditional plant medicines are used to manage a
broad variety of diabetic symptoms all around the world. It is well acknowledged that plant
remedies have fewer negative effects than modern pharmaceuticals [55–60], as well as being
less expensive, driving both the public and healthcare institutions to investigate natural
medicinal goods as alternatives to synthetic medications. As a consequence, studies on
traditional medicinal herb-derived substances have grown in importance [61,62]. Several
folkloric/medicinal plant extracts have been shown to possess potent α-amylase inhibi-
tion activity; however, further animal studies are needed to confirm their hypoglycemic
physiological impact. Many studies investigated the potential role of medicinal plants in
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inhibiting α-amylase enzymes (Table 1). Among the latest plant extracts investigated in the
literature that are featured in this study, Prosopis cineraria (L.), Terfezia claveryi, Chenopodium
album L., and Salvia lavandulifolia Vahl have the highest potential to inhibit α-amylase
enzymes (Table 1).

Table 1. In Vitro α-amylase inhibition properties reported from various plant extracts.

Name of Plants Used Extract/Fraction/Parts IC50
IC50 (Control)

(Acarbose) Ref.

Argania spinosa
Roasted seeds oil 2.17 ± 0.24 mg/mL

0.41 ± 0.015 mg/mL [63]
Unroasted seeds oil 0.78 ± 0.16 mg/mL

Melicope glabra (Blume) T.
G. Hartley

Chloroform extracts
(leaves) 303.64 ± 10.10 µg/mL 188.6 ± 14.31 µg/mL [64]

Aloe megalacantha Baker Leaf latex 74.76 ± 1.98 µg/mL 16.49 ± 1.91 µg/mL
[65]

Aloe monticola Reynolds 78.10 ± 1.88 µg/mL 16.49 ± 1.91 µg/mL

Hedychium coronarium Koen Ethyl acetate fraction
(rhizomes) 58.15 ± 1.23 µg/mL - [66]

Cichorium endivia
Hydrophilic fraction

(extracted from leaves with
ethanol/water)

9.96 µg/mL 10.00 µg/mL [67]

Brown rice

Brown rice (BR) extract 48.96 ± 0.34% 54.14 ± 0.35%

[68]BR/Vanillin 99.32 ± 1.18%
86.48 ± 0.71%

BR/Vanillyl alcohol 96.55 ± 0.12%

Biyun no.7
(Kidney bean) Aqueous extract 1.659 ± 0.050 U/g DW - [69]

Rhus coriaria L. Ethyl acetate sub-extract
(leaves) 20.810 ± 0.747 µg/mL 26.993 ± 0.797 µg/mL [70]

Melicope latifolia Chloroform extract
(bark) 1464.32 µg/mL [71]

Arachis hypogaea Ethanol extract
(peanut seeds) 0.61 µg/mL 0.32 µg/mL [72]

Backhousia citriodora Essential oil 0.49 mg/µL

- [73]

Rosmarinus officinalis Essential oil of rosemary plus 0.45 mg/µL

Mentha piperita Essential oil
(leaf) 0.41 mg/µL

Origanum vulgare Essential oil
(leaf-phenol type) 0.41 mg/µL

Quercus variabilis Blume
Free polyphenol extract 5.25 ± 0.57 mg/mL

0.24 mg/mL [74]
Bound polyphenol extract 1.37 ± 0.11 mg/mL

Centaurea pterocaula Trautv Essential oil
(aerial part) 79.66 ± 0.43 µg/mL 11.6 ± 0.18 µg/mL [75]

Anchusa officinalis Crude extract 954.16 ± 7.46 µg/mL 17.68 ± 1.24 µg/mL [76]
Melilotus officinalis Crude extract 1.32 ± 0.08 µg/mL

Clausena indica
Hexane extract 1.37 ± 0.01 mg/mL

0.07 ± 0.00 mg/mL [77]
Ethyl acetate extract 8.56 ± 0.24 mg/mL

Prosopis cineraria (L.)
n-Butanol fraction

(pods) 22.01 ± 0.92 µg/mL
39.26 ± 2.19 µg/mL [78]

Ethyl acetate fraction 28.23 ± 1.06 µg/mL
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Table 1. Cont.

Name of Plants Used Extract/Fraction/Parts IC50
IC50 (Control)

(Acarbose) Ref.

Senna auriculata (L.) Roxb. Methanolic extract
(leaves) 49.45 µg/mL - [79]

Terfezia claveryi Methanol extract 38.7 µg/mL 45.3 µg/mL [80]

Rhododendron arboreum Sm. Methanol extract 51.1% - [81]

Phragmites karka (Retz.)

Dichloromethane fraction
(aerial part) 2.05 mg/mL -

- [82]
n-Hexane fraction

(aerial part) 2.08 mg/mL

Morus nigra Hexane fraction
(leaves) 13.05 mg/mL 0 0.21 mg/mL [83]

Salaria basilisca Protein hydrolysates
(peptide fraction F1) 71 µg/mL 14 µg/mL [84]

Leucaena leucocephala (Lam.)
De Wit

Ethanol extract
(leaves) 288.01 µg/mL 252.59 µg/mL [85]

Bergenia pacumbis Methanol extract 14.03 ± 0.04 µg/mL 20.12 ± 0.12 µg/mL [86]

Nonea obtusifolia (Wild.)
DC. Acetone extract 25.7 ± 0.08 µg/mL 28.18 ± 1.22 µg/mL [87]

Morus alba Linn Leaves 74.76 ± 6.76 µg/mL 35.34 ± 4.87 µg/mL [88]

Phylanthus emblica L. Methanolic extract
(leaves) 98.37 ± 1.09% [89]

Catunaregam spinosa Dichloromethane fraction
(bark) 77.17 ± 1.75 µg/mL 6.34 ± 0.07 µg/mL [90]

Chenopodium album L. Flavonoid fraction
(aerial part) 122.18 ± 1.15 µg/mL 812.83 ± 1.07 µg/mL [91]

Solanum virginianum

Aqueous extract
(fruits) 54.12 ± 0.44–86.80 ± 0.27%

58.36 ± 0.30–88.24 ± 0.16% [92]
Ethanolic extract

(fruits) 23.07 ± 0.47–81.61 ± 0.43%

Eucalyptus globulus

Ethanol extract (Hexane
defatted) 23.6 ± 1.2 µg/mL

5.2 ± 1.3 µg/mL [93]
Ethanol extract
(non-defatted) 14.8 ± 1.2 µg/mL

Maesobotrya dusenii Hutch. Crude methanol extract 24 µg/mL 28 µg/mL [94]

Veronica biloba

Aqueous extract 110.25 µg/mL

138.79 µg/mL [95]Ethyl acetate extract 121.09 µg/mL

Dichloromethane extract 123.68 µg/mL

Salvia lavandulifolia Vahl Aqueous extract 0.99 ± 0.00 mg/mL 0.52 ± 0.01 mg/mL [96]

Moringa oleifera Methanolic crude extract
(leaves) 65.6 ± 4.93% - [97]

Ziziphus mucronata Acetone extract 0.62 mg/mL 0.42 mg/mL [98]

Englerophytum
magalismontanum

Methanol fraction
(leaves) 10.76 ± 1.33 µg/mL 1.24 ± 1.64 µg/mL [99]
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Table 1. Cont.

Name of Plants Used Extract/Fraction/Parts IC50
IC50 (Control)

(Acarbose) Ref.

Achyranthes aspera
Crude extract

97.60 ± 1.11 µg/mL
68.13 ± 0.46 µg/mL [100]

Catharanthus roseus 94.05 ± 1.18 µg/mL

Pterocarpus marsupium Methanolic extract 158.663 ± 10.986 µg/mL 56.060 ± 4.465 µg/mL [101]

Rubus corchorifolius L.

70% ethanolic extract
(leaf tea) 1.26 ± 0.03 mg/mL

5.12 ± 0.42 mg/mL [102]70% methanolic extract
(leaf tea) 1.47 ± 0.05 mg/mL

Aqueous extract
(leaf tea) 4.39 ± 0.17 mg/mL

Sterculia nobilis Smith Ethyl acetate fraction
(pericarp) 13.550 ± 0.230 µg/mL 19.45 ± 0.26 µg/mL [103]

A recent study investigated the hypoglycemic effect of edible plant leaves from Pales-
tine that are used as folkloric anti-diabetic remedies [67]. The lipophilic and hydrophobic
fractions of these plants were tested against the porcine pancreatic α-amylase enzyme.
The hydrophilic fractions of Centaurea iberica and Cichorium endivia showed the highest
α-amylase activity with IC50 values of 12.33 µg/mL and 9.96 µg/mL, respectively. Fur-
thermore, the highest α-amylase inhibition effect for lipophilic fractions was observed for
Sisymbrium irio and Arum palaestinum, with IC50 values of 7.72 µg/mL and 25.3 µg/mL,
respectively. Additionally, rice extract’s biological activity against α-amylase was investi-
gated in Thailand, and the study showed that brown rice extract as well as the rice’s volatile
compounds, identified as vanillin and vanillyl alcohol, have high inhibitory effects against
α-amylase [68]. It is notable to mention that a synergy effect was noticed on α-amylase
inhibition activity when a combination of black, red, and white rice extracts along with
vanillin and vanillyl alcohol was used.

Rhus coriaria L. leaves and fruits are an important folk medicine that is used in Turkey
for the treatment of diabetes [104]. Gök et al. studied the effect of R. coriaria ethanol
extracts of leaf and fruit on α-amylase inhibitory activity in an attempt to isolate the
active compounds against α-amylase [70]. The ethyl sub-extract of R. coriaria showed
good α-amylase inhibition activity with an IC50 of 20.81 µg/mL against 26.99 µg/mL for
acarbose. The study showed the successful isolation of several compounds; among them,
penta-O-galloyl-β-glucopyranose, one of the main compounds in leaf and fruit extracts, had
α-amylase inhibition activity with an IC50 of 6.32 µM compared to 10.69 µM for acarbose.
Peanuts (Arachis hypogaea), another edible food, were investigated for their α-amylase
inhibition property [72]. Various organic extracts of peanuts were investigated, and it was
found that peanut seed ethanol extract has an α-amylase suppressing ability with an IC50
of 0.61 µg/mL, close to 0.31 µg/mL for acarbose, and the least cytotoxicity with an LC50
of 413.9 µg/mL. Melilotus officinalis (yellow sweet clover) is a medicinal plant typically
employed in Asia and Europe and has been used as an anti-inflammatory traditional
medicine [105,106]. As M. officinalis contains a high amount of coumarin derivatives, its
extracts were clinically tested for the treatment of diabetic foot [107]. Paun et al. studied the
polyphenolic-rich extracts of M. officinalis and their anti-diabetic activity [76]. M. officinalis
polyphenolic-rich extracts displayed notable α-amylase inhibitory activity with an IC50 of
1.30 µg/mL, while acarbose showed an IC50 of 17.68 µg/mL, suggesting that it could be a
good candidate for developing a natural anti-diabetic food supplement.

Solanum species are a rich source of traditional medicine remedies as antipyretic,
anti-inflammatory, antioxidant, and anti-diabetic agents [108–110]. Ju’a-açu fruit (Solanum
oocarpum), also known as Brazilian sunberry, has an alkaloid composition and has been
reported to have anti-diabetic activity [111]. Saraswathi et al. studied the phytoconstituents
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of the ethanolic and aqueous extracts of Solanum virginianum dried fruits for their anti-
diabetic activity [92]. The study showed that both the ethanolic and aqueous fruit extracts
have α-amylase inhibition activity, with the aqueous extract having higher enzymatic
inhibition activity (54.12–86.80%) than the ethanolic extract (23.07–81.61%).

In China, raspberry leaves are consumed as tea, and it has been reported to have
anti-diabetic activity [112]. In a recent study, Li et al. investigated the inhibitory activity
of raspberry leaf tea (Rubus corchorifolius L.) (RLT) extract digestive enzymes and found
potent α-amylase inhibition activity for its ethanolic, methanolic, and aqueous extracts
with an IC50 of 1.26 mg/mL, 1.47 mg/mL, and 4.39 mg/mL, respectively, against an IC50 of
5.12 mg/mL for acarbose aqueous extract [102]. The study identified the major inhibitors
responsible for the extract activity as epigallocatechin gallate (EGCG), isovitexin, rutin,
isoorientin, procyanidin, delphinidin-3-O-glucoside, dihydromyricetin, and procyanidin
C3. The authors conducted additional molecular docking analyses and discovered these
inhibitors interact with the digestive enzyme through hydrogen bonds or van der Waals
forces, resulting in the retardation of enzyme activity [102]. Mikailu et al. studied the
effect of the stem bark Maesobotrya dusenii Hutch methanol extract on α-amylase inhibition
activity. The authors found that all the extracts showed significant amylase activity with
56.7% inhibition in a dose-dependent manner. Maesobotrya dusenii Hutch crude methanol
extract showed α-amylase activity with an IC50 of 24 µg/mL against 28 µg/mL for acarbose.

Sterculia nobilis Smith seeds, leaves, and nuts are used to prepare several food dishes in
China. It is commonly native to Vietnam, Indonesia, Japan, and south China and is usually
utilized to heal gastrointestinal and circulatory problems [113–115]. The dark red shell
of S. nobilis Smith fruit (pericarp) has been investigated for its inhibition activity against
digestive enzymes [103]. The study showed that the pericarp ethyl acetate fraction has a
potent uncompetitive α-amylase activity, with an IC50 of 13.55 µg/mL against 19.45 µg/mL
for acarbose. Spectroscopic methods were used to elaborate the mechanism of α-amylase
inhibition, and the results showed the ethyl acetate fraction alters the enzyme’s secondary
structure and tryptophan/tyrosine residue microenvironment, resulting in enzyme activity
inhibition [103]. The early investigation of these traditional medicinal plant extracts demon-
strated promising α-amylase inhibitory activity, but more research is needed to confirm
their anti-diabetic impact.

Prosopis cineraria (L.) Druce pods are usually used in diets as a vegetable in the Indian
subcontinent and have been reported to have anti-diabetic properties [116]. Kumar et al.
studied the anti-diabetic effect of P. cineraria pod extracts in vitro as well as in vivo
(Table 2) [78]. The study shows that n-butanol fractions from the pods have potent
α-amylase inhibition activity with an IC50 of 22.01 µg/mL against 39.26 µg/mL for acar-
bose. The n-butanol fraction was investigated for toxicity and found to be non-toxic
when the mice ingested an oral dose of the fraction up to 2000 mg/kg. Further stud-
ies are required to investigate the P. cineraria pods as a promising anti-diabetic candi-
date. A recent study showed Terfeziaclaveryi (truffle, a fungus that grows wildly in the
desert) methanol extract to have an α-amylase inhibition activity of 38.7 µg/mL, which is
higher when compared to 45.3 µg/mL of acarbose [80]. The in vivo anti-diabetic activity
showed that a 200 mg/kg dose of Terfeziaclaveryi methanol extract reduced the fasting
plasma glucose level. Chenopodium album L. is another anti-diabetic herbal remedy can-
didate that showed promising α-amylase activity from its methanolic and aqueous root
extracts [117,118]. C. album aerial parts’ alkaloid fraction (CAAF) showed a more potent
α-amylase enzyme inhibition activity than acarbose, with an IC50 of 122.18 µg/mL and
812.83 µg/mL, respectively [91]. The CAAF fraction did not produce severe toxicity in vivo
and showed promising anti-diabetic activity in a dose-dependent manner. The study sug-
gests that the CAAF acts primarily as an α-amylase inhibitor. Salvia lavandulifolia Vahl is
commonly found in the Mediterranean basin, and as a traditional medicine, it is applied
as a virucidal, fungicidal, and bactericidal agent [119,120]. Its aqueous extract is widely
used in this region as an anti-diabetic remedy for its hypoglycemic effect [121]. Remo
et al. investigated the aqueous extract of S. lavandulifolia Vahl for its α-amylase inhibitory
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activity as well as its hypoglycemic effect in vivo [96]. The aqueous extract showed sig-
nificant α-amylase inhibition activity with an IC50 of 0.99 mg/mL compared to an IC50 of
0.52 mg/mL for acarbose. It also showed a hypoglycemic effect on diabetic rats, with an
AUC of 51.94 g/L/h. This study shows that S. lavandulifolia is a potential candidate for
anti-diabetic drugs (Table 2).

Table 2. List of in vivo effects of α-amylase inhibitors reported from several plant extracts.

Plant
Extracts

Dosage of Plant
Extract Used

Experimental
Animals

Types of
Diabetes
Induction

Administration
Route

Diagnostic
Criteria Inference Ref.

Oxalis
pes-caprae

Methanolic
extract

150 mg/kg BW Swiss albino
mice

Alloxan-
induced
diabetes

Intraperitoneal
injection

Fasting blood
glucose (FBG)

level, body
weight

Hypoglycemic [122]

Cardamine
hirsuta Linn

Hydro-
methanolic

extract

125, 250, and
500 mg/kg BW

Male
Sprague

Dawley (SD)
rats

High-fat
diet (HFD),
Streptozo-

tocin
(STZ)-

induced
diabetes

Oral and
intraperitoneal

injection
FBG level Hypoglycemic,

dose-dependent [123]

Trachinotus
ovatus

Protein
hydrolysates

100, 500, and
1000 mg/kg BW

Male
Kunming

mice

STZ-
induced
diabetes

Intraperitoneal
injection FBG level Hypoglycemic,

dose-dependent [124]

Sorbaria
tomentosa

Lindl.
Rehder

Methanolic
extract

150 and
300 mg/kg BW Rats

Alloxan-
induced
diabetes

Intraperitoneal
injection FBG level Hypoglycemic [125]

Chenopodium
album L.

Flavonoid
fraction

500 mg/kg BW SD rats
HFD-STZ-
induced
diabetes

Oral and
intraperitoneal

injection

Glucose,
cholesterol,

and
triglyceride

levels

Hypoglycemic [91]

Terfezia
claveryi

Methanolic
extract

200 mg/kg BW Male Wistar
albino rats

STZ-
induced
diabetes

Intraperitoneal
injection FBG level Hypoglycemic

time-dependent [80]

Salvia
lavandulifolia

Vahl
Aqueous

extract

400 mg/kg BW Normal rats D-glucose,
2 g/kg Oral

Oral glucose
tolerance test

(OGTT)
Blood glucose

level

Hypoglycemic [96]

Artemisia
absinthium L.

Aqueous
extract

200 mg/kg BW Wistar rats
Alloxan-
induced
diabetes

Oral
Postprandial
blood glucose

(PBG) level
Hypoglycemic [126]

Ammodaucus
leucotrichus
Coss. and

Durieu
Aqueous

extract

150 mg/kg BW Wistar albino
rats

Alloxan-
induced
diabetes

Oral OGTT Hypoglycemic [127]
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Table 2. Cont.

Plant
Extracts

Dosage of Plant
Extract Used

Experimental
Animals

Types of
Diabetes
Induction

Administration
Route

Diagnostic
Criteria Inference Ref.

Porphyra spp.
Polysaccha-

rides
100 mg/kg BW Rats - Oral PBG level Hypoglycemic [128]

Prosopis
cineraria

Ethyl acetate
fraction/n-

Butanol
fraction

250, 500, 1000
and 2000 mg/kg

BW

Swiss albino
mice

Sucrose
tolerance

test (OSTT)
Oral Serum glucose

concentration Hypoglycemic [78]

Allium
sativum L.

Polysaccharides

1.25, 2.5, and
5 g/kg BW

Male
Kunming

mice

STZ-
induced
diabetes

Intraperitoneal
injection OGTT, FBG Hypoglycemic [129]

4. Secondary Metabolites Isolated from Various Plant Sources as Potential
α-Amylase Inhibitors

Many different plant extracts have been used for therapeutic purposes throughout
history, whether on purpose or by accident. There have been reports of numerous plant
extracts and their secondary metabolites having anti-diabetic effects, particularly through
α-amylase or α-glucosidase inhibition [130,131]. Due to their fewer adverse side effects and
easy accessibility, there is a growing interest in developing medicinal plant extracts or the
extracted secondary metabolites as an alternative and complementary natural therapeutic
for the medical care of diabetes [132,133]. Several secondary metabolite groups, including
flavonoids, polysaccharides, phenolic acids, terpenoids, tannins, alkaloids, and xanthones,
have been identified as prospective inhibitors of the α-amylase enzyme (Figure 4, Table 3).
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Table 3. List of α-amylase inhibitors (in vitro) isolated from diverse plant species.

Class of
Compounds

Bioactive
Compound Source (Plant’s Name) IC50

IC50
(Control)

(Acarbose)
Ref.

Flavonoids

5-hydroxy-2-(4-
methoxy-3-((E)-3-

methylbut-1-enyl)-5-
(3-methylbut-3-

enyl)phenyl)chroman-
4-one

Andrographis echioides 3.357 µg/mL [134]

Luteolin Taraxacum mongolicum 42.33 ± 0.82 µg/mL - [135]

Isoquercitrin Melilotus officinalis 9.65 ± 0.43 µg/mL 17.68 ± 1.24 µg/mL [76]

Epicatechin gallate Euryale ferox
(seed coat) 0.92 mg/mL 1.08 mg/mL [136]

Puerarin Agave americana L. 3.87 µM [137]

Tricetin

Punica granatum

0.43 ± 0.12 mg/mL

0.038 ± 0.017 mg/mL [138]

Flavonoid
glucoside

Tricetin 4′-O-β-
glucopyranoside 1.17 ± 0.32 mg/mL

Rutin Melilotus officinalis 11.42 ± 0.62 µg/mL 17.68 ± 1.24 µg/mL [76]

quercetagetin-7-O-β-
D-glucopyranoside Tagetes minuta L. 7.8 µM 7.1 µM [139]

luteolin-7-O-α-L-
rhamnoside Phylanthus emblica L. 89.79% - [89]

hypolaetin 8-O-β-D-
galactopyranoside

Thymelaea tartonraira
(leaves) 46.49 ± 2.32 µg/mL 0.44 ± 0.022 µg/mL [140]

Ent-kaurane
diterpenoids

Wedtriloside A Wedelia trilobata
(leaves)

112.20 ± 2.87 µg/mL - [141]
Wedtriloside B 87.10 ± 1.89 µg/mL

Abietane
diterpene

Carnosol
Salvia aurita
(aerial part)

19.8 ± 1.4 µg/mL

10.2 ± 0.6 µg/mL [142]12-methoxycarnosic
acid 16.2 ± 0.3 µg/mL

Pentacyclic
triterpenoid Oleanolic acid

Xylopia aethiopica (Dunal)
A. Rich.
(fruit)

89.02 ± 1.12 µM - [143]

Triterpenoid Glochidon Phyllanthus debilis 38.15 ± 1.40 µM 33.68 ± 3.12 µM [144]

Triterpenoid
saponin Ligularoside A Passiflora ligularis Juss

(leaves) 409.8 ± 11.4 µM 234.1 ± 15.9 µM [145]

Phenylpropanoids Jionoside D Clerodendrum
infortunatum L. 3.4 ± 0.2 µM 5.9 ± 0.1 µM [146]

Polysaccharides

WSRP-2a Rosa setate × Rosa rugosa
(waste biomass)

3.41 mg/mL
0.57 mg/mL [147]

WSRP-2b 1.72 mg/mL

PD-1 Porphyra spp. 12.72 mg/mL [128]

SGP-1-1 Siraitia grosvenorii 61.73% at 1 mg/mL [148]

LLP50
(polysaccharides

fraction)

Lycium barbarum
(leaves) 1.659 mg/mL 0.0002 mg/mL [149]

Xyloglucan Tamarindus indica L 72.49 ± 0.84% 92.49 ± 1.97% [150]
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Table 3. Cont.

Class of
Compounds

Bioactive
Compound Source (Plant’s Name) IC50

IC50
(Control)

(Acarbose)
Ref.

Phenolic acid
and its

derivatives

Ellagic acid Quercus variabilis Blume 0.19 ± 0.02 µg/mL 0.24 µg/mL [74]

Rosmaric acid
Anchusa officinalis

0.92 ± 0.07 µg/mL
17.68 ± 1.24 µg/mL [76]

Chlorogenic acid 1.84 ± 0.05 µg/mL

p-Coumaric acid Agave americana L. 10.16 µM - [137]

Ellagitannins

Chingiitannin A
Rubus chingii Hu

(unripe fruit/n-BuOH
fraction)

4.52 ± 0.30 µM

35.71 ± 4.93 µM [151]Lambertianin A 10.32 ± 0.10 µM

Sanguiin H-6 11.00 ± 0.21 µM

Gallotanins
1,2,3,4,6-penta-O-

galloyl-β-D-
glucopyranose

Rhus coriaria
(leaves) 6.32 ± 0.18 µM 10.69 ± 0.50 µM [70]

Dihydrostilbene
glycosides Sasastilboside A Camellia sasanqua Thunb

(leaves) 53.7 ± 1.6 µM - [152]

Proanthocyanidins
Chinese bayberry

leaves
proanthocyanidins

Myrica rubra Sieb. et
Zucc.

(leaves)
3.075 ± 0.073 µg/mL - [153]

Phenolic Dehydrodieugenol B Ocimum tenuiflorum 29.6 µM 13.85 µM [154]

Coumarin Halfordin Melicope latifolia 197.53 µM 282.39 ± 8.14 µM [71]

Alkaloids

3,3′,5,5′,8-
pentamethyl-3,3′-

bis(4-methylpent-3-
en-1-yl)-3,3′,11,11′-
tetrahydro-10,10′-

bipyrano[3,2-
a]carbazole

Murraya koenigii (L.) 30.32 ± 0.34 ppm - [155]

Berberine Cardiospermum
halicacabum 72% at 10 µg/mL [156]

Pregnane
glycosides

Drevoluoside Q Dregea volubilis
(leaves) 51.3 ± 2.1 µM 36.3 ± 0.5 µM [157]

Gymsyloside B
Gymnema sylvestre

(leaves)

175.8 ± 2.3 µM

72.4 ± 0.8 µM [158]Gymsyloside C 162.2 ± 2.7 µM

Gymsyloside D 113.0 ± 0.7 µM

Prenylated
xanthones Mangoxanthone A Garcinia mangostana

(pericarp) 22.74 ± 2.07 µM - [159]

Xanthone
Garcixanthone D Garcinia mangostana

(pericarp)
93.8%

96.4% [160]
Garcinone E 85.6%

Xanthophyll Fucoxanthin Phaeodactylum
tricornutum 28.38 ± 0.67 mmol/L 25.01 ± 1.38 mmol/L [161]

Fatty acid
5,7-dihydroxy-6-

oxoheptadecanoic
acid

Tiliacora triandra 26.27 ± 1.11 µM. 177.65 ± 0.88 µM [162]

Phytosterols β-Sitosterol Parthenium hysterophorus
(leaves)

42.30% (at
400µg/mL) - [163]

4.1. Flavonoids

Flavonoids are the most ubiquitous class of secondary metabolites present in plants [164].
They are broadly studied due to their wide range of bioactivities, which include anti-
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oxidant [77], anti-inflammatory [165], anti-microbial [166], and anti-diabetic properties [167].
Numerous groups of flavonoids have the potential to inhibit α-amylase enzymes due to
their non-covalent binding ability to the active site residues of the enzyme [168].

A flavone derivative, 5-hydroxy-2-(4-methoxy-3-((E)-3-methylbut-1-enyl)-5-(3-methylbut-
3-enyl)phenyl)chroman-4-one (Figure 5a), identified in Andrographis echioides leaf, was
found to dramatically inhibit α-amylase (IC50 = 3.35 µg/mL) and enhance glucose intake
in the 3T3-L1 and L6 cell lines [134]. Another study conducted by Zhang et al. [136]
revealed that epicatechin gallate (Figure 5b) (IC50 = 0.92 mg/mL) isolated from Euryale ferox
seed coat possessed good inhibitory effects against α-amylase in comparison to acarbose
(IC50 = 1.08 mg/mL). Similarly, Wu and Tian [138] isolated a new flavone glycoside, tricetin
4′-O-β-glucopyranoside (Figure 5c), along with a known flavone, Tricetin (Figure 5d), from
the flowers of Punica granatum. Tricetin 4′-O-β-glucopyranoside (IC50 = 1.17 mg/mL) and
Tricetin (IC50 = 0.43 mg/mL) both exhibited α-amylase inhibitory activities comparable to
acarbose (IC50 = 0.03mg/mL). In addition, a new α-glucosidase and α-amylase inhibitor
flavonoid named hypolaetin 8-O-β-D-galactopyranoside (Figure 5e) was isolated from the
leaves of Thymelaea tartonraira [140].
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Yang et al. [135] separated luteolin (Figure 5f) from Taraxacum mongolicum, which
inhibits the α-amylase enzyme (IC50 = 42.33 µg/mL). From the molecular docking studies,
they found that luteolin restricts the bioactivity of α-amylase by making a stable complex
with the enzyme through Van der Waals forces, hydrogen bonding, and hydrophobic
interaction. In a recent study, Mohamed and his co-workers [139] assessed 12 different
flavonoids from Tagetes minuta for α-amylase inhibitory activities by in vitro experiments
and in silico analyses. Compared to acarbose, quercetagetin-7-O-β-D-glucopyranoside
(Figure 5g) showed the best in vitro enzyme inhibition (IC50 of 7.8 µM), more stability, and
the highest binding affinity with the receptor in in silico studies. Such encouraging results
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are prompting us to further explore the flavonoid molecules and their interaction with
α-amylase enzymes in in vivo studies, toxicity assessments, and the development of new
anti-diabetic therapeutics.

4.2. Terpenoids

Terpenoids are among the diverse classes of natural compounds with potent medicinal
qualities such as anti-cancer, anti-inflammatory, and antiviral properties [169]. They are
major constituents of essential oils produced by aromatic plants and contribute to their
flavor and fragrance [170]. Medicinal plant-derived terpenoids have been found to have
promising hypoglycemic effects [171].

As part of the search for new anti-diabetic compounds from plants, Luyen et al. [141]
examined the Vietnamese medicinal plant Wedelia trilobata, which was well-known for its
efficacy in treating type 2 diabetes. They discovered wedtrilosides A and B (Figure 6a,b),
two new ent-kaurane diterpenoids that have α-amylase inhibition activities. Furthermore,
abietane diterpenes, carnosol (Figure 6c) and 12-methoxycarnosic acid (Figure 6d), iso-
lated from Salvia aurita, revealed strong α-amylase inhibition with an IC50 of 19.8 and
16.2 µg/mL, respectively [142]. Similarly, oleanolic acid (Figure 6e) from Salvia Africana-
lutea exhibited an α-amylase inhibition property with an IC50 of 12.5 µg/mL, close to
acarbose (IC50 = 10.2 µg/mL) [172]. Another new terpenoid saponin molecule, ligularoside
A (Figure 6f), was reported for the first time from Passiflora ligularis Juss leaves and showed
a comparable inhibitory effect over α-amylase with an IC50 of 409 µM in an in vitro assay
against acarbose, which had an IC50 of 234 µM [145].
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Verma et al. [144] evaluated the anti-diabetic property of a novel triterpenoid, glochi-
don (Figure 6g), isolated from Phyllanthus debilis by in vitro assays, in vivo trials, and
computational studies. In the in vitro assays, glochidon showed excellent α-amylase in-
hibition (IC50 = 38.15 µM), which is almost the same as that of acarbose. Additionally, it
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showed dose-dependent hypoglycemic effects in STZ-induced diabetic rats. Furthermore,
the molecular dynamic simulations demonstrated that glochidon has a higher propensity to
interact with the GLUT1 receptor protein. These findings can be utilized in the development
of terpenoid-based natural medicine for both the management and avoidance of diabetes
and its intricacies.

4.3. Polysaccharides

Polysaccharides derived from plants are macromolecules that consist of the same
or different monosaccharide units interconnected with α- or β-glycosidic linkages. They
have lengthy chains composed of carbohydrate molecules arranged either linearly as
in amylose and cellulose or branched as in amylopectin and glycogen [173,174]. The
composition, structure, and molecular weight of the polysaccharides vary with the plant
species. Polysaccharide composition, molecular weight, linkage types, and chain patterns
all influence their physical properties, such as solubility and viscosity, as well as chemical
properties affecting pharmacological effects [175,176]. Plant polysaccharides have received
a lot of interest in recent years due to their noteworthy bioactivities, non-toxic nature,
and suitability for use in medicine [177–179]. Recent studies showed that many plant
polysaccharides inhibit the α-amylase enzyme and play a crucial role in the treatment of
diabetes [180–182].

It has been identified that the polysaccharides from Lycium barbarum leaves hinder α-
amylase enzyme activity in a dose-dependent manner [149]. Another polysaccharide (SGP-
1-1), isolated from Siraitia grosvenorii, showed α-amylase inhibition with the best inhibition
of 61.73% [148]. Similarly, Zeng et al. [128] exploited the red seaweed laver-derived
polysaccharide as a hypoglycemic agent. The polysaccharide named PD-1 showed 98.78%
inhibition effects on the α-amylase enzyme with an IC50 of 12.72 mg/mL. Furthermore,
the kinetic studies reveal that PD-1 interacts with the α-amylase enzyme in a competitive
manner. Another group of researchers purified two polysaccharides, WSRP-2a (MW
56.8 kD) and WSRP-2b (MW 23.9 kD), from Rosa Setate x Rosa Rugosa biomass waste.
The inhibition of the α-amylase enzyme by WSRP-2b (IC50 = 1.72 mg/mL) was much
stronger compared to WSRP-2a (IC50 = 3.41 mg/mL), which may be related to changes in
molecular weight [147]. Jiang and his coworkers used the ultrasonic-assisted extraction
method to extract tamarind (Xyloglucan). When compared to Xyloglucan extracted using
the hot water approach, they discovered that the ultrasound-aided extraction method
greatly improved its α-amylase inhibitory activity (72.49%) by successfully reducing the
viscosity and molecular weight of the compound [150]. In light of these encouraging results,
additional research and examinations are needed to determine the correlation between
the molecular structure and the anti-diabetic properties of polysaccharides and to create
anti-diabetic medications derived from plant polysaccharides.

4.4. Phenolic Acids

Phenolic acids are the derivates of cinnamic and benzoic acids and are found in wide
varieties of plants, either in free or bound forms [183]. Phenolic acids have been known for
diverse bioactivities, including anti-microbial, antioxidant, anti-diabetic, and anti-cancer
activities [184]. In carbohydrate metabolism, phenolic acids have been best known for their
ability to inhibit the bioactivity of the α-glucosidase and α-amylase enzymes [185].

Wu et al. [74] studied the α-amylase inhibitory effects of ellagic acid (Figure 7a)
obtained from corn kernels, which showed better inhibition (IC50 = 0.19 mg/mL) than the
control (IC50 = 0.24 mg/mL). Similarly, Paun et al. [76] isolated rosmarinic acid (Figure 7b)
and chlorogenic acids (Figure 7c) from Anchusa officinalis. Among these phenolic acids,
rosmarinic acid (IC50 = 0.92 µg/mL) showed almost 20 fold higher inhibitory effects
on the α-amylase enzyme than the standard sample (IC50 = 17.68 µg/mL). Likewise,
another phenolic acid, p-coumaric acid (Figure 7d), identified in Agave americana L., showed
considerable inhibition of the human α-amylase enzyme with an IC50 of 10.16 µM, which
was around 2.3 times higher than the control [137]. In addition, the kinetic studies revealed
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that p-coumaric acid functions as a competitive α-amylase enzyme inhibitor. To fully realize
the potential of phenolic acid compounds as a novel therapeutic for treating diabetes, more
study is required to evaluate their efficacy, bioavailability, and safety.
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4.5. Tannins

Tannins are polyphenolic biomolecules that have the tendency to precipitate proteins
in water. They are widely available in many plant species and act as growth regulators
and protectors against plant predators [186]. In traditional folk medicine, a variety of
tannin-rich plants are frequently used by diabetic patients to treat diabetes mellitus and its
associated issues [187].

Wang et al. [153] studied the in vitro α-amylase inhibition of Chinese bayberry leaf-
derived proanthocyanidins (BLPs) and found that BLPs could retard the activity of an
α-amylase enzyme using a mixed-type inhibition mode with an IC50 of 3.07 µg/mL. Chen
et al. [151] identified twenty-five major ellagitannins from the unripe fruit of Rubus chingii
Hu. Among them, chingiitannin A (Figure 8a) demonstrated around seven times higher
inhibition with an IC50 of 4.52 µM compared to acarbose (IC50 = 35.71 µM). Moreover,
molecular docking studies revealed that chingiitannin A binds at the allosteric site and
primarily bonds with the enzymes through hydrogen bonds. Furthermore, chingiitannin
A was non-toxic and improved glucose absorption. Similarly, 1,2,3,4,6-penta-O-galloyl-
β-D-glucopyranose (Figure 8b), from the leaves of Rhus coriaria, was reported to exhibit
higher inhibitory effects on an α-amylase enzyme with an IC50 of 6.32 µM than acar-
bose (IC50 = 10.69 µM) [70]. However, more scientific analysis is necessary to determine
the in vivo anti-diabetic effect of these tannins, and an assessment of toxicity should be
performed in order to design therapeutic biomolecules with no or very few side effects.
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4.6. Miscellaneous Secondary Metabolites as α-Amylase Inhibitors

Plants possess various bioactive compounds with different structural moieties, which
demonstrated efficient α-amylase inhibition. For example, Thuy and his co-workers isolated
three new pregnane glycosides from Dregea volubilis leaves, among which Drevoluoside
Q exhibited significant inhibitory effects against α-amylase (IC50 = 51.3 µM), which is
comparable to acarbose (IC50 = 36.3 µM) [157]. Likewise, phytochemical studies of an-
other plant species, Gymnema sylvestre, resulted in the separation of five new pregnane
glycosides, known as gymsylodide A, gymsylodide B, gymsylodide C, gymsylodide D,
and gymsylodide E. Among them, gymsylodides B-E were found to have considerable
α-amylase inhibitory action, with half-maximal inhibitory concentrations ranging from
113.0 to 176.2 µM [158].

An alkaloid, 3,3′,5,5′,8-pentamethyl-3,3′-bis(4-methylpent-3-en-1-yl)-3,3′,11,11′-tetrahydro-
10,10′-bipyrano[3,2-a]carbazole (Figure 9a), was identified from Murraya koenigii leaves,
which displayed significant in vitro α-amylase inhibition with an IC50 of 30.32 ppm [155].
Similarly, another known alkaloid, berberine (Figure 9b), was isolated from the Cardiosper-
mum halicacabum plant and found to retard the activity of α-amylase by 72% at 10 µg/mL.
In addition, in silico investigations indicated that berberine adheres to the enzyme’s active
site [156].

Another class of bioactive molecules, xanthones named garcixanthone D and garcinone
E (Figure 9c), were purified from the pericarp of Garcinia mangostana and showed 93.8
and 85.6% inhibition against α-amylase, respectively. The molecular docking studies
revealed that these two compounds interact with α-amylase differently than the standard
acarbose [160]. Similarly, a new prenylated xanthone, mangoxanthone A, with a moderate
α-amylase inhibitory effect (IC50 = 22.74µM), was reported from Garcinia mangostana
pericarp [159].

Makinde et al. [162] discovered a fatty acid derivative, 5,7-dihydroxy-6-oxoheptadecanoic
acid (Figure 9d), from the Tiliacora triandra plant that inhibited α-amylase enzymes
(IC50 = 26.27 µM) more effectively than acarbose (IC50 = 177.65 µM). Halfordin (Figure 9e),
a coumarin molecule purified from the bark extract of Melicope latifolia, was investi-
gated for its potential to inhibit α-amylase enzymes [71] and was shown to be effective
(IC50 = 197.53 µM). In addition, in silico investigations revealed a large number of molecu-
lar interactions with key α-amylase amino acid residues. Moreover, β-Sitosterol (Figure 9f)
was identified as an effective α-amylase inhibitor from Parthenium hysterophorus leaf ex-
tract [163]. According to the molecular dynamics analyses, β-sitosterol has a larger binding
energy than acarbose and the highest stability with α-amylase enzymes.
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Investigations into natural compounds with significant α-amylase inhibitory effects
are critical since many phytocompounds are consumed in the form of food in our daily
lives. Based on findings on their potential effectiveness in inhibiting α-amylase enzymes,
bioactive natural compounds are thought to play a very critical role in diabetes treatment.
As a result, more research and analyses are needed to assess the toxic effect as well as
other drug interactions or unfavorable effects that they might create in in vivo studies.
Furthermore, additional human clinical trials are required to validate the safety and anti-
diabetic benefits of α-amylase inhibitors derived from various plant species.

5. Conclusions

Diabetes is a chronic metabolic illness recognized by persistently elevated blood
sugar levels resulting from a decrease in insulin synthesis or a rise in insulin resistance.
One preliminary-stage diabetes therapy technique is to lessen post-meal hyperglycemia.
This can be accomplished by moderating the bioactivity of α-amylases, carbohydrate-
digestive enzymes that hinder glucose absorption in the gut. Consequently, inhibitors of
these enzymes limit the rate of glucose absorption, lowering postprandial plasma glucose
levels. Growing evidence from traditional and herbal approaches to diabetes management
indicates that plant extracts and their chemical components may play a substantial role
in the therapeutic management of T2D and its implications. Hence, this review study
aimed to summarize the latest and most advanced findings in natural product research that
operate as α-amylase enzyme inhibitors. Despite the fact that scientists have put in a lot
of effort to identify the inhibitory effects of various plant extracts and natural compounds
against the α-amylase enzyme, there are still some gaps. The majority of research focuses
on in vitro investigations of the inhibitory effect of plant extracts and the identification
of bioactive molecules. However, only a very limited amount of additional study was
conducted for in vivo tests in animals, and human trials were extremely rare. Therefore,
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more research and scientific analyses are needed to assimilate the pharmacological activity
of natural extracts and compounds, the synergistic effects of active compounds with other
molecules, and their safer use. Moreover, clinical trials are crucial for reaching precise
conclusions on both the safety and effectiveness of administering plant extracts or active
compounds for the management of type 2 diabetes. Prospective studies will offer important
information for determining the doses of natural extracts and active compounds that will
deliver the desired therapeutic advantages while exhibiting little to no adverse side effects.
This study explored over fifty extracts obtained with various solvents and over sixty natural
ingredients. The insights gained from this review’s findings should help to achieve the
ultimate goal of developing new therapeutic drugs with improved effectiveness and safety
for the management of T2D or to avoid PPHG.
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