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Abstract: Drought is one of the key environmental factors affecting the growth and yield potential of
rice. Grain shape, on the other hand, is an important factor determining the appearance, quality, and
yield of rice grains. Here, we re-sequenced 275 Xian accessions and then conducted a genome-wide
association study (GWAS) on six agronomic traits with the 404,411 single nucleotide polymorphisms
(SNPs) derived by the best linear unbiased prediction (BLUP) for each trait. Under two years of
drought stress (DS) and normal water (NW) treatments, a total of 16 QTLs associated with rice grain
shape and grain weight were detected on chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12. In addition, these
QTLs were analyzed by haplotype analysis and functional annotation, and one clone (GSN1) and
five new candidate genes were identified in the candidate interval. The findings provide important
genetic information for the molecular improvement of grain shape and weight in rice.

Keywords: rice; grain shape; GWAS; QTLs

1. Introduction

Rice (Oryza sativa L.) is a globally important food crop, feeding more than half of
the world’s population as a staple food [1–3]. Hence, rice production is important for
global food security, social stability, and economic development. However, rice produc-
tion is confronted with the challenges of increasing yield loss caused by climate change
and gradually decreasing arable land and water resources [4,5]. In addition, the contin-
uous growth of the global population requires further improvement of rice yield in the
future [6,7]. In the past decade, the decrease in arable land and the effects of various
abiotic stresses have significantly slowed down the average annual growth rate of rice
production [8].

Grain shape has important impacts on rice yield and its appearance, processing,
cooking, and eating quality, thereby directly affecting the commercial value of rice [9]. In
addition, thousand grain weight (TGW), a genetically stable trait, is another important
factor affecting rice yield [10]. The factors that determine the TWG include grain length,
grain width, and grain thickness [11]. Globally, different countries and regions have
different preferences for rice quality traits. For example, people in south and southeast
Asia, southern China, the USA, and Latin America prefer long, fine grains with a fluffy
and firm texture and medium amylose content. However, people in northern China, Korea,
Japan, and parts of the Mediterranean area prefer short, round, soft, and sticky rice grains
with a low amylose content [12,13].
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Grain shape is an important quantitative agronomic trait in rice, controlled by multiple
genes in the canonical form [14–16]. Many studies have explored the genetic basis for rice
grain shape, resulting in the identification of more than 400 quantitative trait loci (QTLs) in
recent decades [13,17–20]. The common pathways through which these loci regulate grain
shape include phytohormone regulation, mitogen-activated protein kinase (MAPK) sig-
naling, transcription factor regulation, G protein signaling, and the ubiquitin-proteasome
pathway [21,22]. Instead of acting independently, these regulatory pathways are often
intertwined and act in a synergetic manner. For example, GS5 positively regulates rice grain
size by encoding a serine carboxypeptidase [23]. qTGW3 encodes a kinase similar to the
glycogen synthase kinase GSK3, which negatively regulates rice grain size and weight [24].
OsMAPK6, OsMKK4, and OsMKP1 are typical genes that regulate grain shape through
the MAPK pathway, among which OsMKK4 regulates rice grain size by mediating cell
proliferation [25]. In general, transcriptional regulators are thought to be involved in a
variety of regulatory processes. OsSPL16/GW8, a transcription factor containing the SBP
structural domain, regulates rice grain width [26]. GL7 encodes a homolog of the Arabidop-
sis LONGIFOLIA protein and regulates the longitudinal elongation of cells [27]. The G
protein is an evolutionarily conserved signaling pathway involved in the transmission of
extracellular signals to the cell, thereby regulating rice grain shape. The GS3 gene itself
has no effect on grain size, but it can compete with DEP1 or GGC2 for binding Gβ to
shorten grain length [28]. Protein ubiquitination is an important regulatory process that
affects protein stability, activity, and localization. Among various ubiquitin ligases, GW2
encodes a cyclic E3 ubiquitin ligase located in the cytoplasm and negatively regulates cell
division by anchoring its substrate to the proteasome for degradation [29]. The cloning of
these genes and the analysis of their functions have greatly enriched our understanding
of the molecular mechanisms underlying the grain shape in rice [30,31]. Since 50% of
crop yield loss is caused by abiotic stresses such as drought, salinity, and temperature
extremes [32], particularly drought [33], it is important to explore the genetic basis for grain
morphology under drought conditions and identify new related QTLs to improve grain
yield and quality.

In this study, we tested the grain circumference (GC), grain length (GL), grain length to
width ratio (GLWR), grain size (GS), grain width (GW), and thousand grain weight (TGW)
of 275 Xian rice accessions. To avoid false positives, best linear unbiased predictive values
(BLUP) were calculated for these six agronomic traits in different years under drought
and normal water treatments by combining phenotypic and genotypic data for a genome-
wide association study (GWAS). The GWAS results were further analyzed with various
methods. Finally, one cloned gene and five new candidate genes were identified. The
findings will help better understand the regulatory mechanisms of rice grain shape, and
the new candidate genes may provide an important resource for molecular breeding of rice
and the improvement of rice grain shape under drought conditions.

2. Results
2.1. Distribution and Correlation of Phenotype and Heritability of Grain Shape

The phenotypic traits were significantly different under drought stress (DS) and nor-
mal water (NW) in both years (Table 1) (Figure 1a–f). All six traits under DS showed
different degrees of reduction compared with those under NW, particularly the TGW. The
heritability of GC, GL, GLWR, GS, GW, and TGW was 0.72, 0.94, 0.97, 0.68, 0.95, and
0.71 under DS, and 0.97, 0.98, 0.98, 0.96, 0.98, and 0.99 under NW in different years, re-
spectively (Table 1). A higher heritability indicates high genetic stability, while a lower
heritability indicates that the traits are highly influenced by the environment. The vari-
ation coefficients of GC, GL, GLWR, GS, GW, and TGW were 8.39–16.44%, 9.84–10.13%,
14.46–16.69%, 10.97–18.08%, and 8.95–9.94%, respectively. Moreover, the wide range of
phenotypic variations also enriched the genetic diversity of the studied population. The
six-grain shape and weight traits all showed normal distribution, possibly due to the control
of these quantitative traits by multiple minor-effect genes (Figure S1).
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Table 1. Statistics of GC, GL, GLWR, GS, GW, and TGW in different environments.

Treatment Year Mean ± SD Max Min CV (%) H2

GC (mm)
DS

2017 18.53 ± 3.05 23.59 7.58 16.44%
0.722018 18.38 ± 1.68 22.86 13.48 9.11%

NW
2017 19.90 ± 1.67 24.60 15.74 8.39%

0.972018 19.78 ± 1.66 23.80 15.39 8.42%

GL (mm)
DS

2017 8.09 ± 0.80 10.08 4.27 9.84%
0.942018 7.78 ± 0.79 9.79 5.57 10.13%

NW
2017 8.36 ± 0.83 10.53 6.32 9.91%

0.982018 8.31 ± 0.82 10.27 6.07 9.89%

GLWR
DS

2017 3.21 ± 0.49 4.84 2.02 15.28%
0.972018 3.14 ± 0.45 4.38 2.06 14.46%

NW
2017 3.14 ± 0.52 4.51 1.99 16.69%

0.982018 3.11 ± 0.51 4.43 1.98 16.43%

GS (mm2)
DS

2017 15.26 ± 2.76 22.16 5.46 18.08%
0.682018 14.97 ± 1.92 20.91 9.70 12.81%

NW
2017 17.34 ± 1.90 24.31 12.95 10.97%

0.962018 17.25 ± 1.91 24.15 12.6 11.06%

GW (mm)
DS

2017 2.59 ± 0.25 3.48 1.33 9.71%
0.952018 2.52 ± 0.23 3.31 1.96 8.95%

NW
2017 2.72 ± 0.27 3.68 2.23 9.94%

0.982018 2.73 ± 0.26 3.56 2.18 9.66%

TGW(g)
DS

2017 16.67 ± 3.04 28.88 9.79 18.26%
0.712018 17.21 ± 3.16 28.10 8.75 18.38%

NW
2017 23.99 ± 3.26 35.99 17.18 13.58%

0.992018 23.96 ± 3.32 38.33 17.17 13.87%

Note: GC, grain circumference; GL, grain length; GLWR, grain length to width ratio; GS, grain size; GW, grain
width; TGW, thousand grain weight.

GL was significantly negatively correlated with GW, with the highest correlation
coefficient of −0.433 under NW in 2017, but was significantly positively correlated with
other traits. GW was negatively correlated with GLWR and GC but had positive correlations
with GS and TGW in both environments, with the highest negative correlation coefficient
of −0.835 with GLWR under NW in 2017. GLWR was positively correlated with GS and GC
in both environments and only showed a negative correlation to TGW with a coefficient
of −0.024 under NW in 2017. GS showed positive correlations with GC and TGW in both
environments (Figure 1g–j). These results suggested that there were great phenotypic
variations within this population.
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Figure 1. Box plots of six traits of rice grain shape and weight under drought stress (DS) and normal 
water (NW) and phenotypic correlations of the six traits in different environments. 2017DS: 2017 
drought stress; 2017NW: 2017 normal water; 2018DS: 2018 drought stress; 2018NW: 2018 normal 
water. (a) Grain circumference; (b) grain length; (c) grain length to width ratio; (d) grain size; (e) 
grain width; (f) thousand grain weight; (g) 2017 drought stress; (h) 2017 normal water; (i) 2018 
drought stress; (j) 2018 normal water. ‘a’, ‘b’ and ‘c’ are based on whether the T-test is significant 
between each other. ‘*’, ‘**’, and ‘***’ refer to significant correlations (p < 0.05, p < 0.01, and p < 0.001). 

2.2. Population Structure, Kinship, and LD Decay 
The phylogenetic tree (Figure 2a) showed that the studied population had a 

homogeneous population structure without evident population stratification. The 
samples were then clustered through principal component analysis (PCA) [34] based on 
the SNP data using the ‘ggplot2’ package in R software (Figure 2b). The results revealed 
that the scattered points had a continuous distribution without obvious clustering. In 
addition, no obvious hotspot was observed on the kinship map (Figure 2c). These results 

Figure 1. Box plots of six traits of rice grain shape and weight under drought stress (DS) and normal
water (NW) and phenotypic correlations of the six traits in different environments. 2017DS: 2017
drought stress; 2017NW: 2017 normal water; 2018DS: 2018 drought stress; 2018NW: 2018 normal
water. (a) Grain circumference; (b) grain length; (c) grain length to width ratio; (d) grain size; (e) grain
width; (f) thousand grain weight; (g) 2017 drought stress; (h) 2017 normal water; (i) 2018 drought
stress; (j) 2018 normal water. ‘a’, ‘b’ and ‘c’ are based on whether the t-test is significant between each
other. ‘*’, ‘**’, and ‘***’ refer to significant correlations (p < 0.05, p < 0.01, and p < 0.001).

2.2. Population Structure, Kinship, and LD Decay

The phylogenetic tree (Figure 2a) showed that the studied population had a homoge-
neous population structure without evident population stratification. The samples were
then clustered through principal component analysis (PCA) [34] based on the SNP data
using the ‘ggplot2’ package in R software (Figure 2b). The results revealed that the scat-
tered points had a continuous distribution without obvious clustering. In addition, no
obvious hotspot was observed on the kinship map (Figure 2c). These results suggested that
the tested population had no significant genetic structure or kinship and indicated that
the population could meet the requirements of GWAS combined with the distribution of
phenotypes.
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physical distance between markers. 

Figure 2. Genetic structure analysis of 275 Xian rice accessions. (a) Phylogenetic tree; each branch
corresponds to a rice accession. (b) Principal component analysis on about 0.4 million SNPs in 275
rice accessions. PC1 and PC2 refer to the first and second principal components, respectively. Red
points represent the 275 rice accessions, with each point representing one rice accession. A shorter
distance between the points indicates a closer relationship. (c) Heatmap of kinship from R Package
“pheatmap”. (d) LD decay. Y–axis is the average r2 value of each 250−kb region, and X–axis is the
physical distance between markers.

The LD decay distance determines the minimum number of molecular markers re-
quired for association analysis (minimum number of molecular markers = genome size/LD
decay distance) and its subsequent resolution. Here, the LD decay distance was approx-
imately 120 kb, as shown in the LD decay plot (Figure 2d), and we obtained a total
of 404,411 SNPs, which is perfectly adequate. In general, higher genetic diversity in the
population means a shorter LD decay distance, and vice versa [35]. Considering the LD
decay distance in rice, adjacent SNPs with spans less than 200 kb [36,37] were defined as
one single QTL, and the SNP with the lowest p-value was taken as the lead SNP to reduce
redundant association signals between different traits and identify candidate genes.

2.3. Identification of Significant Loci for Related Traits through GWAS

In this study, the BLUP [38] method was used to analyze the data of six traits to
reduce the environmental impact and simplify the calculation. GWAS of grain shape and
grain weight (GC, GL, GLWR, GS, GW, and TGW) was carried out using the general linear
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model (GLM) [39,40]. A stringent criterion of −log10(p) > 4.8 was used to determine the
association significance of the grain shape and grain weight traits (Table S2). As a result,
168 QTLs significantly associated with the six traits were found under DS, and 302 QTLs
were found under NW, from which a total of 1350 candidate genes were obtained (Table S3).
Among different traits, GS corresponded to the most QTLs (129) while GW had the fewest
QTLs (32). In this paper, the QTLs present in both DS and NW environments were selected
for the screening of candidate genes. Finally, 16 significant QTLs were selected for further
analysis. GLM detected that one, three, two, five, four, and one QTL were significantly
associated with GC, GL, GLWR, GS, GW, and TGW, respectively (Table 2). Overall, one
QTL region on chromosome 3 (qGC3.1) was significantly associated with GC, accounting
for 15.62% and 28.75% of the phenotypic variation under DS and NW, respectively (Table 2,
Figure 3a,b). Three QTLs were associated with GL, including qGL3.1 on chromosome 3,
qGL5.1 on chromosome 5, and qGL8.1 on chromosome 8, which accounted for 19.34%
and 14.82%, 15.80% and 18.56%, 14.83% and 15.99% of the phenotypic variation under
DS and NW, respectively (Table 2, Figure 3c,d). Two (qGLWR3.1 and qGLWR3.2) of the
chromosome 3 QTLs were significantly associated with GLWR, which accounted for 16.32%
and 13.28%, 16.63% and 12.98% of the phenotypic variation under DS and NW, respectively
(Table 2, Figure 3e,f). Five QTLs were significantly associated with GS, including qGS2.1
on chromosome 2, qGS3.1 on chromosome 3, qGS4.1 and qGS4.2 on chromosome 4, and
qGS12.1 on chromosome 12, which accounted for 17.72%, 18.82%, 18.81%, 18.77%, and
25.40% of the phenotypic variation under DS, and 24.46%, 23.45%, 23.37%, 23.04%, and
23.37% of the phenotypic variation under NW, respectively. (Table 2, Figure 3g,h). Four
QTLs were significantly associated with GW, including qGW1.1 on chromosome 1, qGW7.1
on chromosome 7, qGW8.1 on chromosome 8, and qGW11.1 on chromosome 11, explaining
16.30–18.35% of phenotypic variation in DS and 15.51%–18.73% of phenotypic variation
in NW (Table 2, Figure 3i,j). One QTL on chromosome 2 (qTGW2.1) was significantly
associated with TGW, accounting for 20.04% and 18.13% of the phenotypic variation in DS
and NW, respectively (Table 2, Figure 3k,l).

Table 2. Sixteen QTLs of significant associations with GC, GL, GLWR, GS, GW, and TGW.

Trait QTL Chr Lead SNP
(bp)

DS
R2 (%)

NW
R2 (%)

DS
p-Value

NW
p-Value Known Genes/QTLs

GC qGC3.1 3 16,743,121 15.62% 28.75% 6 × 10−6 6.15 ×
10−11

GL
qGL3.1 3 16,725,044 19.34% 18.56% 1.36 × 10−7 1.57 × 10−7 GS3
qGL5.1 5 955,623 14.82% 14.83% 8.4 × 10−6 5.38 × 10−6 OsMKP1; GSN1
qGL8.1 8 18,001,936 15.80% 15.99% 2.63 × 10−6 1.35 × 10−6

GLWR
qGLWR3.1 3 16,725,044 16.32% 16.63% 4.1 × 10−7 2.19 × 10−7 GS3
qGLWR3.2 3 21,067,616 13.28% 12.98% 1.14 × 10−5 1.23 × 10−5

GS

qGS2.1 2 7,792,944 17.72% 24.46% 1.09 × 10−5 4.70 × 10−8 OsGSK3
qGS3.1 3 13,224,102 18.82% 23.45% 5.04 × 10−6 8.07 × 10−8

qGS4.1 4 4,445,624 18.81% 23.37% 4.40 × 10−6 6.75 × 10−8

qGS4.2 4 21,851,870 18.77% 23.04% 6.06 × 10−6 1.55 × 10−7

qGS12.1 12 18,698,797 25.40% 23.37% 7.17 × 10−8 7.01 × 10−8

GW

qGW1.1 1 3,526,032 17.91% 15.51% 9.99 × 10−7 2.42 × 10−6 OsRA2; OsCrll4
qGW7.1 7 11,595,349 16.30% 16.49% 3.71 × 10−6 8.76 × 10−7

qGW8.1 8 6,558,586 18.35% 18.73% 1.38 × 10−5 2.17 × 10−6

qGW11.1 11 26,572,137 18.20% 18.18% 6.51 × 10−7 1.55 × 10−7

TGW qTGW2.1 2 8,783,659 20.04% 18.13% 9.35 × 10−6 8.08 × 10−6
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Figure 3. Manhattan plots of the GWAS results for GC, GL, GLWR, GS, GW, and TGW obtained with
GLM. (a) GC under drought stress; (b) GC under normal water; (c) GL under drought stress; (d) GL
under normal water; (e) GLWR under drought stress; (f) GLWR under normal water; (g) GS under
drought stress; (h) GS under normal water; (i) GW under drought stress; (j) GW under normal water;
(k) TGW under drought stress; (l) TGW under normal water.
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2.4. Candidate Gene Identification and Haplotype Analysis

Sixteen identified QTLs were used for high-density association and gene-based haplo-
type analysis to identify candidate genes after the removal of genes encoding hypothetical
proteins, retrotransposons, and transposon proteins. In the qGC3.1 region (16.6–16.8 Mb on
chromosome 3), 254 SNPs for nine genes were used for high-density association analysis.
The gene with the most significant annotation was LOC_Os03g29260 (Figure 4b–d). Based
on the two SNPs in the LOC_Os03g29260 promoter, three SNPs in exons, and one SNP in in-
trons, four major haplotypes were detected in 275 Xian rice accessions, including ACCCCA
for HapA, ACCGCA for HapB, ACTGCA for HapC, and ATTCTA for HapD. The mean
GC of HapA, HapB, HapC, and HapD was 18.11, 18.42, 18.66, and 18.00 (mm) in the DS
environment and 19.52, 19.71, 20.11, and 19.13 (mm) in the NW environment, respectively
(Figure 4a). Haplotype analysis of the whole population showed that the GC of HapC
was significantly higher than that of the other three haplotypes in both environments, and
the GC in the DS environment was significantly lower than that in the NW environment
(Figure 4e,f).

The qGL5.1 QTL was identified in a 0.8–1.0 Mb region on chromosome 5, and 448 SNPs
for 24 genes were used for high-density association analysis. The most significant hit was
located at LOC_Os05g02500 (Figure 5b–d). Based on the two SNPs in the exon and one
SNP in the intron, three major haplotypes were detected in 275 Xian rice accessions. HapA
was AGC, HapB was GAC, and HapC was GGC. The mean GL of HapA, HapB, and HapC
was 8.00, 7.84, and 8.08 (mm) in the DS environment and 8.39, 8.23, and 8.51 (mm) in the
NW environment, respectively (Figure 5a). Haplotype analysis of the whole population
showed that the GL of HapC was significantly higher than that of the other two haplotypes
in both environments (Figure 5e,f).

The qGLWR3.2 QTL was detected in a region of 20.9–21.1 Mb on chromosome 3, and
222 SNPs for 12 genes were used for high-density association analysis. The gene with the
most significant annotation was LOC_Os03g37930 (Figure 6b–d). Based on one SNP in the
exon and six SNPs in the intron of LOC_Os03g37930, two major haplotypes were detected
in 275 Xian rice accessions. HapA was ATCCGGC, and HapB was GTCCGAC. The mean
GLWR of HapA and hapB was 3.24 and 2.84 in the DS environment and 3.20 and 2.76 in
the NW environment, respectively (Figure 6a). Haplotype analysis of the whole population
showed that the GLWR of HapA was significantly higher than that of the other haplotype
in both environments and that the GLWR in the DS environment was significantly higher
than that in the NW environment (Figure 6e,f).

The qGS4.1 QTL was identified in a 4.3–4.5 Mb region on chromosome 4, and 448 SNPs
for 24 genes were used for high-density association analysis. The most significant hit was
located in LOC_Os04g08350 (Figure 7b–d). Based on the three SNPs in exons and 20 SNPs
in introns of LOC_Os04g08350, seven major haplotypes were detected in 275 Xian rice acces-
sions, including HapA (CAAACCCGTCCTACCGAAAAAGA), HapB (CAAACCCGTCC-
TACCGTAGGAGA), HapC (TAAACTCGTCCTACCGAAAGGGA), HapD (TAAACTCGTC-
CTACCGTAAGGGA), HapE (TCAACCCCCGCCCTACCGAAGGGGA), HapF (TCAACC-
CGTCCTATCGAAAGATG), and HapG (TCATCCCGCCCTACCGTAGGGGA). The mean
GS of HapA, HapB, HapC, HapD, HapE, HapF, and HapG was 14.65, 14.63, 14.99, 14.92,
15.90, 15.59, and 15.30 (mm2) in the DS environment, and 16.28, 16.81, 16.93, 17.22, 18.12,
17.98, and 17.17 (mm2) in the NW environment, respectively. Haplotype analysis of the
whole population revealed that the GS of HapE was significantly higher than that of the
other six haplotypes in both environments, and HapA, HapB, and HapC were signifi-
cantly different from HapE and HapF (Figure 7a). Only the DS environment resulted in a
significant difference between HapA and HapD (Figure 7e,f).
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Figure 4. Identification of candidate genes for GC. (a) Based on six SNPs in all evaluated rice
accessions, four haplotypes of LOC_Os03g29260 were identified. In the gene structure diagram of
LOC_Os03g29260, the promoter is indicated by white frame; the exon is represented by blue frame;
and the intron and intergenic region are marked by blue lines. A thin black line represents the
genomic location of each SNP. Haplotypes with fewer than 10 accessions are not shown. (b,c) Local
Manhattan map under drought stress and normal water. Red dotted lines represent candidate regions
for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os06g15480
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’ and ‘b’ are based on whether the t-test is significant between each
other.
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Figure 5. Dentification of candidate genes for GL. (a) Based on the three SNPs in all evaluated rice
accessions, three haplotypes of LOC_Os05g02500 were identified. In the gene structure diagram
of LOC_Os05g02500, the promoter is indicated by white frame; the exon is represented by blue
frame; and the intron and intergenic region are marked by blue lines. A thin black line represents the
genomic location of each SNP. Haplotypes with fewer than 10 accessions are not shown. (b,c) Local
Manhattan map under drought stress and normal water. Red dotted lines represent candidate regions
for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os05g02500
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’ and ‘b’ are based on whether the t-test is significant between each
other.
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Figure 6. Identification of candidate genes for GLWR. (a) Based on the tree SNPs in all evaluated
rice accessions, two haplotypes of LOC_Os03g37930 were identified. In the gene structure diagram
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for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os03g37930
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’ and ‘b’ are based on whether the t-test is significant between each
other.
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Figure 7. Identification of candidate genes for GS. (a) Based on 24 SNPs in all evaluated rice ac-
cessions, seven haplotypes of LOC_Os04g08350 were identified. In the gene structure diagram of
LOC_Os04g08350, the promoter is indicated by white frame; the exon is represented by blue frame;
and the intron and intergenic region are marked by blue lines. A thin black line represents the
genomic location of each SNP. Haplotypes with fewer than 10 accessions are not shown. (b,c) Local
Manhattan map under drought stress and normal water. Red dotted lines represent candidate regions
for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os04g08350
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’, ‘b’ and ‘c’ are based on whether the t-test is significant between each
other.

The qGW1.1 QTL was detected in a region from 3.4 Mb to 3.6 Mb on chromosome 1, and
292 SNPs for 20 genes were used for high-density association analysis. The gene with the
most significant annotation was LOC_Os01g07500 (Figure 8b–d). Three major haplotypes
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were detected in 275 Xian rice accessions based on the two SNPs in the LOC_Os01g07500
promoter, one SNP in the exon, and 10 SNPs in the intron. HapA was CCCGTGCTGCCAT,
HapB was CTCATGCCGCTAT, and HapC was CTCATGTTGCTAT. The mean GW of HapA,
HapB, and HapC was 2.74, 2.55, and 2.50 (mm) in the DS environment and 2.96, 2.71, and
2.65 (mm) in the NW environment, respectively (Figure 8a). Haplotype analysis of the
whole population showed that the GW of HapA was significantly higher than that of other
haplotypes in both environments, and the GW in the DS environment was significantly
higher than that in the NW environment. HapA was significantly different from HapB and
HapC (Figure 8e,f).Plants 2023, 12, x FOR PEER REVIEW 14 of 21 
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Figure 8. Identification of candidate genes for GW. (a) Based on 13 SNPs in all evaluated rice
accessions, three haplotypes of LOC_Os01g07500 were identified. In the gene structure diagram
of LOC_Os01g07500, the promoter is indicated by white frame; the exon is represented by blue
frame; and the intron and intergenic region are marked by blue lines. A thin black line represents the
genomic location of each SNP. Haplotypes with fewer than 10 accessions are not shown. (b,c) Local
Manhattan map under drought stress and normal water. Red dotted lines represent candidate regions
for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os04g08350
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’ and ‘b’ are based on whether the t-test is significant between each
other.

The qTGW2.1 QTL was identified in an 8.6–8.8 Mb region on chromosome 2,
and 306 SNPs for 12 genes were used for high-density association analysis. The most
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significant hit was located in LOC_Os02g15580 (Figure 9b–d). Based on the three SNPs
in exons and the 20 SNPs in introns, two major haplotypes were detected in 275 Xian rice
accessions. HapA was A, and HapB was G. The mean GS of HapA and HapB was 16.14 and
16.96 (g) in the DS environment and 22.56 and 24.04 (g) in the NW environment (Figure 9a).
Haplotype analysis of the whole population demonstrated that the TGW of HapA was
significantly higher than that of HapB in both environments (Figure 9e,f).
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Figure 9. Identification of candidate genes for TGW. (a) Based on one SNP in all evaluated rice
accessions, two haplotypes of LOC_Os02g15580 were identified. In the gene structure diagram of
LOC_Os02g15580, the promoter is indicated by white frame; the exon is represented by blue frame;
and the intron and intergenic region are marked by blue lines. A thin black line represents the
genomic location of each SNP. Haplotypes with fewer than 10 accessions are not shown. (b,c) Local
Manhattan map under drought stress and normal water. Red dotted lines represent candidate regions
for associated SNPs. (d) Linkage disequilibrium heatmap. (e,f) Based on GL of LOC_Os02g15580
haplotype under drought stress and normal water, differences between haplotypes were statistically
analyzed using Tukey’s test, ‘a’ and ‘b’ are based on whether the t-test is significant between each
other.

3. Discussion

Increasing rice yields can help address the problem of global food shortages. Grain
shape largely determines grain weight and therefore affects yield and quality [41,42]. GWAS
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is a genome-wide systematic tool for studying associations between population traits and
SNPs based on LD and has been widely used to identify QTLs and genes associated with
important traits in many crops [43–45].

To the best of our knowledge, this is the first study of GWAS on the grain shape and
grain weight of rice under normal and drought-stress conditions. Analysis of phenotypic
data identified phenotypic diversity and QTLs associated with rice grain size and grain
weight and identified the haplotypes with significant differences in these two indices. In
particular, DS resulted in lower values of all six traits except for GLWR than NW, suggesting
that DS has obvious negative effects on the grain shape and grain weight of rice. GC
(19.90 mm), GL (8.36 mm), GS (17.34 mm2), and TGW (23.99 g) were the highest under
NW in 2017. These significant phenotypic variants may be associated with high genetic
diversity.

Mature seeds are comprised of three primary components: the embryo, endosperm,
and seed coat. These components originate from the fertilized egg, the fertilized polar nu-
cleus, and maternal tissue. Rice grains grow inside the spikelet hull with limited caryopsis
space. Therefore, grain shape and size are critically determined by the maternal genotype
that controls the cell number and size of glumes [21,22]. In addition to the aforementioned
pathways that regulate granule shape, cytochrome P450 also plays a crucial role in complex
biosynthetic pathways. Specifically, GE/BG2/GL3.2 encodes a CYP78A family of cytochrome
monooxygenases that are primarily expressed in the peltate region, which is located at the
boundary between the embryo and endosperm. These enzymes coordinate the growth
and development of both the embryo and endosperm, highlighting their importance in
these processes. The loss of GE/BG2/GL3.2 function resulted in increased embryo size and
decreased endosperm size, whereas an excess of GE/BG2/GL3.2 led to decreased embryo
size and increased endosperm size [46,47]. The length of grains can be increased by down-
regulating the expression of the cytochrome gene CYP704A3. This down-regulation can be
achieved through the binding of miRNA to the 3′UTR region of CYP704A3, which regulates
its expression and subsequently affects the size of grains [48]. SRS3/SAR1/OsKINESIN-13A
is a gene that drives vascular deaggregation and is mainly produced by the Golgi apparatus
and further distributed to the cell surface via vesicles. The OsKinesin-13A functional muta-
tion disrupted the rotation direction of cellulose microfibers and microtubules, resulting
in shorter vascular cells and reduced grain length [49,50]. The protein encoded by UWA
contains the NHL structural domain. An increase in the number of fuwa mutant cells leads
to wider, thicker, and shorter seeds. The up-regulation of some cell cycle-related genes in
fuwa mutants indicates that FUWA is involved in the cell cycle pathway that regulates
cell size, ultimately affecting grain size [51]. Here, we identified multiple QTLs for rice
grain size and grain weight under normal and drought stress conditions by GWAS using
404,411 high-confidence SNPs. We also found many genes that have been cloned previously,
such as GS3, OsGSK3, and brd1, which regulate the GL; OsRA2, GW5, and OsDER1, which
control the GW; LARGE1; and OML4, which regulate the TGW, suggesting that the results
of this study are highly reliable. Candidate genes were further identified by haplotype
block structure analysis, which showed significant associations with the tested agronomic
traits.

For grain shape, five promising candidate genes (one known and four novel) were
identified using the 275 Xian rice accessions. The first was LOC_Os03g29260 in qGC3.1,
which was annotated as an elongation factor protein playing an important role in regulating
plant growth and development. The second was LOC_Os05g02500 in qGL5.1, which
was annotated as a dual-specificity protein. This gene has been identified in previous
studies as GSN1 [52], and the GSN1 mutant showed significant increases in GL, GW, and
TGW but a significantly lower grain number per spike and set rate than the wild type,
thereby exhibiting a reduction in yield per plant. The third was LOC_Os03g37930 in
qGLWR3.2. LOC_Os03g37930 was annotated as a potassium transporter, which is thought
to have K+ transporter activity, increase abscisic acid (ABA) biosynthesis, and activate
the ABA signaling response when encoded. GS5 can also interact with ABA signaling
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factors [23], thereby affecting rice grain shape. The fourth is LOC_Os04g08350 in qGS4.1,
which is annotated as a cysteine synthase or chloroplast/chromoplast precursor. Most of
the chloroplast proteome is shuttled through the cytoplasm as precursor proteins. In the
cytoplasm, the precursors can be co-modified, post-translationally modified, and interact
with E3 ligases, while the ubiquitin-proteasome pathway is an important conduit for
controlling grain shape. The fifth was LOC_Os01g07500 in qGW1.1, which encodes a
tryptophan aminotransferase and plays a key role in rice auxin synthesis [53]. For the
TGW, we identified a promising gene, LOC_Os02g15580, in qTGW2.1. LOC_Os02g15580 is
annotated as cyclic nucleotide-gated ion channel 1 and is highly responsive to a variety of
stimuli, including hormones such as abscisic acid, indoleacetic acid, agonists, and ethylene,
which have a major impact on grain formation and can directly or indirectly control the
grain weight.

In summary, this study showed that the GWAS of rice grain shape and grain weight is
reliable in different environments. GWAS contributed to the identification of a number of
QTLs highly associated with rice grain shape and grain weight in 275 rice accessions, and
further haplotype analysis screened the candidate genes related to these agronomic traits.
The findings can help understand the genetic basis for rice grain shape and grain weight
and also facilitate grain quality improvement in rice breeding programs.

4. Materials and Methods
4.1. Plant Materials, Field Trials and Trait Measurements

A total of 275 Xian rice accessions were obtained from the 3000 Rice Genome Project
(3KRGP) [54] (Table S1).

The 275 accessions were grown at the experiment station of the Institute of Crop Sci-
ence, Chinese Academy of Agricultural Sciences, Hainan Sanya Nanbin Farm
(18.3◦ N, 109.3◦ E) from December 2016 to May 2017 and from December 2017 to May 2018,
respectively. Two treatments of normal water (NW) and drought stress (DS) were carried
out, with each treatment comprising two replications. Each material was planted in two
rows with 10 plants in each row and a planting spacing of 20 cm × 25 cm.

For DS treatment, when the transplants were 25-days-old, no water except for a small
amount of natural rainfall was supplied until maturity. For NW treatment, the fields were
treated as general field management. Field management practices were consistent with
local management standards. When the rice is fully mature, the seeds are harvested and
dried in the sun. The grain circumference (GC) (mm), grain length (GL) (mm), grain width
(GW) (mm), grain length to width ratio (GLWR), and grain size (GS) (mm2) were measured
using a rice grain appearance quality scanning machine (Model SC-G, Hangzhou, China),
and the thousand grain weight (TGW) (g) was determined with a high-precision electronic
balance (1/1000, APTP456 series). Before each measurement, the instrument was calibrated
with a calibration target.

4.2. Statistical Analysis

Data were collated using Excel 2018 and SPSS, and means, standard deviations, and
coefficients of variation were calculated for each trait. Correlation and frequency analyses
were conducted for traits related to rice grain shape and grain weight, and the best linear
unbiased prediction (BLUP) values for six traits of rice grain shape and grain weight over
two years were used for GWAS.

4.3. Genetic Fractal and Population Structure Analysis

Genotype data were obtained from high-density SNP data from the 3K RGP database
rice SNP-seek database (http://snp-seek.irri.org/, accessed on 1 March 2023) [6,55,56], and
SNPs were further screened using PLINK (version 1.9) [57,58]. MAF > 0.05, GENO < 0.2,
for a total of 404,411 SNPs.

The TASSEL [59] was used to calculate the population structure (Q) and kinship
(K). Based on the SNPs of 275 rice accessions, we calculated the genetic distance matrix

http://snp-seek.irri.org/
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using VCF2Dis (https://github.com/BGI-shenzhen/VCF2Dis, accessed on 6 March 2023).
Individual-based neighbor joining (NJ) trees were constructed and embellished using
iTOL (https://itol.embl.de/, accessed on 7 March 2023). Principal component analysis
(PCA) was performed using GCTA (version 1.93.2) software [60] on Linux, and principal
components were plotted using the R package ‘ggplot2’. The PCA scores and relationship
matrix will be used in the general linear model (GLM) below [39]. To estimate LD in the
rice population, the value of the squared correlation coefficient (r2) between pairs of SNPs
was calculated using PopLDdecay decay [61], and the distance across the chromosome
when the r2 dropped to half of its maximum value was called the LD decay distance [19].

4.4. Genome-Wide Association Mapping

In this study, we obtained 404,411 SNPs (MAF > 0.05) and six sets of phenotypic
data to perform GWAS in TASSEL (version 5.2.40) software using the GLM. For the GLM,
the effective independent SNP number calculated using GEC (Version 1.0) [62] software
was used to determine the threshold. p-value = 1.4 × 10−5 was chosen as the significant
threshold, and points with p-value less than the threshold were considered SNPs associated
with the phenotype, and adjacent significant SNPs associated with the same trait within a
physical distance of 200 kb were considered one candidate region. The Manhattan plot was
drawn using the R package “CMplot”.

4.5. Identification of Candidate Genes and Haplotype Analysis

To identify the candidate genes associated with GC, GL, GLWR, GS, GW, and TGW, the
Rice Genome Annotation Project (http://rice.plantbiology.msu.edu, accessed on
26 March 2023) was used to search for candidate genes in the 200 kb genomic region
of the selected SNPs. Among all the candidate genes, four types of genes were excluded:
expressed proteins, hypothetical proteins, retrotransposons, and transposons. Further hap-
lotype analysis excluded heterozygotes and missing alleles, and Haplogroups consisting of
fewer than 10 accessions were deleted. For the genes found in QTLs, only non-synonymous
SNPs in the coding regions of these genes were used for haplotype analysis of R, and a
Student’s t-test was performed to determine whether this locus could cause changes in rice
grain shape and grain weight. The variable r was used to visualize the results.

5. Conclusions

This study determined the grain shape and grain weight traits (GC, GL, GLWR, GS,
GW, and TGW) of 275 rice indica accessions in two environments and two years. By
combining GWAS with the genotype data, a total of 16 important QTLs were screened out.
Haplotype differential analysis and functional annotation of the candidate genes among
these QTLs identified one cloned gene (GSN1) and five candidate genes (LOC_Os03g29260,
LOC_Os03g37930, LOC_Os04g08350, LOC_Os01g07500, and LOC_Os02g15580). The find-
ings can enrich the gene resource for rice grain shape and weight and provide valuable
references for future molecular breeding of rice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants12132549/s1, Figure S1: Histogram of the phenotypic frequency distribution of rice
grain shape and grain weight in 275 rice accessions; Table S1: Information of 275 rice accessions;
Figure S2: Distribution of single nucleotide polymorphisms (SNPs) and nucleotide diversity across the
rice Nipponbare genome in the rice association panel; Table S2: BLUP values consistently determined
QTL of grain shape and grain weight by TASSEL in the three environments; Table S3: List of genes
associated with grain shape and grain weight.
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