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Abstract: Nitric oxide (NO) is a signaling molecule that participates in plant adaptation to adverse
environmental factors. This study aimed to clarify the role of NO in the regulation of vacuolar
H+-ATPase (V-ATPase) in the roots of cucumber seedlings grown under control and Cd stress condi-
tions. In addition, the relationship between NO and salicylic acid (SA), as well as their interrelations
with hydrogen sulfide (H2S) and hydrogen peroxide (H2O2), have been verified. The effect of NO
on V-ATPase was studied by analyzing two enzyme activities, the expression level of selected VHA
genes and the protein level of selected VHA subunits in plants treated with a NO donor (sodium ni-
troprusside, SNP) and NO biosynthesis inhibitors (tungstate, WO4

2− and N-nitro-L-arginine methyl
ester, L-NAME). Our results indicate that NO functions as a positive regulator of V-ATPase and that
this regulation depends on NO generated by nitrate reductase and NOS-like activity. It was found
that the mechanism of NO action is not related to changes in the gene expression or protein level of
the V-ATPase subunits. The results suggest that in cucumber roots, NO signaling interacts with the
SA pathway and, to a lesser extent, with two other known V-ATPase regulators, H2O2 and H2S.

Keywords: cadmium; hydrogen peroxide; hydrogen sulfide; nitric oxide; nitrate reductase; salicylic
acid; V-ATPase

1. Introduction

It is estimated that approximately 30,000 t of cadmium (Cd) are released into the
environment each year, mostly as a result of anthropogenic activity. This large amount
of Cd accumulates primarily in the surface layers of the soil, where it is absorbed by the
roots, inducing a stress response in plant organisms [1]. The easily noticeable effects of Cd
toxicity include stunted growth, thickening of roots, chlorosis, leaf curling, reduction of leaf
blade area and acceleration of senescence [2–4]. At the cellular level, cadmium generates
oxidative stress and directly binds to cellular components, damaging the structure of DNA,
proteins, and lipids, consequently leading to disorders in biological membranes [2].

In response to a stress factor, plants activate defense mechanisms that allow them to
adapt to unfavorable conditions and function despite the penetration of harmful factors into
the cells [2]. However, under long-term exposure to Cd, these mechanisms are not sufficient
to protect cells from the negative effects of the metal. Among others, Cd was found to
inhibit vacuolar H+-ATPase (V-ATPase) [5–12], one of the proton pumps of plant cells.
Using ATP as an energy source, this enzyme transfers protons across the tonoplast, as well
as the membranes of the Golgi apparatus and early endosomal networks [13,14]. ATPase-
dependent H+ accumulation decreases the pH of the organelle lumen, which is necessary
for efficient functioning of vacuolar hydrolytic enzymes or secretory cargo transport. In
addition, it ensures solute homeostasis in the cell because the proton electrochemical
gradient is a driving force for many symporters and antiporters [15].
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Disturbance of pump activity, which results in inhibition of cell growth [16], probably
also reduces the detoxification capacity of the cytosol by inhibiting the translocation of
metal ions into the vacuole. In addition to primary active transporters, the accumulation
of Cd2+ in this compartment is supported by secondary active transporters, including
CAX2 and CAX4 exchangers described in Arabidopsis thaliana [17] and metal tolerance
proteins MTP1 and MTP4 identified in tobacco [18]. Therefore, maintaining the activity
of the proton pump under cadmium stress is extremely important. It was shown that
heterologous overexpression of only one V-ATPase gene, VHA-c1, from Tamarix hispida
significantly increased Arabidopsis tolerance to Cd [19].

Many reports suggest that nitric oxide (NO) participates in Cd-induced stress signaling
and may be involved in tolerance acquiring [20–23]. However, little is known about
V-ATPase modulation by NO [9–11]. The signaling properties of NO come from its relatively
long life, small size, and the ability to easily penetrate biological membranes, as well as
the ability to easily diffuse in the hydrophilic environment of the cytoplasm. NO is also
characterized by its high chemical reactivity related to its free radical nature (NO·). Thus,
NO reacts with many molecules, including hydroxyl radical (OH·) and superoxide anion
radical (O2

− ·) or alkoxy (LO·) and peroxyl (LOO·) radicals of lipids, minimizing oxidative
stress and limiting lipid peroxidation. These features determine the antioxidant properties
of NO. Another target of NO is proteins [24,25]. The post-translational modifications
induced by NO include Tyr nitration, Cys S-nitrosylation, and metal nitrosylation. In this
way, NO regulates the activity of transcription factors, kinases, receptors, transporters,
antioxidant enzymes, and enzymes responsible for phytohormone synthesis [26].

Regulation of NO levels in plant cells is much more complex than that in animals,
and depends on many metabolic processes that are not fully understood [27]. Nitrate
reductase (NR) was originally proposed to be the main enzyme involved in NO synthesis
in plants because it is able to convert NO2

− to NO using NADH as an electron source.
However, many authors argue that cytoplasmic NR is responsible for NO production for
signaling purposes [27,28]. An alternative hypothesis assumes that NR delivers electrons
to NO-forming nitrite reductase (NOFNiR), which catalyzes NO synthesis from NO2

−;
however, this process was confirmed only in Chlamydomonas, but not in higher plants [29,30].
Moreover, a second form of NR, plasma membrane-bound nitrate reductase (PM-NR),
probably participates in NO synthesis by providing the substrate, NO2, to nitrite-nitric
oxide reductase (Ni-NOR), which generates NO in apoplast [31].

Another pathway for NO generation in plant cells appears to be Arg-dependent
synthesis. In animals, this process is catalyzed by nitric oxide synthase (NOS). In plants,
NOS-like activity is measured using cofactors characteristic for animal NOS and is inhibited
in the presence of anti-mouse NOS antibodies [32] or Arg analogs (e.g., L-NAME) [33]. On
the other hand, however, NOS-like genes have not yet been identified in land plants [34].
In addition, NO can be generated in non-enzymatic reaction between L-Arg and H2O2 [32]
or in the polyamine-based pathway [33].

In our previous study [7], the effects of small signaling molecules, including H2O2
and H2S, on V-ATPase were analyzed in both control and Cd-treated cucumber roots.
The relationship between these signals has been found to be involved in this enzyme
regulation. The aim of this work was to clarify the role of NO in the regulation of V-ATPase
and to demonstrate the connections between this signaling molecule and other potential
regulators of the enzyme, including phytohormones. For this purpose, V-ATPase activity
was determined in plants treated with a NO donor (SNP) or inhibitors of NO-generating
enzymes. We showed that NO acts as a positive regulator of the proton pump in the roots
of cucumber seedlings growing under control conditions and cadmium stress. However,
Cd was found to decrease NO level in the roots. To explain the mode of NO action, the
gene expression and protein level of the selected VHA subunits were determined. Based on
the phytohormone content analysis in Cd-treated cucumber roots, salicylic acid (SA) was
selected as a possible V-ATPase modulator. In addition, the interrelations between NO and
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salicylic acid as well as between NO and H2O2/H2S were verified to explain the possible
crosstalk responsible for the observed Cd-induced negative regulation of V-ATPase.

2. Results

To verify whether NO content changes in cucumber roots under cadmium stress
conditions, seedlings were treated with 10, 50, 100 or 150 µM CdCl2 for 24 h. At higher
concentrations, Cd was found to significantly decrease NO level. It reached about 74% and
79% of the control value in plants exposed to 100 and 150 µM Cd, respectively (Figure 1).
The negative effect of 100 µM CdCl2 on NO level in cucumber roots was also confirmed by
DAF-2D bio-imaging (Figure 2). According to this, a Cd concentration of 100 µM was used
in subsequent studies.
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Figure 1. Effect of cadmium on NO content in cucumber roots. Plants were treated with 10, 50, 100,
or 150 µM CdCl2 or grown without this metal (control) for 24 h. Data represent the means of three
biological repetitions ± SE. Statistically significant differences (independent-sample t-test) between
the control and Cd treatments are marked as * (0.01 ≤ p < 0.05) or ** (p < 0.01).
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Figure 2. Bio-imaging of NO production in cucumber roots treated with 100 µM Cd for 24 h. The NO
level was monitored using DAF-2D, a NO-specific fluorescent dye, and imaged using fluorescence
microscopy. The images are representative of several measurements made in the root cap (A–F),
elongation zone (G–L), and lateral root zone (M–P,R,S).

At the same time, it was shown that 24-h treatment of seedlings with 100 µM cadmium
did not significantly affect their phenotype (Figure S1) or fresh weight (Figure 3A); however,
higher Cd concentration reduced seedling elongation (Figure 3B). On the other hand,
prolonged exposure toe 100 µM metal led to a marked impairment in cucumber growth
and development, and it seemed to reduce the lifespan (Figure S2).

Since nitrate reductase (NR) is believed to be the main enzyme responsible for NO
production in plant cells, its activity was determined in the roots of cucumber seedlings
treated with 10, 50, 100, or 150 µM CdCl2 for 24 h. Similarly to the NO level, both NR
activities, total and actual, were reduced by Cd in a concentration-dependent manner.
Exposure to 100 µM Cd resulted in a more than three-fold decrease in actual NR activity
and an almost two-fold decrease in total NR activity (Figure 4). This suggests that the
reduction in the NO level under Cd stress may be due to NR downregulation.



Plants 2023, 12, 2884 5 of 22

Plants 2023, 12, x FOR PEER REVIEW 5 of 23 
 

 

Figure 2. Bio-imaging of NO production in cucumber roots treated with 100 μM Cd for 24 h. The 
NO level was monitored using DAF-2D, a NO-specific fluorescent dye, and imaged using fluores-
cence microscopy. The images are representative of several measurements made in the root cap 
(A–F), elongation zone (G–L), and lateral root zone (M–S). 

At the same time, it was shown that 24-h treatment of seedlings with 100 μM cad-
mium did not significantly affect their phenotype (Figure S1) or fresh weight (Figure 3A); 
however, higher Cd concentration reduced seedling elongation (Figure 3B). On the other 
hand, prolonged exposure toe 100 μM metal led to a marked impairment in cucumber 
growth and development, and it seemed to reduce the lifespan (Figure S2).  

 
Figure 3. Effect of 24-hour treatment of cucumber seedlings with different concentrations of CdCl2 
on seedling fresh weight, FW (A) and length (B). The results presented are the average of the 
measurements of 10 plants ± SE. Different letters represent homogeneous groups according to 
Tukey’s test (p < 0.05). 

Since nitrate reductase (NR) is believed to be the main enzyme responsible for NO 
production in plant cells, its activity was determined in the roots of cucumber seedlings 
treated with 10, 50, 100, or 150 μM CdCl2 for 24 h. Similarly to the NO level, both NR ac-
tivities, total and actual, were reduced by Cd in a concentration-dependent manner. Ex-
posure to 100 μM Cd resulted in a more than three-fold decrease in actual NR activity 
and an almost two-fold decrease in total NR activity (Figure 4). This suggests that the 
reduction in the NO level under Cd stress may be due to NR downregulation. 

 
Figure 4. Effect of cadmium on NR activity in cucumber roots. Plants were treated with 10, 50, 100, 
or 150 μM CdCl2 or were grown without this metal (control) for 24 h. Data represent the means of 
three biological repetitions ± SE. Statistically significant differences (independent-sample t-test) 
between the control and Cd treatments are marked as ** (p < 0.01). 
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on seedling fresh weight, FW (A) and length (B). The results presented are the average of the
measurements of 10 plants ± SE. Different letters represent homogeneous groups according to
Tukey’s test (p < 0.05).
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Additionally, to determine the dynamics of changes in Cd-induced endogenous NO,
its level was monitored for 24 h after plant transfer to a medium containing 100 µM Cd.
The results showed a decrease in the NO level after the first 2 h of stress factor application.
A similar effect was observed in roots throughout the 24-h stress response (Figure S3).

To explain the role of NO in the regulation of V-ATPase, the effects of exogenously
applied SNP (NO donor) and inhibitors of NO-generating enzymes (WO4

2− as a NR
inhibitor and L-NAME as an inhibitor of NOS-like activity) on both ATP hydrolysis and
ATP-driven H+-transport were analyzed in tonoplast vesicles isolated from cucumber
roots. Under normal growth conditions, the treatment of seedlings with SNP caused
visible stimulation of ATP-driven proton transport which reached about 134% of the control
(Figure 5A). Cadmium significantly reduced both enzyme activities. H+ translocation was
inhibited by 67% whereas ATP hydrolysis by 43%, respectively. However, pretreatment
of seedlings with SNP before their exposure to cadmium resulted in the restoration of the
Cd-lowered activities to control values (Figure 5B). On the other hand, opposite results were
observed when plants were exposed to L-NAME and WO4

2−. Both inhibitors decreased
ATP hydrolysis (by 37% and 45%, respectively) and proton pumping (by 22% and 66%,
respectively) catalyzed by V-ATPase in unstressed seedlings. The addition of L-NAME
or WO4

2− to the nutrient medium together with cadmium reduced enzyme activities to
a greater extent than the addition of metal alone. ATP-dependent H+ transport achieved
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about 39% and 34%, while hydrolytic activity was 16% and 31% of the control in roots
treated with Cd+L-NAME and Cd+WO4

2−, respectively (Figure 5C). The results indicate
that NO acts as a positive regulator of V-ATPase under both normal and stress conditions,
and diminishing the endogenous level of this molecule inhibits enzyme activity.
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Figure 5. Effects of NO on V-ATPase activities, ATP-dependent proton transport and ATP hydrolysis,
in tonoplast vesicles isolated from cucumber roots. (A) Plants were grown with the addition of 10 µM
sodium nitroprusside (SNP, NO donor) or without this compound (control) for 24 h under continuous
light (hν). (B) Plants were treated with 100 µM CdCl2 for 24 h (Cd) or 10 µM SNP for 24 h before
exposure to 100 µM CdCl2 (SNP/Cd, pretreatment). Control seedlings were grown in a basic medium.
During the 24-h treatment of some seedlings with SNP, all plants were transferred to continuous
light conditions (hν). (C) Plants were exposed to 100 µM CdCl2, 50 µM tungstate (WO4

2−, nitrate
reductase inhibitor), or 100 µM N-nitro-L-arginine methyl ester (L-NAME, an inhibitor of NOS-like
activity), as well as to CdCl2 together with WO4

2− or L-NAME (Cd+WO4
2− and Cd+L-NAME,

respectively) for 24 h. Data represent the means of 3–6 biological repetitions ± SE. Statistically
significant differences (single-sample t-test) related to the control are indicated as * (0.01 ≤ p < 0.05)
or ** (p < 0.01) and related to Cd as + (0.01 ≤ p < 0.05) or ++ (p < 0.01).

V-ATPase activity may be regulated at both the gene and protein level. For this
reason, the expression of eight VHA genes, including VHA-A, VHA-B, VHA-a1, VHA-
a2, VHA-a3, VHA-c1, VHA-c2, and VHA-c3, encoding four cucumber V-ATPase subunits,
was analyzed in the roots of cucumber seedlings treated with SNP, L-NAME, WO4

2−,
and Cd. There were no significant correlations between proton pump activity and the
transcription level of the analyzed genes, suggesting that the observed modulations of
enzyme activity were not the result of changes at the genetic level (Figure 6A–C). However,
the expression of some genes, especially VHA-a2, was clearly upregulated after plant
exposure to WO4

2−, both under control and stress conditions, although V-ATPase activity
was inhibited. It seems possible that such transcriptional changes in individual subunits
may be related to V-ATPase functions other than proton pumping. Moreover, treatment
of cucumber seedlings with SNP did not induce any significant modulation in the protein
level of the three main enzyme subunits, including A, B, and E of the cytoplasmic V1 sector



Plants 2023, 12, 2884 7 of 22

(Figure 7A–C), suggesting that NO can modulate the proton pump at the post-translational
level or activate it indirectly, and other signaling molecules may be involved in this process.
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Figure 6. Expression level of the selected VHA genes in cucumber roots. Plants were treated with
SNP, Cd, or inhibitors as described in Figure 5. (A–C) qPCR analysis was performed using two
reference genes, TIP41 and EF1. Transcription level of the control was normalized to 1. Data represent
the means of three biological replicates ± SE. Statistically significant differences (single-sample t-test)
between the control and treatments are marked as * (0.01 ≤ p < 0.05) or ** (p < 0.01) and between Cd
and corresponding treatments as ˆ (0.01 ≤ p < 0.05) or ˆˆ (p < 0.01).

Plants 2023, 12, x FOR PEER REVIEW 8 of 23 
 

 

gle-sample t-test) between the control and treatments are marked as * (0.01 ≤ p < 0.05) or ** (p < 0.01) 
and between Cd and corresponding treatments as ^ (0.01 ≤ p < 0.05) or ^^ (p < 0.01). 

 
Figure 7. Protein level of the selected VHA subunits. Plants were treated with SNP as described in 
Figure 5A. (A) Average level of VHA-A, VHA-B, and VHA-E was analyzed by Western blotting 
and ImageLab™. The results are presented as a % of the protein level in the roots of the control 
plants (100%). Data represent the means of 5 biological repetitions ± SE. (B) Representative Western 
blot of the total protein extract with anti-VHA-A, anti-VHA-B, and anti-VHA-E antibodies. (C) 
Coomassie staining used as a protein loading control. 

Phytohormones are a group of signaling molecules that participate in plant 
responses to stress factors. Therefore, the content of the selected compounds from this 
group was analyzed in cucumber seedlings exposed to 100 μM cadmium for 24 h (Figure 
8). It was indicated that treatment of plants with Cd visibly increased the salicylic acid 
(SA) level in the roots (by about 40% over the control). The content of other analysed 
photohormones, including auxin (IAA), cytokinins (cis-zeatin, cZEA, and trans-zeatin, 
tZEA), gibberellins (GA1 and GA4), abscisic acid (ABA), methyl jasmonate (MeJA), and 
jasmonic acid (JA), did not change significantly. At the same time, it was demonstrated 
that under cadmium stress, the content of benzoic acid (BeA), a precursor of SA, 
increased in cucumber roots (Table 1). During the 24-h exposure of the seedlings to Cd, 
the SA level showed two phases of increase, between 2 and 4 h as well as between 8 and 
24 h after stress induction. The enhanced BeA content was partially correlated with the 
increase in SA concentration (Figure S4).  

 
Figure 8. Contents of cis-zeatin, cZEA, trans-zeatin, tZEA, and methyl jasmonate, MeJA (A), gib-
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Figure 7. Protein level of the selected VHA subunits. Plants were treated with SNP as described in
Figure 5A. (A) Average level of VHA-A, VHA-B, and VHA-E was analyzed by Western blotting and
ImageLab™. The results are presented as a % of the protein level in the roots of the control plants
(100%). Data represent the means of 5 biological repetitions ± SE. (B) Representative Western blot of
the total protein extract with anti-VHA-A, anti-VHA-B, and anti-VHA-E antibodies. (C) Coomassie
staining used as a protein loading control.
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Phytohormones are a group of signaling molecules that participate in plant responses
to stress factors. Therefore, the content of the selected compounds from this group was
analyzed in cucumber seedlings exposed to 100 µM cadmium for 24 h (Figure 8). It was
indicated that treatment of plants with Cd visibly increased the salicylic acid (SA) level in
the roots (by about 40% over the control). The content of other analysed photohormones,
including auxin (IAA), cytokinins (cis-zeatin, cZEA, and trans-zeatin, tZEA), gibberellins
(GA1 and GA4), abscisic acid (ABA), methyl jasmonate (MeJA), and jasmonic acid (JA),
did not change significantly. At the same time, it was demonstrated that under cadmium
stress, the content of benzoic acid (BeA), a precursor of SA, increased in cucumber roots
(Table 1). During the 24-h exposure of the seedlings to Cd, the SA level showed two
phases of increase, between 2 and 4 h as well as between 8 and 24 h after stress induction.
The enhanced BeA content was partially correlated with the increase in SA concentration
(Figure S4).
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Figure 8. Contents of cis-zeatin, cZEA, trans-zeatin, tZEA, and methyl jasmonate, MeJA (A), gib-
berellins GA1 and GA4, and abscisic acid, ABA (B), indole-3-acetic acid, IAA, jasmonic acid, JA, and
salicylic acid, SA, (C) in the roots of cucumber seedlings grown with the addition of 100 µM CdCl2 or
without this metal (control) for 24 h. The results presented are the averages of five replicates ± SE.
Statistically significant differences (independent-sample t-test) between the control and treatments
are marked as * (0.01 ≤ p < 0.05).

Table 1. Effect of NO on salicylic acid (SA) and benzoic acid (BeA) content in cucumber roots.
(Plants were treated with SNP, Cd and NO synthesis inhibitors as described in Figure 5. Results
presented are averages of five replicates ± SE. Statistically significant differences (independent-
sample t-test) between the control and SNP or Cd treatments are marked as ˆ, and between Cd and
the corresponding inhibitor treatments as * (p < 0.05)).

Treatment BeA Concentration
(ng g−1 FW)

SA Concentration
(ng g−1 FW)

Control (hν) 67.1 ± 2.6 179.4 ± 6.2
SNP (hν) 59.0 ± 3.4 190.7 ± 10.8

Cd 74.0 ± 0.8 ˆ 252.9 ± 23.1 ˆ
Cd+L-NAME 83.8 ± 4.1 * 203.3 ± 3.3
Cd+WO4

2− 71.6 ± 4.1 185.5 ± 5.9 *

Based on the obtained results, in the next step, the relationship between NO level and
SA content was verified. Exposure of seedlings to 10 and 50 µM SA for 24 h was found
to enhance the NO level in cucumber roots (Figure 9). SA stimulated endogenous NO
production to a similar extent regardless of the concentration used. It reached approximately
30% of the control value, suggesting that SA could act as a regulator of NO generation.
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Figure 9. NO content in the roots of cucumber seedlings exposed to exogenous salicylic acid (SA).
Plants were treated with 10 or 50 µM SA or grown without this hormone (control) for 24 h. Statistically
significant differences (independent-sample t-test) between the control and treatments are marked as
* (p < 0.05).

On the other hand, treatment of plants with SNP for 24 h did not affect either the SA
or BeA concentrations in cucumber roots. However, the effect of NO synthesis inhibitors
on SA and BeA content was observed in the roots of seedlings exposed to Cd (Table 1).
The 24-h treatment of plants with WO4

2−, a suppressor of NR, together with Cd caused
a significant decrease in SA concentration. It achieved 73% in comparison to the level
determined in roots treated with Cd alone, indicating that under cadmium stress, SA level
depends on endogenous NO generated by NR. On the other hand, BeA content increased
by approximately 15% in the roots of seedlings treated with L-NAME in comparison to
the plants exposed to Cd. This suggests that the level of the SA precursor can also be
modulated by NO, but in a different way than SA.

Since SA content increases under cadmium stress and both SA and NO level depend
on each other, the effect of SA on V-ATPase activity was also analyzed. Cucumber seedlings
were exposed to two previously used SA concentrations, 10 and 50 µM, and both ATP
hydrolysis and ATP-driven proton transport were assayed in tonoplast fractions isolated
from the roots (Figure 10). It was shown that SA does not induce significant changes in both
V-ATPase activities, suggesting that this hormone is not involved in V-ATPase regulation.
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Figure 10. Effect of SA on V-ATPase activities, ATP-dependent proton transport and ATP hydrolysis,
in tonoplast vesicles isolated from cucumber roots. Plants were grown with the addition of 10 or
50 µM salicylic acid or without this hormone (control) for 24 h. The results presented are the averages
of three replicates ± SE. There were no statistically significant differences between the control and
treatments (single-sample t-test, p < 0.05).

In our previous studies, H2O2 and H2S were shown to affect V-ATPase activity [7].
The possible interactions between NO and H2O2 as well as H2S were assayed in the
roots of unstressed and Cd-treated cucumber plants. To determine the contribution of
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both molecules to NO generation, seedlings were exposed to 100 µM NaHS (H2S donor),
1 mM propargylglycine (PAG, H2S biosynthesis inhibitor), 100 µM and 5 mM H2O2, and
5 mM dimethylthiourea (DMTU, H2O2 scavenger) for 24 h. It was found that the reduction
in the endogenous H2S level using PAG caused a decrease in the NO content (by about
50%) only in the roots of plants growing under normal conditions (Figure 11A). Similarly,
the NO level was lowered by 60% in the control plants after their treatment with DMTU.
However, under cadmium stress, changes in H2O2 content did not affect endogenous NO
level (Figure 11B). Therefore, it seems that the Cd-induced reduction in NO level does not
depend on H2S or H2O2 levels.
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Figure 11. Effects of H2S (A) and H2O2 (B) on NO content in cucumber roots. Plants were treated
with 100 µM CdCl2, 100 µM NaHS (H2S donor), 1 mM propargylglycine (PAG, inhibitor of H2S
biosynthesis), 100 µM H2O2, 5 mM H2O2, and 5 mM dimethylthiourea (DMTU, H2O2 scavenger),
or were grown without these compounds (control) for 24 h. The results presented are the averages
of 3–6 replicates ± SE. Different letters represent homogeneous groups according to Tukey’s test
(p < 0.05).

On the other hand, during signal transduction, NO can act upstream of H2S and
H2O2, regulating their concentration in the cell. For this reason, H2S and H2O2 content
was measured in cucumber seedlings treated with SNP, L-NAME, WO4

2−, and Cd for 24 h.
It was shown that changes in the NO level, generated using NO donor or two inhibitors,
had no effect on H2S concentration in the roots of plants unstressed and stressed with
Cd (Figure 12A,B). Under the same conditions, the H2O2 content also did not change
significantly. The only exception was the reduction in the H2O2 level observed in plants
treated with both WO4

2− and Cd compared with those exposed to Cd alone (Figure 12C,D).
This result suggests that under Cd stress, the decrease in the NO level resulting from NR
inhibition may cause a decrease in H2O2 content.
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Figure 12. Effect of NO on H2S (A,B) and H2O2 (C,D) levels in cucumber roots. Plants were treated
with SNP, Cd or inhibitors as described in Figure 5. The results presented are the averages of
4–6 replicates ± SE. (A,C) There were no statistically significant differences between the controls and
SNP treatment (independent-sample t-test, p < 0.05). (B,D) Different letters represent homogeneous
groups according to Tukey’s test (p < 0.05).

3. Discussion

Flexible adaptation to changing environment requires efficient extracellular and
intracellular signal transduction cascades mediated by secondary messengers such as
Ca2+, phytohormones, or NO. The role of NO as a signaling molecule has been con-
firmed in many plant species. It participates in both developmental and growth processes
(e.g., [35–38], as well as in reactions to biotic [39,40] and abiotic [41–44] stresses, including
Cd stress [20–23]. Interestingly, an excellent review by Meng et al. [45] clearly showed
that there is no universal pattern of changes in NO content in plant tissues under Cd
stress conditions. The NO level may increase or decrease in different plant organs/cell
cultures depending on the species, Cd concentration, and duration of stress. Moreover,
endogenous NO has been found to negatively and positively affect plant adaptation to Cd
stress, although in most cases, this molecule enhances Cd tolerance [45]. Therefore, it is
important to clarify the role of NO in various stages of plant response to the presence of
Cd, especially to determine which signaling molecules interact with NO in this process
and which factors are responsible for the positive or negative effect of NO donors on
plant metabolism.

Our results suggest that, as in many other plant species [45], NO plays an essential
function in Cd stress perception and/or acquiring stress tolerance in C. sativus, since the
level of this molecule decreases in C. sativus roots after 24-h CdCl2 application. This effect
is dose-dependent and is observed only at higher metal concentrations (Figures 1 and 2).
Under such conditions, a reduction in seedling elongation was observed (Figure 3 and
Figure S1), whereas longer exposure to Cd caused visible symptoms of impaired growth
and development (Figure S2). Similarly, in barley roots, it has been shown that a lower
concentration of Cd (10–20 µM) stimulates NO production, whereas a higher level, in the
range of 50–60 µM, decreases it [46].



Plants 2023, 12, 2884 12 of 22

Nitrate reductase has been proposed as one of the main NO sources in plant cells [29].
Moreover, it was confirmed that increased NO generation, observed in the roots of cu-
cumber seedlings treated with salt stress, was related to NR activity [47]. Thus, one of
the reasons for the reduction in NO content may be Cd-dependent downregulation of
nitrate reductase activity (Figure 4). This is a common phenomenon [48–51] and it seems
to be a universal plant response to this heavy metal, since there are no literature data
demonstrating other Cd effects on NR activity, i.e., an increase or no change. In this study,
actual NR activity, modulated by phosphorylation and binding of the 14-3-3 protein [52],
was more sensitive to Cd exposure and its downregulation was observed even at a low
Cd concentration (10 µM). Higher concentrations of this metal also affected total NR ac-
tivity (Figure 4). This effect may be the result of a direct Cd interaction with the enzyme
substrate-binding site, as proposed by Singh et al. [51]. Alternatively, Cd can interfere with
electron transport via the NADH-heme pathway or decrease the total NR protein level [52].

On the other hand, the observed decrease in the NO level was not strictly related to
the reduction of NR activity. Changes in enzyme activity were more pronounced than the
modulation of endogenous NO. It is well known that NO production is a side effect of NR
action, estimated at approximately 1% of the basic enzyme activity [27]. Moreover, it is
possible that Cd disturbs other NO-generating pathways, including NOS-like activity, [53]
or affects NO scavenger systems, such as hemoglobins, especially class I nonsymbiotic
hemoglobins [54] or S-nitrosothiols, particularly nitrosoglutathione (GSNO), the main
donor and reservoir of NO [55]. NOS-like activity was found to be inhibited by Cd in wheat
roots [53], whereas NO and GSNO levels, as well as GSNOR reductase activity, decreased
in pea leaves under Cd stress conditions [56].

One of the negative effects of Cd on plant cells is the downregulation of vacuolar
H+-ATPase [5–7], the tonoplast proton pump essential for proper plant growth [57]. How-
ever, the mechanism of action of Cd on this enzyme has not yet been fully elucidated. The
present study showed that inhibitors of both NR and NOS-like enzymes (tungstate and
L-NAME, respectively) decreased V-ATPase activity under control conditions as well as
under Cd stress. In contrast, the application of a NO donor (SNP) had the opposite effect;
stimulation of V-ATPase was observed (Figure 5). Thus, NO is suggested to be a positive
V-ATPase regulator in cucumber roots and different NO synthesis pathways may be in-
volved in this regulation. These results are consistent with those reported by Zhang
et al. [58] for V-ATPase in corn leaves. It has been shown that this enzyme is stimulated
by 100 µM SNP and the effect is maintained in plants exposed to salt stress [58]. Similarly,
in white clover, 100 µM CdCl2 inhibited the activity of tonoplast ATPase in the roots,
and the heavy metal effect could be partially abolished by adding SNP to the medium or
increased by L-NAME application. Interestingly, under the same conditions, the enzyme
was regulated in the opposite manner in clover shoots. Its activity increased after plant
treatment with Cd, while the addition of SNP together with Cd reduced it in comparison to
plants exposed to heavy metal only [10,11].

On the other hand, experiments with animal V-ATPase from mouse macrophages [59]
or synaptic vesicles of rat brains [60] revealed negative regulation of the enzyme by NO
donors. It should be noted, however, that in both studies, NO donors were introduced into
the medium containing macrophages or synaptic vesicles for a short time period, from
20 to 40 min, before measuring V-ATPase activity. Therefore, NO released acted directly
and at higher concentrations on the enzyme present in the membranes [59,60]. In plant
research, the SNP effect was long-lasting, ranging from 24 h in Cucumis (Figure 5) to 14 d in
Trifolium [11]. Additionally, SNP was introduced into the plant growing medium and NO
had an indirect influence on enzyme activity.

To explain the mode of NO action on cucumber V-ATPase, the expression of selected
VHA genes as well as the protein level of the three enzyme subunits were analysed. How-
ever, after SNP application, some changes such as a decrease in VHA-A and VHA-B mRNA
level were observed (Figure 6A), which were not coupled with a decrease in the protein
level of VHA-A and VHA-B (Figure 7A,B). Another possibility, not verified in this study, is
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the NO-dependent post-translational modification of V-ATPase, such as S-nitrosylation or
Tyr nitration. S-nitrosylation of the VHA-A subunit has been detected in Arabidopsis, but
the role of this modification in the regulation of pump activity has not been clarified [61,62].
In animal cells, Swallow et al. [59] suggested that S-nitrosylation inhibits enzyme activity.
It seems likely that the responses of plant and animal vacuolar proton pumps to NO may
vary due to a slightly different protein structure, including a distinct profile of Cys residues
in VHA subunits, as well as different enzyme locations and physiological roles [63].

NO-induced modulations of plant V-ATPase activity are probably not the result of a
direct action of this molecule on the enzyme, but rather the general effect of NO on plant
metabolic pathways and, consequently, on pump activity. The opposite effect of SNP on
V-ATPase in clover roots, directly exposed to the NO donor, and in the aboveground part
of the plant, with no contact with this compound, seems to confirm this assumption [10,11].
Moreover, it was suggested that SNP action is based on its ability to restore the correct
endogenous NO level, rather than increasing the NO content in plant tissues, as NO released
from SNP regulates its own cellular homeostasis. It was shown that S-nitrosylation inhibits
the activity of nitrate reductase [64], nitrite reductase [65], and GSNO reductase [66].

In C. sativus roots, the Cd-induced decrease in NO level occurs rapidly within 2 h
of stress initiation (Figure S3). This change can be perceived as a signal. Since V-ATPase
activity was measured after 24 h of Cd treatment, it is possible that in signaling pathways
regulating pump activity, NO can act upstream or downstream of other intercellular
messengers, including phytohormones. Many studies have indicated that exposure of
plants to Cd leads to modulation of endogenous level of various phytohormones [67,68]. A
decrease in the content of some of them is a symptom of metal toxicity, whereas an increase
in the level of others, such as ethylene, jasmonic acid, salicylic acid, and to a lesser extent
ABA and brassinosteroids, is an element of plant adaptation to heavy metal stress [69]. Our
results indicated that SA may be a hormone involved in the response of cucumber root
cells to Cd (Figure 8C). In addition, the increase in SA content was found to be biphasic
and correlated with enhanced level of its precursor, BeA, in the second phase, between
8 and 24 h of the stress reaction (Table 1, Figure S4). This suggests that the initial increase in
SA level may be related to the release of this hormone from inactive conjugates, followed
by enhanced SA biosynthesis.

Relatively little information is available in the literature regarding changes in endoge-
nous SA levels in plants grown under Cd stress conditions; however, an increase in SA
content in response to Cd has been confirmed in Noccae apraecox [70], Arabidopsis [71], and
wheat [72]. In pea leaves, 50 µM CdCl2 decreased SA levels, but strongly increased methyl
salicylate content [73]. In Kosteletzkya virginica, reduced or increased SA accumulation was
observed, depending on the duration of heavy metal treatment [74]. Tao et al. [71] showed
that elevated endogenous SA levels intensify Cd stress in Arabidopsis. On the other hand,
numerous studies have demonstrated that exogenous SA can induce Cd tolerance. This
was associated with increased activity of antioxidant enzymes and reduced accumulation
of H2O2 [75–78], stimulation of L-cysteine desulfhydrase and elevation in H2S content [79],
restoration of hormone homeostasis, including modulation of ABA, IAA, and cytokinin lev-
els, disturbed by Cd, dehydrin accumulation, activation of phenylalanine ammonia-lyase
(PAL), and stimulation of lignin biosynthesis to reduce Cd penetration inside the cell [80],
as well as limiting Cd uptake and translocation to the aboveground parts of the plant [78].

It is well known that V-ATPase is involved in plant stress responses. This is related to
its ability to generate an electrochemical H+ gradient across the vacuolar membrane, which
drives secondary transporters responsible for the sequestration of mineral compounds,
osmoprotectants, and toxic ions such as Na+ and Cd2+ inside the vacuole [81]. Under some
unfavorable conditions, including salt stress, SA application upregulates V-ATPase in the
roots and leaves of Trachyspermum ammi [82]. Thus, we hypothesized that SA could also
modulate V-ATPase activity in cucumber. Unfortunately, no changes in V-ATPase activity
were observed in the roots of seedlings treated with SA (Figure 10), although SA increased
the content of NO (Figure 9), which acts as a positive regulator of the pump (Figure 5). It is
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possible that exogenous SA induces NO generation independently of nitrate reductase and
NOS-like activity, which have been shown to be involved in the positive regulation of the
enzyme (Figure 5C). However, literature data indicate that in other plant species, SA can
stimulate NR activity [83] as well as NOS-like activity [84].

Another possibility for the interaction between SA and NO is the modulation of
hormone level by this signaling molecule. Some data confirm that SA may act downstream
of NO. In tobacco leaves, NO increases SA synthesis by stimulating PAL gene expression
via a cGMP- and cADPR-dependent pathway [85]. It was also shown that treatment
of Arabidopsis with NO increases SA content in leaves [86], while Arabidopsis lines with
silencing of the hemoglobin encoding gene are characterized by increased levels of both NO
and SA in their tissues [87]. In this study, no relationship between NO and SA was observed
in plants grown under control conditions. However, under Cd stress, interrelations between
NR activity and SA level, as well as between NOS-like activity and BeA content, were
demonstrated. Our results suggest that NO generated by NR increases the concentration of
SA in cucumber roots, whereas NO produced from L-Arg inhibits SA biosynthesis at the
stage preceding BeA formation, possibly affecting SA production (Table 1).

Our earlier research confirmed the interplay between H2O2 and H2S in the roots of
cucumber seedlings treated with Cd as well as the role of both molecules in V-ATPase
regulation [7]. Since NO has been shown to be another regulator of V-ATPase, the rela-
tionship between NO and H2S, as well as H2O2, was verified to expand the previously
described signaling pathways leading to the regulation of enzyme activity. The available
data indicate that H2S acts upstream or downstream of NO in different physiological and
developmental processes as well as in response to abiotic stress. Moreover, the functional
parallelism between NO and H2S signaling has been demonstrated in plants exposed to
heavy metals [88]. Similarly, it was found that H2O2 production occurs in parallel with
NO generation in many plant tissues under abiotic and biotic stresses, and both signals
can act synergistically or independently [89]. However, the present results showed that
H2O2 and H2S had no effect on NO level in cucumber roots under Cd stress, although the
reduction in endogenous level of both molecules caused a decrease in NO content in plants
grown under control conditions (Figure 11). Additionally, NO did not seem to be involved
in the regulation of H2S content in cucumber roots. In contrast, NR-related inhibition of
NO generation resulted in a decrease in the H2O2 concentration in plants treated with
cadmium (Figure 12). Therefore, it can be suggested that different crosstalk in the NO
signaling network occurs in cucumber roots under various conditions.

4. Materials and Methods
4.1. Plant Growing Conditions

The cucumber (Cucumis sativus L. cv. Wisconsin) seeds were germinated on filter paper
soaked in distilled water at 25 ◦C for 2 days in the dark. After germination, seedlings
were transferred to a hydroponic culture and cultivated in a nutrient solution consisting of
1.7 mM Ca(NO3)2, 1.7 mM KNO3, 0.33 mM MgSO4, 0.33 mM KH2PO4, 25 µM ferric citrate,
3.3 µM MnSO4, 1.7 µM H3BO3, 0.3 µM CuSO4, 17 nM Na2MoO4, and 3 nM ZnSO4 (pH 6.2).
After 5 days of growth, the medium was changed to a fresh solution (pH 5.5, control) or
solution (pH 5.5) enriched with additional compounds: 10 µM CdCl2, 50 µM CdCl2, 100 µM
CdCl2, 150 µM CdCl2, 10 µM salicylic acid (SA), 50 µM SA, 10 µM sodium nitroprusside
(SNP, NO donor) [90], 50 µM Na2WO4 (WO4

2−, nitrate reductase inhibitor) [91], 100 µM
N-nitro-L-arginine methyl ester (L-NAME, inhibitor of NOS-like activity) [92], 100 µM
H2O2, 5 mM H2O2, 5 mM dimethylthiourea (DMTU, H2O2 scavenger) [93,94], 100 µM
NaHS (H2S donor), or 1 mM propargylglycine (PAG, inhibitor of H2S biosynthesis) [95,96].
The plant growth continued for the next 24 h. In the pretreatment experiments, the medium
was changed twice, on the fourth and fifth days of cultivation. The roots of cucumber
were collected after 6 days of growth. For long-term observation of the effect of Cd on the
cucumber phenotype, after 5 d of growth, some plants were transferred to Cd-containing
medium for a period longer than 24 h, up to 19 d. The medium was changed at least once a
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week. The growing conditions were as follows: 180 µmol photons m−2s−1 of light, 16/8 h
light (25 ◦C)/dark (22 ◦C) regime and constant 70% relative humidity.

Plants treated with SNP, which releases NO as a result of photolysis [97], as well as
corresponding control plants were placed in glass containers and transferred to continuous
light and constant temperature (23 ◦C) conditions.

4.2. Determination of NO, H2S and H2O2 Content

The NO content was measured using both colorimetric and fluorescence methods.
The first method, used according to Bryan and Grisham [98] and Filippou et al. [99]

with some modifications, based on the conversion of NO to NO2
− at low pH and de-

termination of NO2
− concentration using Griess reagent. Roots (1 g) were ground in a

chilled mortar with the addition of 2 mL of cold 4% Zn(CH3COO)2 dissolved in 50 mM
CH3COOH-CH3COONa buffer (pH 3.6). The homogenate was centrifuged at 12,000× g
for 20 min at 4 ◦C. The supernatant was used for the colorimetric reaction. The reaction
mixture consisted of 0.5 mL of supernatant, 0.25 mL of 1% sulfanilamide dissolved in
1 N HCl, and 0.25 mL of 0.01% N-(1-Naphthyl)ethylenediamine dihydrochloride. After
30 min of incubation, absorbance was measured at 540 nm. The amount of NO was calcu-
lated based on the standard curve for nitrite and expressed as nmol g−1 fresh weight of
the roots.

In the second method, described by Reda et al. [47], NO was detected by imaging the
fluorescence related to the transformation of DAF-2D (5,6-diaminofluorescein diacetate)
to a triazole derivative of fluorescein. Excised cucumber roots were incubated in the dark
in 20 mM HEPES-KOH (pH 7.4) with 10 µM DAF-2D for 10 min at room temperature.
NO-related fluorescence was observed using a fluorescence microscope Zeiss Axio Image
M2 (Carl Zeiss, Oberkochen, Germany) and a Tag-YFP filter with an emission wavelength
of 524 nm.

The H2O2 and H2S level was determined in cucumber roots using the colorimetric
methods of Velikova et al. [100] and Li [101], respectively, with some modifications. Both
procedures have been described in detail by Kabała et al. [7].

4.3. Determination of Phytohormone Content

The contents of plant hormones, including indolyl-3-acetic acid (IAA), cis-zeatin
(cZEA), trans-zeatin (tZEA), gibberellin A1 (GA1), gibberellin A4 (GA4), cis, trans-abscisic
acid (ABA), jasmonic acid (JA), methyl jasmonate (MeJA), SA, and its precursor benzoic
acid (BeA), were determined according to Dziurka et al. [102]. Cucumber root extracts
enriched with internal isotopic standards (Olchemim, Olomouc, Czech Republic) were
analyzed using a UHPLC system (Infinity 1260, Agilent, Santa Clara, CA, USA) with an
Ascentis Express RP-Amide analytical column (2.7 µm, 2.1 mm × 75 mm; Supelco by
Sigma Aldrich, St. Louis, MO, USA) coupled with a triple quadrupole mass spectrometer
(6410 Triple Quad LC/MS, Agilent, Santa Clara, CA, USA) equipped with electrospray
ionization. The concentration of phytohormones was presented as ng g−1 fresh weight of
the roots.

4.4. Determination of Protein Level

The protein level was determined according to Bradford method [103]. BSA was used
to prepare a standard curve.

4.5. Isolation of Tonoplast Fractions and Determination of V-ATPase Activities

Tonoplast vesicles were isolated from cucumber roots according to the procedure
described by Kabała and Kłobus [104], using a discontinuous sucrose density gradient
(20/28/32/42% (w/w) sucrose).

The V-ATPase (EC 3.6.3.14) hydrolytic activity was measured in tonoplast vesicles
according to the method of Gallagher and Leonard [105] as modified by Kabała et al. [6].
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The amount of inorganic phosphate released during the reaction was determined according
to Ames [106]. V-ATPase activity was expressed as µg Pi h−1 mg−1 protein.

ATP-driven proton translocation across the tonoplast was measured spectrophotomet-
rically by monitoring changes in acridine orange absorbance at 495 nm, as described by
Kabała et al. [6], and was expressed as ∆A495 min−1 mg−1 protein.

V-ATPase activity showed high variability in control samples; therefore, to compare
the data obtained in individual analyses, the results were presented as relative values
(% of control).

4.6. Determination of Nitrate Reductase Activity

Nitrate reductase (EC 1.7.1.1) activity was determined based on the method described
by Reda et al. [107] with some modifications. Roots (1.5 g) were homogenized in a chilled
mortar with 1 mM PVPP and 2 mL of cold 50 mM HEPES-KOH buffer (pH 7.5) containing
1 mM DTT, 1 mM PMSF, and 1% BSA. The homogenate was centrifuged at 15,000× g for
15 min at 4 ◦C. The supernatant was used for the colorimetric reaction.

Two types of NR activities were determined: total activity (measured in the presence
of EDTA) and actual activity (measured in the presence of MgCl2). The reaction mixture
consisted of 350 µL of 143 mM HEPES-KOH buffer (pH 7.5), 50 µL of 200 mM KNO3,
50 µL of 100 mM MgCl2 or 50 µL of 100 mM Na2EDTA, 250 µL of water, and 200 µL of the
supernatant. The reaction was started by adding 33 µL of 5.8 mM NADH, run at 27 ◦C for
15 min and terminated with 67 µL of 1 mM zinc acetate. The samples were centrifuged for
10 min at 10,000× g. The NO2

− level in the resulting supernatant was determined using
sulfanilamide and N-(1-naphthyl)ethylenediamine dihydrochloride as described above.
Enzyme activity was expressed as µmol of NO2

− h−1 g−1 fresh weight.

4.7. Total RNA Extraction, cDNA Synthesis and Gene Expression Analysis

Total RNA was isolated using EXTRAzol (BLIRT, Gdańsk, Poland), according to the
manufacturer’s instructions. After RNase-free DNase I (Thermo Fischer Scientific, Waltham,
MA, USA) digestion, RNA samples were used to cDNA synthesis (High-Capacity cDNA
Reverse Transcription Kit, Applied Biosystems, Foster City, CA, USA). The expression
of selected VHA genes, encoding V-ATPase subunits, was analyzed using real-time PCR.
Reactions were performed in a LightCycler 480 system (Roche, Basel, Switzerland) with a
Real-Time 2 × PCR Master Mix SYBR kit (A&A Biotechnology, Gdańsk, Poland). Tonoplast
intrinsic protein 41-like (TIP41) and elongation factor 1-alpha (EF1) were chosen as reference
genes, according to Migocka and Papierniak [108].

The qPCR reaction conditions were as follow: 30 s at 95 ◦C; 40 cycles of: 10 s at 95 ◦C,
10 s at 58 ◦C (for CsVHA-A, B, c2, c3, a1, a3), 60 ◦C (for CsVHA-c1) or 66 ◦C (for CsVHA-a2),
and 12 s at 72 ◦C; 15 s at 65 ◦C (for CsVHA-A, B, a1, a3, c2, c3), 68 ◦C (for CsVHA-c1) or
72 ◦C (for CsVHA-a2), and 30 s at 40 ◦C of final cooling. LightCycler software 4.1 (Roche,
Basel, Switzerland) was used for data analysis. The sequences of the primers used in the
reaction were consistent with those used in our previous publication [7].

4.8. Immunoblotting and Coomassie Staining

Cucumber roots were powdered in liquid nitrogen. Frozen tissue (500 mg) was mixed
with 400 µL of extraction buffer consisting of 50 mM Tris-HCl (pH 7.5), 150 mM NaCl,
1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride and 1× protease inhibitor cocktail
(cOmplete, Roche, Basel, Switzerland), according to the modified method of Jurado–Flores
et al. [109]. The samples were centrifuged for 5 min at 5000 rpm at 4 ◦C to collect the
supernatant and were centrifuged again. This step was repeated several times to obtain clear
protein fractions.

Total root proteins (10 µg) were mixed with the Laemmli buffer. After denaturation,
the samples were separated by electrophoresis. Then, 4% stacking and 10% separating
polyacrylamide gels were used. The BioBLU Prestained Protein Ladder (Bio-Rad, Hercules,
CA, USA) was used as a molecular weight marker. After separation, each gel was divided
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into two parts, one without proteins of interest, which was used for staining with Coomassie
Brilliant Blue R-250, and the other for protein transfer to the membrane and Western
blot analysis.

After electrotransfer and membrane blocking with 5% milk dissolved in phosphate-
buffered saline with the addition of 0.1% (v/v) Tween 20 (1 h), samples were incubated
overnight at 4 ◦C with polyclonal antibodies (Agrisera, Vännäs, Sweden) against the
subunits A (AS09 467), B (AS14 2775), or E (AS07 213) of V-ATPase, diluted 1:5000 in milk
solution. The next day, the samples were treated with secondary antibodies conjugated with
horseradish peroxidase (Goat Anti-Rabbit IgG (H+L)-HRP Conjugate, Bio-Rad, Hercules,
CA, USA). The secondary antibodies were diluted to 1:10,000 and applied for 1 h. The
Amersham ECL Select Western Blotting Detection Reagent (Cytiva, Marlborough, CT, USA)
and ChemiDoc Imaging Systems (Bio-Rad, Hercules, CA, USA) were used for blot and
gel analyses.

4.9. Statistical Analysis

Statistical analyses were performed with Statistica (TIBCO Software Inc., Palo Alto,
CA, USA), version 13.3. The results were considered statistically significant at p < 0.05.
The normality of the data was verified using the Shapiro–Wilk test. Statistically significant
differences in V-ATPase activity, presented as % of the control, were evaluated with a
one-sample t-test. The homoscedasticity of the data was checked using the Brown–Forsythe
test. The comparison of two groups of data was performed using the independent-sample
t-test, while one-way ANOVA with Tukey’s test for post hoc analysis was used to compare
more than two groups of data. At least three biological replicates were performed in all
experiments and the results are presented as mean values ± standard error (SE). Detailed
information regarding the tests used and the number of replicates is available in the
figure legends.

5. Conclusions

In this study, it was found that both exogenously applied NO (in the form of SNP)
and endogenous NO stimulated V-ATPase activity in cucumber roots under control and
Cd stress conditions. Both NO synthesized from L-Arg via a NOS-like pathway and NO
produced from NO3

− by NR may be involved in this regulation. The mechanism of NO
action on V-ATPase is not related to changes in the gene expression or protein level of
the main V-ATPase subunits. In cucumber roots, Cd induces an increase in SA content,
but does not affect the level of JA, MeJA, ABA, IAA, cZEA, tZEA, GA1, and GA4. Under
control and Cd stress conditions, NO signaling appears to interact with the SA pathway
and a positive correlation between these molecules has been shown. However, the effect of
SA on V-ATPase activity has not been confirmed. Only under Cd stress, NR-related NO and
its crosstalk with SA and H2O2 have been suggested to play a key role in the functioning of
the signaling network in cucumber roots.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants12152884/s1, Figure S1: Images of cucumber seedlings
treated with different concentrations of CdCl2 for 24 h. Figure S2: Effect of longer treatment of cucum-
ber seedlings with 100 µM CdCl2 on their phenotype. Figure S3: Changes in NO content over time in
cucumber roots treated with 100 µM CdCl2. Figure S4: Changes in BeA (A) and SA (B) level over
time in cucumber roots treated with 100 µM CdCl2.
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