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Abstract: The use of natural compounds as an alternative to synthetic molecules has become a
significant subject of interest in recent decades. Stilbenoids are a group of phenolic compounds found
in many plant species and they have recently gained the focus of a multitude of studies in medicine
and chemistry, resveratrol being the most representative molecule. In this review, we focused on
the research that illustrates the therapeutic potential of this class of natural molecules considering
various diseases with higher incidence rates. PubChem database was searched for bioactivities of
natural stilbenoids, while several keywords (i.e., “stilbenoids”, “stilbenoid anticancer”) were used to
query PubMed database for relevant studies. The diversity and the simplicity of stilbenes’ chemical
structures together with the numerous biological sources are key elements that can simplify both
the isolation of these compounds and the drug design of novel bioactive molecules. Resveratrol
and other related compounds are heterogeneously distributed in plants and are mainly found in
grapes and wine. Natural stilbenes were shown to possess a wide range of biological activities,
such as antioxidant, anti-inflammatory, antihyperglycemic, cardioprotective, neuroprotective, and
antineoplastic properties. While resveratrol is widely investigated for its benefits in various disor-
ders, further studies are warranted to properly harness the therapeutic potential of less popular
stilbenoid compounds.

Keywords: polyphenolic compounds; anticancer activity; cardiovascular health; resveratrol;
piceatannol; pterostilbene

1. Introduction

The secondary metabolites, like alkaloids, terpenoids, or phenolics, are organic com-
pounds that are not directly involved in the growth, development, or reproduction of an
organism, but they play important roles in various interactions in response to environmen-
tal stimuli, such as stress, competition, or signaling [1,2]. Stilbenes are plants’ secondary
metabolites that play important roles in plants, particularly in their defense mechanisms
against pathogens such as fungi, bacteria, or viruses and help plants combat oxidative
stress caused by UV radiation, pollutants, and reactive oxygen species or abiotic stress,
such as drought, temperature extremes, and mechanical damage [3,4]. Some stilbenes are
involved in allelopathy, inhibiting the growth and development of nearby plants in their
competition for resources and survival [5].

A wide variety of natural stilbene derivatives have been identified and their structure
ranges from monomers to octamers possessing different substituents at various positions,
like glycosyl, hydroxyl, methyl, or isopropyl groups [6]. Some notable examples of stilbenes
include resveratrol, pterostilbene, piceatannol, and viniferins [5]. Among the stilbene
compounds, resveratrol is one of the most well-known and widely studied due to its wide
range of biological activities, such as antioxidant, anti-inflammatory, and stimulant of
adipocytes lipolysis [7].
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The distribution of natural stilbenes in the plant kingdom is limited. However, they
can be found in taxonomically distant species within the Embryophyta phylum (land
plants), from less complex species to the most advanced angiosperms. Stilbenes have
been isolated from Bryophytes (Marchantiales order), Monilophytes (Ophioglossales and
Polypodiales orders), gymnosperms (Gnetales and Pinales orders) and angiosperms (Mag-
noliophyta division, in both Monocots and Eudicots). The 2-arylbenzofurans are found
in only seven known families: Corsiniaceae, Gnetaceae, Melanthiaceae, Stemonaceae,
Moraceae, Fabaceae, and Vitaceae [8].

Many studies about the therapeutical effects stilbenes have been published to date,
which can lead to the evidence of the potential these molecules might have and to the
interest scientists have given to them. The interest and research focus on stilbenes stem
from their natural occurrence, diverse pharmacological activities, and potential applications
in promoting human health and well-being.

This review aims to provide a comprehensive overview of the natural oligomeric
trans-stilbenoid compounds and their therapeutic applications. It illustrates the natural
sources’ diversity and structural characteristics of these compounds, highlighting their
bioavailability and mechanisms of action. Furthermore, it explores the emerging evidence
for their therapeutic potential in various disease conditions, discussing preclinical and
clinical studies that support their efficacy and safety profiles. The PubChem database was
queried using structures of stilbenoid compounds to search for relevant bioactivity data.
PubMed was searched for relevant studies involving the therapeutic potential of natural
stilbenes using several keywords, such as “natural stilbenoids”, “oligomeric stilbenes”,
“bioactive stilbenes”.

2. Chemistry of Stilbenoids

The stilbenoids are a group of natural phenolic compounds sharing a stilbene backbone
structure and different substituents on the rings [9]. The stilbene scaffold consists of
two benzene rings joined by an ethylene segment [10]. There are two isomeric forms of
1,2-diphenylethylene: (E)-stilbene (trans-stilbene), which is not sterically hindered, and
(Z)-stilbene (cis-stilbene), which is less stable because of the steric interactions between the
aromatic rings [11]. Dihydrostilbenoids are related compounds known also as bibenzyls,
where the double bond is replaced by a simple one [12].

Based on their chemical structure, the stilbenoids can be classified into five major
groups: simple stilbenes, prenylated and geranylated stilbenes, 2-phenyl-benzofuran
derivatives, carbon substituted stilbenes that do not belong to the prenylated and ger-
anylated stilbenes group, and various other structures [13]. Stilbenoids exist as monomers
or oligomers. They may also be found free phenolic derivatives (aglycone) or conjugated
as glucosides [9].

The first class, frequently referred as simple stilbenes, shares the 1,2-diphenylethylene
scaffold without any additional carbon–carbon bonds. The benzene rings are substituted
in various positions with hydroxyl, methoxy, or glycosyl groups [14]. These derivatives
exhibit various substitution patterns on the aromatic rings that can greatly influence the
chemical properties and biological activities. The majority of the stilbenes in this group are
3,5-dihydroxy substituted, while the second aromatic ring may have hydroxyl or methoxy
groups. Figure 1 presents the structures of the main stilbene derivatives based on the
substitution of the 3,5-dihydroxy groups.
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Figure 1. Structures of representative stilbenoids compounds chemically classified as simple stilbenes.

The second group is represented by the prenylated and geranylated stilbenes, deriva-
tives with additional carbon–carbon bonds into the 1,2-diphenylethylene scaffold. Prenyl
and geranyl groups are derived from isoprenoid precursors and consist of five and ten
carbon atoms, respectively. These groups are often added to the stilbene core through
enzymatic reactions in plants, fungi, and some microorganisms [15]. The addition of one or
several moieties can occur at various positions on the phenyl rings leading to compounds
with unique chemical properties. There are possible subsequent modifications of the prenyl
group, such as cyclization and hydroxylation [16].

Chiricanines A–E are five prenylated stilbenes found in Lonchocarpus chiricanus (Legu-
minosae) together with longistylines C and D, compounds that are also found in the root
and the bark of Lonchocarpus violaceus. The structures of these stilbenes contain on or
two prenyls fragments [17,18]. In chiricanines B and D, the prenyl cyclizes to form a
dimethylchromene ring, whereas the prenyl of chiricanines E forms a hydroxyl-substituted
dihydrobenzofuran ring with the double bond in cis configuration [19].

Mappain is cytotoxic stilbene from Macaranga mappa, a derivative of piceatannol
that is substituted with a prenyl and a geranyl group. It is considered the biogenetic
precursor of vedelianin and a homologue of schweinfurthin C, a di-geranyl stilbene from
Macaranga schweinfurthii [20,21]. Schweinfurthins A, B, and D are structurally similar
hexahydroxanthene stilbenes isolated from Macaranga schweinfurthii [22].

Some examples of prenylated stilbenes like chiricanine A, arahypin-1, trans-arachidin-2,
trans-arachidin-3, and longistylin A [13,23] are presented in Figure 2 together with repre-
sentative geranylated stilbenes.
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3. Vegetal Sources

Stilbenes and stilbenoids are biosynthesized through the phenylpropanoid path-
way [24]. The first step in the biosynthesis of the stilbene backbone involves, in a single
reaction, the combination of three malonyl-CoA and one CoA-ester of a cinnamic acid
derivative. The resulted polyketide is then used in the production of flavonoids or stil-
benoids, taking into consideration the enzyme involved: chalcone synthase or stilbene
synthase, respectively [25,26].

The stilbene synthase is not expressed in all plant species, so, the distribution of
natural stilbenes in the plant kingdom is limited. However, they can be found in taxonom-
ically distant species within the Embryophyta phylum (land plants), from less complex
species to the most advanced angiosperms (Table S1). Stilbenes have been isolated from
Bryophytes (Marchantiales order), Monilophytes (Ophioglossales and Polypodiales orders),
gymnosperms (Gnetales and Pinales orders), and angiosperms (Magnoliophyta division,
in both Monocots and Eudicots). The 2-arylbenzofurans are found in only seven known
families: Corsiniaceae, Gnetaceae, Melanthiaceae, Stemonaceae, Moraceae, Fabaceae, and
Vitaceae [27].

The main natural source of stilbenoids is represented by Vitis vinifera L. species, which
belongs to the plant family Vitaceae. Over 60 stilbenoids can be found in this species as
monomers, such as trans-resveratrol or piceatannol, and as oligomers, which are usually in
their trans configuration € [8].
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There are 16 genera within Vitaceae and only eight of them are known to have stilbenoids
identified as chemical constituents: Vitis, Ampelopsis, Cayratia, Cissus, Cyphostemma, Rhoicissus,
Muscadinia, Parthenocissus. The most economically important remains Vitis vinifera, but Amer-
icans use the varieties V. berlandieri, V. riparia, and V. rupestris for growing wine and the
grapes industry as well. In the United States, the V. labrusca cv. Concord is particularly
important, serving as the main grape used in juice, Passover wine, and the peanut butter
and jelly sandwich. The Asian species, V. amurensis, V. coignetiae, and V. thunbergii, are
known to have been historically used as medicinal plants for a range of diseases, such as
inflammation and hepatoprotection [8].

Stilbenes can be found in Vitis vinifera varieties as constitutive compounds of the
lignified organs (roots, seeds, stems, canes, ripe cluster stems) and as induced substances
(in leaves and berries). They mainly act as phytoalexins in the mechanisms of grape
resistance against pathogens. Resveratrol and piceid can be found in grape products and
the greatest concentration of resveratrol found in the skins is in glycosidic forms. On the
other side, pterostilbene is detected in low levels in healthy and immature grape berries [28].

In seeds, only trans- and cis-resveratrol was detected, whereas resveratrol, piceid, resver-
atroloside, and astringin, both in cis- and trans- isomeric forms, were found in the grape
cell suspension cultures. Moreover, three resveratrol diglucosides, cis- and trans-resveratrol
3,5-O-β-diglucoside and trans-resveratrol 3,4′-O-β-diglucoside, were isolated together with a
resveratrol triglucoside, trans-resveratrol 3,5,4′-O-β-triglucoside [29,30].

A study performed on a German commercial white wine (Riesling) showed the exis-
tence of another nine stilbenes, besides resveratrol and piceid. These compounds included
the monostilbene 2,4,6-trihydroxyphenanthrene-2-O-glucoside, two isomeric resveratrol-2-
C-glucosides and also cis- and trans-epsilon-viniferin diglucoside, pallidol glucoside, and
pallidol diglucoside, which were found at very low levels (<0.05 mg/L) [31].

From French commercial red wines, trans-α-viniferin, parthenocissin A, and pallidol
have been isolated [32] and the Brazilian red wines contain trans-astringin, trans-piceid,
trans-resveratrol, cis-resveratrol (5 times more than the trans- form), epsilon-viniferin, and
trans-delta-viniferin [33].

Stilbenes can be found in minor contents in Vaccinium berries such as V. myrtillus
(bilberries: 0.02–0.77 µg/g dry weight), V. elliotti (blueberries: 0.45 µg/g dry weight)
V. macrocarpon (cranberries), V. vitis-idaea (lingonberries), Morus (mulberries), Fragaria x
ananassa (strawberries) [34].

Although not at high level, studies have shown that piceid is in a higher concentration
than resveratrol in some vegetable food: rhubarb, banana, guava, leech, pineapple, apple,
peach, passion fruit, pears [35–38].

Reasonable concentrations of piceid were found in almonds, the highest ones being in
the blanch water (6.33–8.43 µg/100 g), which also contains piceatannol and oxyresveratrol
(0.91–2.55 µg/100 g) and in the skin (0.15–0.22 µg/100 g) [39]; moreover, gnetol and
resveratrol dimers, such as gnetin C and its glucosides, gnemonosides A, C, and D [40].

However, wine remains the most important source of stilbenes and it represents 98.4%
of the intake, followed by grape berries and grape juice (1.6%), while peanuts and other
berries would contribute less than 0.01% [41].

Phenolic compounds in red wine have different sources, the largest one being found
in black grapes. The main factor that influences the concentration of polyphenols in red
wine is the vinification technique (the maceration–fermentation stage) [42]. During the
fermentation process, the wine is enriched in polyphenols, depending on the tyrosol that is
released in wine. Tyrosol is a compound produced by tyrosine (by the action of tyrosine
decarboxylase) or a para-coumaric acid precursor [43].

4. Bioactive Stilbenes

Since the studies performed on the French Paradox, stilbenoid compounds, in par-
ticular trans-resveratrol and its glucoside, have received increasing scientific attention.
Resveratrol possesses a wide range of biological properties, among them antioxidant, car-
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dioprotective, neuroprotective, anti-inflammatory, and anticancer activities [44,45]. Resver-
atrol exhibits unfavorable pharmacokinetic characteristics, such as short half-life, rapid
clearance, and low bioavailability. The low bioavailability is attributed to its extensive
metabolism by phase II enzymes [46]. The co-administration of resveratrol with piperine,
an established glucuronidation inhibitor, significantly increased the in vivo bioavailability
of resveratrol [47].

The relationship between chemical structure and biological activity has been widely
studied and it is still under debate. The stilbene scaffold was subject to many synthetic
molecules due to its demonstrated properties: anti-cancer [46], anti-inflammatory [48],
antimicrobial [49], antifungal [50], neuroprotective [51]. This is how some molecules that
nowadays are in use were designed: toremifene, raloxifene, or tamoxifene [52].

Resveratrol is the most acclaimed stilbene demonstrated to have many beneficial
properties [53]. Due to its low quantities in natural resources and low bioavailability,
researchers have focused on the key elements of the resveratrol’s structure to design
synthetic molecules [54]. Evaluation of pro-oxidant action of different stilbenes in the
presence of copper revealed the importance of the hydroxyl group at the 4′ position [55].

Currently, more than 162 clinical studies have been published on the online PubMed
database (http://www.ncbi.nlm.nih.gov/pubmed (accessed on 12 June 2023), of which 95%
appeared in the last decade. Interestingly, some of the resveratrol clinical trials registered at
www.clinicaltrials.gov (accessed on 12 June 2023) are unpublished although most studies
are completed [56]. A list of completed clinical trials performed on stilbene derivatives is
presented in Table 1.

Table 1. Clinical trials registered with results for stilbene compounds.

Compound Code Title Details

Resveratrol NCT00920556
A Clinical Study to Assess the Safety and Activity

of SRT501 Alone or in Combination With
Bortezomib in Patients With Multiple Myeloma

5 g of SRT501 were administered for
20 consecutive days in a 21-day cycle

Resveratrol NCT01354977 Effect of Resveratrol on Age-related Insulin
Resistance and Inflammation in Humans

Two 500 mg capsules administered
twice a day for 28 days

Resveratrol NCT04400890
Randomized Proof-of-Concept Trial to Evaluate

the Safety and Explore the Effectiveness of
Resveratrol, a Plant Polyphenol, for COVID-19

1 g administered 4 times a day for a
minimum of 7 days

Resveratrol NCT03866200 Resveratrol Trial for Relief of Pain in
Pseudoachondroplasia 125 mg/day for 90 days

Resveratrol NCT03253913 Resveratrol and Sirolimus in
Lymphangioleiomyomatosis Trial

250 mg/day for the first 8 weeks,
followed by 250 mg twice daily for the
next 8 weeks, and then 500 mg twice

daily for the last 8 weeks

Resveratrol NCT01375959 Pilot Study of Resveratrol in Older Adults With
Impaired Glucose Tolerance (RSV) 1.5 g twice a day for 6 weeks

Resveratrol NCT02523274 Resveratrol and Exercise to Treat Functional
Limitations in Late Life

Exercise and 500 mg/day or
1000 mg/day resveratrol

Pterostilbene NCT01267227 Effect of Pterostilbene on Cholesterol, Blood
Pressure and Oxidative Stress 50 mg or 125 mg twice daily

4.1. Positive Effects on the Cardiovascular System

Clinical trials have looked into the protective and curative effects of resveratrol against
a number of diseases and disorders, and both clinical and preclinical data have shown that
this molecule has numerous targets and that it can modulate many signaling molecules
including: Wnt, nuclear factor –κB, cytokines, caspases, Notch, matrix metalloproteinases
(MMPs), 5′-AMP-activated protein kinase (AMPK), intercellular adhesion molecule (ICAM),
vascular cell adhesion molecule (VCAM), sirtuin type 1 (SIRT1), tumor necrosis factor α
(TNF-α), peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), insulin-
like growth factor 1 (IGF-1), insulin-like growth factor-binding protein (IGFBP-3), RAS

http://www.ncbi.nlm.nih.gov/pubmed
www.clinicaltrials.gov
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association domain family 1 isoform A (RASSF-1α), pAkt, vascular endothelial growth
factor (VEGF), cyclooxygenase 2 (COX-2), nuclear factor erythroid 2-like 2 (Nrf 2), and
Kelch-like ECH-associated protein 1 [57,58]. Resveratrol has the potency of reducing brain
natriuretic peptide (BNP) and improving ventricular function, being administered in a
stable case of angina pectoris [59].

Isorhapontigenin is a methoxylated analogue of resveratrol, which is well known
also for its anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability
than resveratrol. Ravishankar et al. found that isorhapontigenin selectively inhibits ADP-
induced platelet aggregation, which is predominantly mediated via the P2Y12 receptor,
with an IC50 of 1.85 µM, although it displayed marginal inhibition on platelet aggregation
induced by other platelet agonists at 100 µM. This compound also inhibited integrin αIIbβ3,
but no effect was observed on α-granule secretion [60]. Rhapontigenin and desoxyrhapon-
tigenin, two related stilbenes isolated from the rhizomes of Rheum undulatum, inhibited the
platelet aggregation induced by arachidonic acid.

Panxia Wang et al. demonstrated that isorhapontigenin also contributes to the reduc-
tion of the toxicity of doxorubicin. In this study, it was shown that the administration
of isorhapontigenin 30 mg/kg/day, intraperitoneally, 3 weeks, significantly protected
against doxorubicin-induced cardiotoxicity in mice. In addition, this molecule increased
doxorubicin-caused repression in yes-associated protein 1 and the expression of its target
genes in vivo and in vitro. Moreover, the inhibition of yes-associated protein 1 blocked the
protective effects of isorhapontigenin on doxorubicin-induced cardiotoxicity [61].

The utility of resveratrol is also to lower the toxicity of chemotherapeutic drugs, such as
the cardiotoxicity of doxorubicin, by decreasing apoptosis and increasing autophagy in car-
diomyocytes. These effects were accompanied by an inhibitory effect on the E2F1/mTORC1
and E2F1/AMPKα2 pathways [62].

At this moment, a study about the use of a combination therapy with nicotinamide
riboside and pterostilbene in atherosclerosis is ongoing. Its main purpose is to investigate
if this combination can inhibit neurodegeneration and thereby, delay disease development,
increase survival, and improve quality of life in atherosclerosis [63].

4.2. Anti-Inflammatory Activity

Grape extract is a major source of resveratrol and has been used alone and in combina-
tion with pure resveratrol to reduce inflammatory processes. In a placebo-controlled trial,
both grape extract and grape extract enriched with resveratrol were administered and the
inflammatory cytokines CCL3, IL-1β, and TNF-α were found to be significantly reduced in
the peripheral blood mononuclear cells (PBMCs) [64].

Resveratrol inhibits COX-2 and aromatase expression in the eutopic endometrium
and so it can be used in dysmenorrhea and pain [65]. Several hydroxylated resveratrol
analogues, like piceatannol, have shown selectivity as COX-2 inhibitors, displaying potency
comparable to that of the clinically approved celecoxib, but the methoxylated analogues
demonstrate limited inhibition of COX-2 activity and lack specificity towards COX-2 [66].

The anti-inflammatory effect of pterostilbene has been studied both in vitro and
in vivo. In vitro studies showed that pterostilbene acts through different mechanisms,
including the downregulation of cyclooxygenase-2 (COX-2) and inductible nitric oxide
synthase (iNOS) levels and also the blockage of the NF-κB signaling, thus suppressing the
pro-inflammatory cytokines expression and inhibiting NO production [48,67–69]. In vivo,
pterostilbene suppressed the NF-κB and AP-1 activity, resulting in inhibiting the activity of
COX-2 and iNOS [70].

Pawhuskins, a group of prenylated stilbenes, were extracted from the purple prairie
clover (Dalea purpurea) and subjected to testing against opioid receptors. Among them,
Pawhuskin A demonstrated the highest potency and exhibited competitive antagonism,
specifically targeting the KOP receptor [71].
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4.3. Effects on Diabetes

A study performed in 2013 came with new information and new evidence about
resveratrol’s antihyperglycemic effect [72]. Until 2013, only two human studies had been
completed to investigate the potential of resveratrol in type 2 diabetes patients; both of
them reported a modest reduction in blood glucose levels, while one showed no effect on
insulin level [73,74]. The results of this study showed that resveratrol supplementation at a
dose of 1 g/day had a remarkable effect in lowering glucose levels and improved other
metabolic parameters in humans with type 2 diabetes [72].

According to the results of this study, it may be suggested that short term supple-
mentation with a moderate to high dose of resveratrol (1 g/day) may help to markedly
lower blood glucose levels. Furthermore, a lower dose of resveratrol may be administered
once blood glucose levels are normalized. A lower dose after 45-day treatment with 1 g
resveratrol may eliminate or minimize, if any, resveratrol-related toxicity in the long term.
Notable was the fact that the control group which was on standard diabetic treatment
alone had an increase in alkaline phosphatase (ALP) levels when compared to the baseline
values [72].

Piceatannol is a known AMPK activator and has shown its effect on suppressing the
rises in blood glucose levels at early stages and improving the impaired glucose tolerance
at late stages in mice. This makes the compound able to prevent and cure type 2 diabetes
and become an antidiabetic phytochemical [75].

A study performed in 2013 focused on the inhibitory potential effect of resveratrol and
ε-viniferin on D-glucose uptake into porcine jejunal and ileal enterocytes, demonstrating
that both polyphenols have the ability to have positive effects, but ε-viniferin exhibited the
strongest impact [76].

ε-viniferin has proven positive effects concerning insulin resistance in obesity. This
stilbene could inhibit in vitro the activity of α-amilase (IC50 = 793.64 ± 0.18 µM) and
α-glucosidase (IC50 = 23.98 ± 1.00 µM), both enzymes being part of the carbohydrates
catabolism [77].

Liu et al. induced type II diabetes on rats and administered ε-viniferin (30 or 60 mg/kg bw)
for 8 weeks. Thus, a decrease was observed in fasting blood glucose, triglycerides, total
cholesterol, and LDL-cholesterol levels [78].

4.4. Neurodegenerative Diseases

Attention was paid on the effects stilbenes may have concerning Alzheimer’s disease.
A study conducted by Freyssin et al. was based on the beneficial effects trans-resveratrol,
trans-ε-viniferin, gnetin C, miyabenol C, trans-piceid, pterostilbene, piceatannol, and astringin
may have in this condition. As a result, some of these stilbenes (gnetin C, trans-piceid,
piceatannol) had been described only for their in vitro effects up to this study; some others
(trans-ε-viniferin, pterostilbene) had been studied mostly in in vitro experiments, while
in vivo studies remain rare and, still, trans-resveratrol remains the mostly discussed stilbene
of all of them [79].

Resveratrol has been shown to improve mitochondrial efficiency and muscle activity
by activating AMPK, while the levels of SIRT1 and PGC-1α are increased, together with
the citrate synthase activity [80].

The sirtuins are a family of proteins categorized as class III histone deacetylases [81].
SIRT1 is postulated to be one of the crucial targets modulated by resveratrol. Preclinical
studies suggest that the activation of SIRT1 may contribute to its beneficial effects [82]. For
instance, resveratrol has beneficial effects in Parkinson’s disease and Huntington’s disease
by inducing SIRT1 activation [83]. Resveratrol also produces many pharmacological effects
by activating SIRT1 in both obese and healthy individuals [80,84,85].

Pterostilbene is another compound of this family that exerts its effects through a
variety of mechanisms. Pterostilbene shows an anti-tumor effect by regulating a variety of
signal pathways and it plays a neuroprotective role by improving and reducing the volume
of cerebral infarction, inhibiting apoptosis, and protecting the integrity of the blood–brain
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barrier. In addition, this molecule shows antioxidant, anti-inflammatory, hypoglycemic,
lipid-lowering, antifungal, antiviral, and antipsychotic activities [86].

ε-viniferin possesses positive effects on ROS generation and oxidative stress, more
particularly on SIRT3. It was shown that ε-viniferin exhibits consistent cytoprotection in dif-
ferent cell models of Huntington disease and also prevents mitochondrial dysfunction and
promotes mitochondrial biogenesis. Furthermore, ε-viniferin has an impact on Alzheimer’s
disease by different mechanisms, including the induction of disaggregation of aggregated
full-length Aβ42 peptide and the reduction of ROS generation [87].

4.5. Malignancies

A growing number of studies reported the antitumor properties of stilbenoid com-
pounds. For instance, Yisi Luo et al. studied the effect of isorhapontigenin on cancer stem
cells. This stilbene could inhibit stem cell-like phenotypes and invasiveness of human
bladder cancer by attenuation of expression of CD44 but not SOX-2, at both the protein
transcription and degradation levels. In addition, further studies showed that isorhapon-
tigenin induced miR-4295, which specifically bound to 3′-UTR activity of usp28 mRNA
and inhibited its translation and expression, while miR-4295 induction was mediated by
increased Dicer protein to enhance miR-4295 maturation [88]. Isorhapontigenin has also
been reported to have other significant pharmacological effects, such as antioxidant [89]
and anti-inflammatory properties [90].

Rhapontigenin was shown by Kim et al. to exhibit antitumor activities in a breast
cancer model by suppressing cell migration and invasion through PI3K-dependent Rac1
signaling inhibition [91]. A more recent study highlighted that the stilbenoid glucoside
rhaponticin inhibited benzo[a]pyrene-induced lung carcinogenesis in mice at 50 mg/kg bw,
improving histopathological alterations and specific biomarkers levels [92]. Moreover,
rhaponticin suppressed an osteosarcoma cell-based model by inhibiting the PI3K-Akt-
mTOR pathway [93] and tongue squamous cell cancer aggressivity through inhibition of
HIF-1α post-transcriptional activity [94].

Pterostilbene was shown to inhibit in vitro the proliferation of a variety of tumor
cells, including stomach, lung, liver, oral cavity, pancreas, lymph, colon, prostate, breast,
melanoma, leukemia, and myeloma cells. A recent study performed by Shin et al. high-
lighted that pterostilbene has superior efficacy and bioavailability compared to resveratrol
in models of cervical cancer. Pterostilbene inhibited at 10 and 20 µM concentrations the
growth and migration of cervical cancer cells, such as HeLa., by inducing cell cycle arrest
(through downregulating cyclins E1 and B1 expression) and apoptosis (through activation
of caspase-3 and caspase-9, downregulation of Bcl-2 and Bcl-XL, and inhibition of MMP-2
and MMP-9 expression). In vivo, pterostilbene inhibits tumor occurrence and metastasis
and showed almost no toxicity. Pterostilbene inhibited tumor growth and tumorigenesis in
animal models of colorectal, liver, skin, and brain cancer [95–98].

Gnetin C is a resveratrol dimer found in grapes and the melinjo plant and has been
reported to possess many biological properties, including anti-inflammatory and anticancer
properties [99]. In addition, this molecule has shown no toxicity in humans [100]. Gnetin C
acts through MTA1/ETS2-mediated mechanisms in prostate cancer and shows significant
MTA1-mediated inhibitory effects on cell viability, colony formation and migration, and
induces cell cycle arrest and cell death at 25 and 50 µM concentrations. Interestingly, inhibi-
tion of MTA1 by 25 µM gnetin C was comparable with the effects of 50 µM pterostilbene
and resveratrol [101].

In a pre-clinical study, comparative evaluation of the in vivo efficacy of gnetin C,
resveratrol, and pterostilbene in the treatment of prostate cancer led to the conclusion
that gnetin C is more potent than resveratrol and pterostilbene, gnetin C having the same
antitumor effects as the other two stilbenes in a two-fold lower dose. Moreover, gnetin
C was more efficient compared to the other stilbenes at the same dose (50 mg/kg bw).
The same study showed that gnetin C exerts its antitumorigenic effects by inhibiting
proliferation, angiogenesis, and promoting apoptosis by downregulating MTA1 [102].
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Piceatannol was also shown to exhibit significant potential as an anticancer agent,
attributed to its notable pro-apoptotic properties and ability to inhibit the proliferation and
metastasis of various cancer cell types. This includes lymphoma, leukemia, breast cancer,
prostate cancer, and colon cancer, among others [103].

A study published by Yu et al. in 2013 revealed that resveratrol dose-dependently
inhibits TRPA1 (Transient Receptor Potential Ankyrin 1) activation by allyl isothiocyanate
(AITC), a well-established TRPA1 agonist (pungent compound found in wasabi, horseradish
and mustard oil) [104]. TRPA1 is a non-selective calcium channel, member of the TRP
superfamily which serves as a sensor for oxidative stress and noxious stimuli [105]. In 2015,
Nalli et al. assessed the modulatory activity of pterostilbene, pinosylvin methyl ether, and
synthetic stilbenes on TRPA1, in comparison with resveratrol. Unlike resveratrol, pteros-
tilbene and pinosylvin methyl ether show both TRPA1 agonistic (EC50 3.6 and 3.5 µM)
and inhibitory (IC50 7.4 and 6.9 µM) activities, while resveratrol only blocked the channel
activation, with a 19.9 µM potency. Moreover, several newly synthesized stilbenoids were
more potent than the natural derivatives [106]. Previous studies showed that TRPA1-
dependent intracellular calcium influx enhances lung and breast cancer cell lines resistance
to chemotherapy by up-regulating antioxidant defense and pro-survival mechanisms [107].
On the other hand, activation of TRPA1 mediated by reactive oxygen species in glioblas-
toma and neuroblastoma cell lines leads to a persistent increase in intracellular calcium
concentrations which promotes mitochondrial dysfunction and caspase-3-dependent apop-
tosis [108]. Therefore, further studies are warranted to explore the potential implications of
TRPA1 modulation by natural stilbenoids in their antitumor activities in breast, lung, and
brain cancers.

4.6. Other Implications

Formulations of resveratrol have also been used for many other diseases. For instance,
in healthy smokers, after the resveratrol was administered, there was noticed a reduction of
the levels of CRP and triglycerides, as well as the increase of the total antioxidant level [109].
Due to its beneficial effects, a resveratrol containing gel formulation has proven to be useful
in acne vulgaris. For this dermatological effect, a clinical trial comprising 20 subjects, a
60-day treatment with resveratrol was performed and it resulted in a 54% mean reduction
in the global acne grading system score as compared with 6% on the vehicle treated side of
the face [110].

Stilbenes represent a subject of interest also for their potential effects on COVID-19.
Resveratrol, pterostilbene, pinosylvin, and piceatannol were studied using computational
tools for their potential to act as an inhibitors of the complex formed between the spike
(S1) protein from the novel coronavirus and human angiotensin-converting enzyme 2
(ACE2). The results showed that the level of selectivity of resveratrol was remarkably
higher compared to other stilbenoids and this potentially strong interaction should be
further studied using in vivo and in vitro approaches [111].

5. Conclusions

The stilbenoid compounds are a large group of molecules that are alike and different
at the same time from their chemical structures to their natural sources and therapeutical
activities. Stilbenoids are spread throughout the plant kingdom and their distribution is
rather heterogeneous. The main source of stilbenes is represented by grapes and wine,
especially red wine. At a lower level, these molecules can also be found in peanuts,
blueberries, cranberries, strawberries, and other plants.

Most studies published to date are based on the therapeutical effects of resveratrol due
to its beneficial health properties, such as anti-inflammatory, cardioprotective, antioxidant,
neuroprotective, and anticancer. This molecule represents a real interest in the pharmaceu-
tical and medical domains and because of its demonstrated effects, many other stilbenes
have been investigated, in comparison with resveratrol and not only.
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The stilbene family has been lately investigated more for the compounds’ potency of
alleviating the symptoms and the causes of different types of cancer and many studies are
still ongoing. Some of the molecules that were investigated for their antineoplastic potential
are isorhapontigenin, rhapontigenin, rhaponticin, pterostilbene, gnetin C, and piceatannol.

The results of the investigation of stilbenes during the years made the scientists take
these compounds into consideration for their possibility of lowering the toxicity of some
drugs, resveratrol and isorhapontigenin being able to reduce the toxic effects of doxorubicin.

The importance of stilbenes as bioactive molecules is also highlighted through the
studies of the effects these molecules may have against the new pandemic virus, COVID-19,
and as a result, between resveratrol, pinosylvin, and piceatannol, resveratrol has been
shown to be the most selective and effective stilbene.

To this day, resveratrol remains the most widely studied stilbenoid compound. How-
ever, a growing body of emerging evidence supports the beneficial biological activities of
the less common stilbenoids. Therefore, further research is warranted to evaluate the bene-
ficial health effects of both resveratrol and less known stilbenoid compounds. As a future
perspective, the interaction between natural and synthetic stilbenoids and TRPA1 should
be thoroughly investigated in oncological settings to develop novel adjuvant therapeutics
targeting TRPA1-expressing cancers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
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