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Abstract: Reflectance spectroscopy, in combination with machine learning and artificial intelligence
algorithms, is an effective method for classifying and predicting pigments and phenotyping in agro-
nomic crops. This study aims to use hyperspectral data to develop a robust and precise method
for the simultaneous evaluation of pigments, such as chlorophylls, carotenoids, anthocyanins, and
flavonoids, in six agronomic crops: corn, sugarcane, coffee, canola, wheat, and tobacco. Our results
demonstrate high classification accuracy and precision, with principal component analyses (PCAs)-
linked clustering and a kappa coefficient analysis yielding results ranging from 92 to 100% in the
ultraviolet–visible (UV–VIS) to near-infrared (NIR) to shortwave infrared (SWIR) bands. Predictive
models based on partial least squares regression (PLSR) achieved R2 values ranging from 0.77 to
0.89 and ratio of performance to deviation (RPD) values over 2.1 for each pigment in C3 and C4

plants. The integration of pigment phenotyping methods with fifteen vegetation indices further im-
proved accuracy, achieving values ranging from 60 to 100% across different full or range wavelength
bands. The most responsive wavelengths were selected based on a cluster heatmap, β-loadings,
weighted coefficients, and hyperspectral vegetation index (HVI) algorithms, thereby reinforcing
the effectiveness of the generated models. Consequently, hyperspectral reflectance can serve as a
rapid, precise, and accurate tool for evaluating agronomic crops, offering a promising alternative
for monitoring and classification in integrated farming systems and traditional field production.
It provides a non-destructive technique for the simultaneous evaluation of pigments in the most
important agronomic plants.

Keywords: C3 and C4 plants; digital technologies; high-throughput phenotyping; multivariate tools;
pigment quantification; PLSR models; remote sensing

1. Introduction

In recent years, corn, sugarcane, coffee, canola, wheat, and tobacco crops have garnered
increased interest for plant and pigment phenotyping [1–5]. According to the FAO (2022),
approximately 70% of global crop production comprises agronomic crops. Remote sensing
techniques have proven to be effective in classifying crop varieties, cultivars, and genetics
for phenotyping, providing efficient, accurate, and precise results worldwide [2,4].

Various techniques and equipment can be employed to optimize agricultural produc-
tion strategies, according to Li et al. (2022) [6] and Wang et al. (2022) [7]. These include tools
such as red–green–blue (RGB) sensors, multispectral image sensors (MSI), hyperspectral
remote sensing (HRS), hyperspectral imaging sensors (HSI), and visible–near-infrared–
shortwave infrared (VIS–NIR–SWIR) spectroscopy tools. These can be combined with
machine learning and artificial intelligence algorithms [8]. This combination can lead to
improved yields in a range of production methods, including indoor and vertical farming,
as well as traditional agriculture [2,9].
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The use of UV–VIS–NIR–SWIR spectra in a classification analysis, plant metabolism
distinctions, and the assessment of growth, leaf structural–water interactions, and phenolic
compounds has demonstrated potential as a valuable technique. The unique fingerprints
that are present in agronomic crops allow for the effective classification of a large number
of plant varieties, resulting in improved yields [1–5,10]. In this sense, the development
of high-throughput phenotyping systems and plant pigment phenotyping can also be
considered alternative tools of plant remote sensing.

Hyperspectral analysis, spanning ultraviolet (UV), visible, near-infrared (NIR), and
shortwave infrared (SWIR) ranges, has emerged as a powerful tool in the realm of agri-
culture and plant sciences [2,11,12]. This technology leverages the unique spectral “fin-
gerprints” of different plant species and conditions, thereby facilitating applications such
as plant classification, growth assessments, and the monitoring of plant health and leaf
structure–water characteristics. Such techniques have proven their efficacy in classifying
diverse plant varieties, a factor that contributes significantly to improved horticulture crop
yields [13,14]. With the ability to accurately identify and monitor specific plant varieties
through their unique spectral signatures, farmers can implement more efficient practices,
taking corrective action when spectral data suggest impending issues.

The precision of reflectance spectroscopy is further refined by selecting the most
responsive wavelengths for analysis, given that different plant traits are more discernible
at specific wavelengths [15–17]. This selection process is key to generating reliable and
actionable data. However, it is essential to acknowledge that the success of these methods
hinges on several factors. These include the quality of the spectral data, the accuracy of
the classification algorithms employed, and the specific conditions in which the specific
pigments are found in the leaves of plants [2,11,12]. Hence, while promising, the application
of hyperspectral analysis demands careful consideration of these variables.

The Green Revolution of the 1960s, as well as the recent Digital Revolutions 4.0 and
5.0 [6,7], saw technological advancements applied to high-throughput analyses, contribut-
ing to an increase in food production for several agronomically important crops. This
advancement allows decision-makers to utilize computational intelligence to enhance the
classification, monitoring, and nutritional value of crops in fields, resulting in billions of
dollars in annual economic benefits [13]. Consequently, artificial intelligence algorithms
(AIAs) based on data mining (DM) [18], deep learning (DL) [7,19], and machine learning
(ML) [20–22] present promising techniques for future non-invasive pigment analyses in
crop sciences and remote sensing applications.

The application of remote sensing 5.0 techniques has seen an increase in efforts to
estimate the use of machine learning, data mining, and deep learning to classify crops such
as corn and soybean [23], wheat [6], coffee [24], and lettuce [14]. The use of UV–VIS–NIR–
SWIR hyperspectral imaging is expected to be highly valuable [8,25]. Furthermore, the
combination of the speed, precision, and accuracy [26–28] of hyperspectral equipment [23]
coupled with the capacity of multivariate and artificial intelligence algorithm tools is crucial
for pigment profiling crop modeling [5–7].

The aim of this study was to classify and predict the pigment phenotype of agronomic
plants, such as corn, sugarcane, coffee, canola, wheat, and tobacco, through three main
objectives. First, eight principal MLs and AIAs were used to discriminate these crops.
Second, we examined the correlation of fifteen vegetation indices with pigment measure-
ments. Finally, we simultaneously predicted the concentrations of chlorophyll, carotenoids,
anthocyanins, and flavonoids based on the area and mass in leaves using partial least
square root (PLSR) tools with UV–VIS–NIR–SWIR sensors in these plants.

2. Results
2.1. Descriptive and Variance Analysis-Based Attributes of Crops

The analyses of pigments revealed significant differences, with an F-value of approx-
imately 146 at 1083 and a p-value of less than p < 0.001, as reported in Figure 1. The
chlorophyll and carotenoid concentrations of coffee, wheat, and sugarcane presented a
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range of values from a minimum of 120 to a maximum of 990 mg m−2 (Figure 1A–D).
Anthocyanins and flavonoids were detected in coffee, sugarcane, and corn, showing val-
ues between a minimum of 1.2 and a maximum of 1.8 nmol m−2 and between 78 and
118 nmol m−2, respectively (Figure 1E,F).
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Figure 1. Boxplot of leaf pigment concentrations expressed by leaf (A–F) area and (G–L) mass from
corn, sugarcane, coffee, canola, wheat, and tobacco. F-test by one–way ANOVA (p < 0.001). Different
letters over the boxes indicate significant differences by Duncan’s test (p < 0.001) between crop
plants. (n = 60). Dash: means; square: mean ± SD; outer spread: min–max; triangle: raw data. The
abbreviations are described in Table S2.
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When pigment was expressed on a mass basis (Figure 1G–L), higher values were
observed for coffee and tobacco in terms of the chlorophyll and carotenoid concentrations.
Similarly, higher anthocyanin and flavonoid concentrations were observed in corn, sugar-
cane, and coffee (Figure 1K,L). We also analyzed leaf pigments based on both area and mass
(Table S1), establishing minimum and maximum values for corn, sugarcane, coffee, canola,
wheat, and tobacco (Figure 1 and Table S2). The twelve attributes analyzed demonstrated
the coefficient of variation values spanning from 37.1% to 93.4%. All were classified as
having high variance (Figure 1).

2.2. Hyperspectral Analysis in Leaves

Figure 2 presents UV–VIS–NIR–SWIR hyperspectral curves for 360 of the total samples
as corn, sugarcane, coffee, canola, wheat, and tobacco leaves. The permutation multivariate
analysis of variance (F: 45,657.4; p < 0.001) reveals the wavelengths with the highest
significance among all spectra. Variations in the reflectance factor were noted in the UV
region (350–400 nm), where many phenolic and flavonoid compounds were observed,
as well as in the visible region (400–700 nm), where leaf pigments such as anthocyanins,
carotenoids, and chlorophylls were present.
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Figure 2. The reflectance factor was analyzed in expanded leaves from corn, sugarcane, coffee, canola,
wheat, and tobacco. The spectral range included UV–VIS (350–700 nm, which shows pigments in
the leaves), NIR (700–1300 nm, which reveals the structural components), and SWIR (1300–2500 nm,
which represents the structural–water interactions). The dotted line indicates the inflection points
at 700 and 1300 nm. One-way ANOVA F-test showed significance (p < 0.001) with 360 samples for
60 samples for each crop.

The near-infrared region (700–1300 nm) showed structural differences in leaf tissues,
such as pectin, hemicellulose, lignin, and cellulose, while the shortwave infrared (SWIR;
1300–2500 nm) was attributed to the structural water content of proteins and conjugate
water in intrinsic structures, such as vacuoles and other organelles, as well as cell walls
(Figure 2). The high variability (between 22.4 and 48.3%; 350–2500 nm) among the crop
samples was primarily attributable to differences in pigments, structural composition, and
leaf scattering (Figure 2).
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2.3. Cluster Heatmap of Selected Wavelengths and Classification-Based UV–VIS–NIR–SWIR Bands

Figure 3 displays a cluster heatmap created to visualize the relationship between
spectral data and pigment concentrations. The association between hyperspectral values
and pigment concentrations was leveraged to categorize pigments (chloroplast or extra-
chloroplast) and identify distinct crops. Blue colors represent higher reflectance signals
for crops with substantial concentrations of chlorophylls (as they have two major peak
absorptions, with blue peaks at 430 and 453 nm for chlorophyll a and b), and carotenoids
(broad absorption range in blue (400–500 nm)), while deeper shades of green and red
indicate crops with high anthocyanin and flavonoid concentrations. Lighter shades denote
a lack of association between specific wavelength bands and a certain pigment concen-
tration. Clustering patterns based on UV to VIS to NIR to SWIR bands and crop groups
were discernible. The clustering revealed the dominance of one class of pigment or the
interaction between reflectance and cell mesophyll scattering. For instance, most UV–VIS
bands exhibited similar correlation patterns within their own group (C3 vs. C4 metabolism;
Figure 3).
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Figure 3. Cluster heatmap displayed the correlation between the spectral data of crops (corn, sugar-
cane, coffee, canola, wheat, and tobacco) and their pigments (chloroplastidic, such as chlorophylls
and carotenoids, and extrachloroplastidics, such as anthocyanins and flavonoids). These are grouped
by UV–VIS, NIR, and SWIR wavelength bands, and spectral resolution of 10, 20, and 40 nm. The color
blue indicates a positive relationship between the spectral bands, pigments present in crop plants (C3

and C4 metabolism), and pigment concentrations, while red represents negative correlations, as per
the Z-scores (p < 0.001).

The NIR or SWIR bands demonstrated a strong and negative correlation with spe-
cific wavelength values, suggesting an interaction between pigments and leaf thickness,
as well as the occurrence of scattering phenomena within leaf structures such as cell
parenchyma and intercellular spaces. Nevertheless, carotenoids (Car), anthocyanins (AnC),
and flavonoids (Flv) showed no correlation with the NIR–SWIR-linked spectra associated
with the structure and structure–water of the bands. All wheat samples exhibited a positive
Z-score across all bands from UV–VIS to sugarcane. Furthermore, the clustering of pig-
ments and metabolism reveals that each crop plant possesses a specific fingerprint, which
could potentially be associated with a specific vegetation index. This association takes into
account the vegetative growth stages, and whether they are associated with UV–VIS bands
(350–700 nm), NIR bands (700–1300 nm), or SWIR fingerprints (1300–2500 nm).

2.4. Principal Component Analysis (PCA), Correlation Coefficients, and Loadings of
the Wavelengths

The first three principal components (PCs) accounted for 100% of the variance in the
six spectral analyses (UV–VIS–NIR–SWIR) of corn, sugarcane, coffee, canola, wheat, and
tobacco crops. Based on the PCA 3D plot in Figure 4, two primary clusters formed be-
tween C3 and C4 metabolisms (350–700 nm, 700–1300 nm, 1300–2500 nm, or 350–2500 nm;
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Figure 4A–D). The high precision of the results was demonstrated by the accuracy and
Kappa coefficients, which were approximately greater than 0.94 (Acc) and 0.92 (K), respec-
tively (Figure 4A–D).
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Figure 4. Three–dimensional plot for the first PC1, PC2, and PC3 of the spectroscopy data; (A) 350
at 700 nm; (B) 700 at 1300 nm; (C) 1300 at 2500 nm; (D) 350 at 2500 nm. Data were collected for
hyperspectral data from corn, sugarcane, coffee, canola, wheat, and tobacco plants. Orange and
green colors display correlation clusters of C3 or C4 metabolism-based model phenotyping for similar
groups in crops. Acc represents accuracy, and K represents the kappa coefficient. (n = 60).

The correlation coefficients (CCs), principal component loadings (PCLs), and hyper-
spectral vegetation index (HVI) were obtained from the principal component analysis
(PCA) across different crops. The results reveal the presence of three PCs, CC, HVI, and
PCL, for the majority of the six spectral datasets (Figure 5 and Figure S1A,B). Visible (VIS)
wavelengths were the dominant contributors to the first PC, which was linked to 555 and
660 nm. Near-infrared (NIR) wavelengths dominated the second PC, which was linked
to 710, 940, 1080, and 1190 nm, with minor effects on the CC. Shortwave infrared (SWIR)
wavelengths were the major contributors to the third PC, which combined the HVI, CC,
and PCL with peaks and valleys at 1470, 1850, and 2245 nm.

A high correlation between NIR and SWIR was confirmed in the CC-associated PC1
(Figures 5 and S1). The shapes of the HVI and PCL were complex, represented multiple
contributions from UV–VIS–NIR–SWIR bands (Figures 5 and S1B), and showed a non-
random distribution in the pigment phenotyping-based area and mass (Figure 5A–L).
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Figure 5. Count plot map of the coefficient of correlation (R2) from the linear regression between
pigments and wavelength1 vs. wavelength2 for 350 to 2500 nm, by pigments expressed in based
(A–F) area and (G–L) mass. Dark to light red displayed increased associations.
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2.5. Machine Learning and Artificial Intelligence Algorithms for Classification

Phenotypic characterization of the pigments in corn, sugarcane, coffee, canola, wheat,
and tobacco was performed using UV–VIS–NIR–SWIR hyperspectral data and ML and
AI algorithms (Figure 6). Eight algorithms were employed, namely, adaboost (AdaB),
gradient boosting (GB), K-nearest neighbors (KNN), naive bayes (NB), neural network
(NN), random forest (RF), support vector machine (SVM), and tree. These algorithms
displayed a range of performances in classifying crops. Cross-validation data were used to
classify crops using UV–VIS–NIR–SWIR spectra (Figure 6A–D).
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Figure 6. The accuracy of training and testing for various ML and AI algorithms, including adaboost
(AdaB), gradient boosting (GB), K-nearest neighbors (KNN), naive bayes (NB), neural network (NN),
random forest (RF), support vector machines (SVM), and tree (Tree), on hyperspectral data of crops.
(A) Accuracy for the range of 350–700 nm. (B) Accuracy for the range of 700–1300 nm. (C) Accuracy
for the range of 1300–2500 nm. (D) Accuracy for the entire range of 350–2500 nm. Asterisks indicate
significant differences (p < 0.01) according to Student’s t-test. The Pearson’s correlation matrix on
the right displays the probabilities of the scores for each model being higher than the scores for the
models in the column. Small numbers indicate the probability of negligible differences.
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The NB algorithm demonstrated lower accuracy than the other AI algorithms, and
the NN displayed a lower correlation with the accurate crop classification produced by the
other AI algorithms. However, the AdaB, GB, KNN, NB, NN, RF, SVM, and Tree algorithms
all achieved ≈100% accuracy with high precision and efficiency. The SWIR bands showed
higher accuracy and precision and a faster evaluation and confusion matrix generation
than the UV–VIS or NIR bands (Figures S2 and S3).

For example, NB, NN, and SVM demonstrated moderate accuracy and precision in
the classification of crops within the ranges of 350–700 nm and 700–1300 nm, with 40–76%
accuracy and precision in classifying crops. The use of the full spectra with individual AI
algorithms demonstrated high accuracy, low error, and high precision in crop classification
(Figures S2 and S3). The results indicate significant discrimination (p < 0.01) in high-
throughput phenotyping using individual AI algorithms for the UV–VIS, NIR, and SWIR
bands (350–2500 nm).

2.6. Calibration, Cross-Validation, and Prediction Simultaneous Models by Crop Leaf-Based Partial
Least Squares Regression

The results of spectral assessment for all crops during the mode calibration, cross-
validation, and prediction steps are presented in Tables 1 and S3, and Figure S3. The optimal
number of components selected was four PCA–PLSR factors, determined through leave-
one-out cross-validation. The correlation coefficients (R2) at the calibration phase were
≥0.77 and reached a maximum of 0.89, which is similar to the results for the cross-validation
phase (≥0.76, max. 0.88) and the prediction phase (≥0.66, max. 0.89). Additionally, high
values of offset, root mean square error (RMSE), and RPD (≥2.1, max. 3.0) were observed,
indicating significance in all PLSR parameters. The models showed low or approximately
zero bias, demonstrating the absence of bias for corn, sugarcane, coffee, canola, wheat, and
tobacco plants.

Table 1. Prediction of attributes for corn, sugarcane, coffee, canola, wheat, and tobacco crops using
PLSR algorithms. Model fit was evaluated using R2, offset, RMSE, RPD, and bias parameters.

PLSR Models Attributes
PLSR Parameters

r R2 Offset RMSE RPD Bias

Predicted

Chla (mg m−2) 0.92 0.85 55.6 55.5 2.6 0.001
Chlb (mg m−2) 0.92 0.84 57.1 57.1 2.5 0.001

Chla+b (mg m−2) 0.93 0.86 108.1 106.1 2.7 0.001
Car (mg m−2) 0.94 0.89 16.9 17.0 3.0 0.001

AnC (nmol m−2) 0.89 0.79 0.3 0.3 2.2 0.001
Flv (nmol m−2) 0.92 0.85 10.9 10.8 2.5 1.59

Chla (mg g−1) 0.94 0.88 2.6 2.6 2.8 0.001
Chlb (mg g−1) 0.89 0.79 1.5 1.5 2.2 0.001

Chla+b (mg g−1) 0.93 0.87 3.7 3.7 2.8 0.2
Car (mg g−1) 0.93 0.86 0.8 0.8 2.7 0.01

AnC (µmol g−1) 0.88 0.77 0.1 0.1 2.1 0.02
Flv (µmol g−1) 0.93 0.87 2.2 2.2 2.8 0.32

In general, it is emphasized that increasing the number of selected target-specific
wavelength regions for cross-validation and prediction models can lead to high accuracy
(R2 > 0.77), as shown in Figure S3. For instance, the partial least squares regression (PLSR)
method based on UV–VIS–NIR–SWIR hyperspectral data predicts β-loadings and weighted
coefficients. However, compared to models that predict pigments in area and mass contents,
the reflectance factors in the UV–VIS, NIR, and SWIR regions show high amplitudes of
difference coefficients and distinct loadings, with great differences being observed.

To achieve higher precision than the models reported in Table 1 and Figure S3, it
is important to consider many peaks and valleys distributed in all spectra. In this way,
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the high-throughput phenotyping crop-based pigments and β-loadings and weighted
coefficients predicted by the PLSR method display larger differences in shape, although
they are complex and represent several scattering contributions. Nevertheless, here, the
generated models are of high accuracy and precision and have minimal bias and noise.

2.7. Vegetation Indices and Pigment Profiling

Combining vegetation indices (VIs) resulted in a total of fifteen VIs, which showed
both positive (13) and negative (2) statistical values for the classification and estimation
of crop attributes (Figure 7 and Figure S3; Table S3). The optimal band combinations
for VIs were determined to possess high accuracy, precision, and significance (F: 245.3;
p < 0.001) for classifying, predicting, and monitoring pigments. The most responsive
indices, PSSRc and RARS, demonstrated high accuracy in distinguishing all phenotypes
utilizing UV–VIS–NIR–SWIR hyperspectral analyses (Figure 7A). The correlation between
VIs was evaluated using the circular correlation coefficient graph and showed high positive
and negative correlations ranging from −1 to +1 (p < 0.001) (Figure 7B). NDVI750, RARS,
PSND, and PSSRc displayed strong positive interactions, while PSRI2 and FR showed
strong negative interactions (Figure 7B). SIPI, WBI, and MSI demonstrated minimal or
negligible correlations with other VIs (Figure 7B).
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Figure 7. Model-based UV–VIS–NIR–SWIR reflectance hyperspectral data for simultaneous classifi-
cation of corn, sugarcane, coffee, canola, wheat, and tobacco crops. (A) shows the relative vegetation
index. (B) Pearson’s correlation (ranging from −1 to +1, with white asterisk for * p < 0.05; ** p < 0.01;
*** p < 0.001). Red to blue scale indicate negative and positive correlations, respectively. The thickness
of the line indicates the strength of the correlation. Abbreviations for the models are defined in
Table S1.

Figure 8 displays the results of the combination of individual vegetation indices with
pigment concentrations by both the area and mass. The prediction analysis showed that
WBI, ARI, PSRI2, VOG2, and FR had limited correlations and associations with chlorophylls,
carotenoids, anthocyanins, and flavonoids (correlation normalized below 0.50). These
findings suggest that the selected reflectance indices have high potential for accurate and
precise classification and prediction for the six crops analyzed. On the other hand, other
indices showed higher correlation coefficients (above 0.5), and a significant portion of the
scatter points fell within the 99% confidence interval of prediction, indicating the suitability
of all models tested for each crop.
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Figure 8. The balloon plot displays the normalized values to predictions of vegetation indices and
pigments. The color and size of the circles indicate the reliability of the predictions. The names of the
vegetation indices are shown on the left, and the site names for the predicted pigments, expressed as
base area and mass, are displayed at the bottom. The relationship is indicated by a transition from
yellow to blue, where yellow represents low values and blue represents high values. The size of
the circles represents the association between the analyzed attributes, where smaller circles indicate
weaker associations and larger circles indicate stronger associations.

3. Discussion
3.1. Remote Sensing Sensor and Pigment Phenotyping in Leaves for High-Throughput
Monitoring Crops

The application of phenotyping for crop-based pigment profiling through remote
sensing techniques shows substantial promise. The use of full spectra based on hyperspec-
tral curves has been demonstrated to provide a more precise classification and estimation
of pigment profiles in C3 and C4 plant metabolisms compared to range spectra [3,11,29].
Moreover, the UV–VIS–NIR–SWIR wavelength bands and sensor resolutions contribute
significantly to the efficient differentiation of crop metabolism (C3, C4, or CAM) [7,8,16,20].
Multivariate PCA has also been utilized with high accuracy and precision to differentiate
C4 metabolism (as in corn and sugarcane) from C3 metabolism (as in coffee, canola, wheat,
and tobacco) using select UV–VIS to NIR to SWIR bands.

The potential for high-throughput pigment phenotyping to evaluate and track growth
and development, biophysical and biochemical characteristics, and diseases in crop pro-
duction has been demonstrated in recent studies [1–3,8,13]. Spectral variations in pigment
concentrations, including chlorophyll a and b, are closely correlated with differences in agro-
nomic traits, such as plant height, grain yield, growth cycle, photosynthesis, transpiration,
and water use efficiency [6,23,30,31].

Integrating hyperspectral sensors with chemometric techniques has proven effective
for identifying and predicting a range of crop characteristics. For example, many studies
have demonstrated the use of hyperspectral analyses to differentiate between livestock-
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integrated farming systems and indoor and vertical farming productions and to determine
crop leaf characteristics [6,32–34]. Thus, our first and second objective proposed methods
have also shown potential for increasing yield production in crops such as wheat and canola.

According to recent studies by da Silva Junior et al. (2018) [35] and Wang et al. (2022) [7],
biosensors are the most promising tools for remote sensing, as demonstrated in Figures 1–5.
Hyperspectral analysis of chlorophylls and carotenoids in the VIS band has proven useful
for monitoring [13,36]. Meanwhile, the best analysis of anthocyanins and flavonoids can be
performed along with other pigment classes in the UV–VIS band [7,37,38]. This approach
is a better tool for monitoring the status of six crops, and the increased presence of bioac-
tive compounds or antioxidants in crops holds promise for increased yields [8,13,39,40].
Therefore, the UV–VIS band display serves as a robust technique for phenotyping and
chemometrics, amalgamating numerous high-performance attributes in crop sciences, such
as rapid precision, minimal sample requirement, and transparent technology for sample
analysis, while safeguarding human health, safety, and quality [16,40].

3.2. Artificial Intelligence Algorithms Improvement Selection Pigment in Crops

The integration of remote sensing with AI techniques has proven highly effective for
crop phenotyping and has contributed to improvements in crop yield, disease resistance,
and cultivar selection. The use of hyperspectral analyses in conjunction with AI algorithms,
such as random forest (RF) and neural network (NN), for pigment-based profiling has
proven effective for classifying and monitoring six key crops with high accuracy. These
algorithms can effectively link hyperspectral data with various factors, including nutritional
deficiencies, heat and cold stresses, and crop yield [8,34,41].

Accordingly, the most accurate algorithms identified in previous studies include
AdaBoost, gradient boosting, k-nearest neighbors, naive bayes, neural networks, random
forests, support vector machines, and decision trees [7,21,28]. However, it is important to
note that an accuracy greater than 60% does not necessarily guarantee a strong correlation
with pigment concentration in C3 and C4 plants. The use of AI algorithms offers promising
prospects for improving the extraction of complex interactions between hyperspectral data
and pigment complexes, resulting in more accurate spectral data classification compared to
other spectroscopic techniques. However, further research is needed to understand why
AI algorithms do not respond to certain changes in the growth and development stages of
C3 and C4 plants. Thus, our first and second objectives proposed in this method for our
analysis are as follows.

3.3. Quantitative and Optimization PLSR Models to Estimate Pigments in Crops

In recent studies by Zhou et al. (2022) [38] and Zhang et al. (2022) [2], PLSR models
were utilized to quantify the correlation between ultraviolet, visible, infrared, and short-
infrared spectral data and pigment concentration data in six crops: corn, sugarcane, coffee,
canola, wheat, and tobacco. The data were divided into calibration (70%) and validation
(30%) sets, with the calibration set of 270 samples and the validation set of 90 samples
achieving high accuracy and precision [4,42]. The results highlighted robust generation
models based on R2, offset, RMSE, RPD, bias, and weight coefficients, although estimating
anthocyanins (AnC) and flavonoids (Flv) proved more challenging [40,43]. Despite the
variation between C3 and C4 plants, the highest prediction values were obtained for AnC
and Flv, with a full spectra method applied to crop analysis [13,34]. Therefore, spectral data
pre-processing was found to remove irrelevant information and improve robustness and
accuracy [23,44], but the results here show that pre-processing may not be necessary, as
spectral data without pre-processing improved the accuracy, precision, and reliability of
PLSR models [13,44].

PLSR models require an optimal four factors [13,16], but without evidence of over-
fitting based on all parameters tested (Table 1). This work is significant, demonstrating
the wide application of the PLSR method for detecting issues in future field crops using
remote sensing and biosensors within integrated farming systems, as few studies have
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used combined UV–VIS–NIR–SWIR hyperspectroscopy to analyze Chls, Car, AnC, and Flv
pigments in the leaves of C3 and C4 agronomic plants [2,40]. In this way, combining several
types of sensors and conducting diverse studies on the large number of parameters of many
plants at high speed can additionally be used for the estimation of plant morphological
parameters, physiological processes, and biochemical composition. Therefore, the use
of reflectance spectroscopy for the classification and prediction of pigment profiling in
agronomic crops and for other plant research could be an effective strategy for optimizing
growing conditions. This could contribute significantly to progress in the field of agronomic
research and practice and relate to our thirty objectives.

The hyperspectral vegetation index (HVI) is emerging as a vital tool for plant phenotyp-
ing, particularly for assessing pigmentation levels such as chlorophyll a, b, a+b, carotenoids,
anthocyanins (AnC), and flavonoids (Flv). Utilizing reflectance hyperspectroscopy, HVI
can select the most responsive wavelengths, optimizing methods for remote and proximal
sensing of physiological, biochemical, and morphological characteristics of plants. This pro-
vides a non-invasive, highly accurate method for assessing plant health and development,
and it could revolutionize current agronomic practices. As such, HVI presents a promising
alternative for enhancing our understanding and management of pigment phenotyping in
plants. In this sense, using a specific wavelength, such as 435, 470, 550, 680, 685, 705, or 750,
instead of broader bands such as blue, green, red, or near-infrared, holds more promise in
characterizing C3 and C4 crops. Therefore, HVI algorithms and vegetation indices based on
narrow bands could potentially enable more precise classification when there are different
pigments present in crop varieties within the same environment.

A recent study by Koh et al. (2022) [45] discussed how hyperspectral vegetation
indices (VIs) are increasingly being used in agriculture and plant phenotyping to estimate
plant biophysical and biochemical traits. This study presented an automated hyperspectral
vegetation index (AutoVI) system for the rapid generation of novel trait-specific indices
and showed that AutoVI can rapidly generate complex novel VIs that correlate strongly
with the measured chlorophyll and sugar contents in wheat [45,46].

While many reflectance indices have demonstrated superior performance in estimat-
ing certain plant traits compared to existing vegetation indices [47], there is still a need for
a more robust model [15,48]. Specifically, we lack a system that adequately incorporates
data related to anthocyanins and flavonoids in plants of agronomic importance [43,48].
Enhancing the current models to incorporate these pigment compounds could provide
a more comprehensive assessment of plant health and development, thus further opti-
mizing high-throughput plant pigment phenotyping platforms [36,41,47]. Therefore, it is
crucial to continue research efforts to enhance the accuracy and efficiency of plant pigment
phenotyping methodologies.

3.4. Vegetation Indices Combined for Pigment Phenotyping

Vegetation indices (VIs) are utilized for quantifying and expressing variables in crops,
addressing the phenotyping gap discussed in numerous studies [16,34,47,49]. VIs, obtained
by combining remote sensing reflectance data from UV–VIS–NIR–SWIR regions, are simple
and effective parameters for characterizing vegetation cover and plant growth status.
Combining reflectance indices with machine learning (ML) algorithms has led to successful
phenotyping with high accuracy and precision [16,34]. Thus, the relative contributions of
VIs were studied and could be used to select VIs corresponding to each pigment in different
crops and for successful monitoring [24,50].

Morphological and anatomical changes can be identified using different VIs [7,13,16].
Evaluations of the mutual effect of VIs and pigment biosynthesis and degradation showed
that specific or range bands can correlate with pigment classes and concentrations, struc-
tural components, and cell organelles. Digital agriculture tools linked with high-throughput
pigment phenotyping can classify changes in C3 and C4 plant production features with
high accuracy, speed, and efficiency at a low cost per sample [2,7,34,49]. These changes
facilitate pigment profiling and identification by hyperspectral sensors, machine learning,
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AIAs, and recent HVI algorithms, providing an alternative to the standard approach of
distribution within the leaf profile, changing both the optical properties of leaves in visible
bands (>500 nm) and generating different VIs.

Our results align with those of Fu et al. (2021) [4] and Braga et al. (2021) [29], in
which pigment concentrations and contents represent at most one responsive pathway for
the classification of distinct plants [4,29]. Thus, the initial hypothesis indicated that the
monitoring status significantly impacts classification, but the estimation process requires
monitoring over a different timescale. This is confirmed when significant alterations in the
visible and near-infrared spectra are not correlated with classic Vis, such as NDVI750, VOG,
PSI, and PRI, despite extensive changes in colorimetric patterns and leaf reflectance factors
(R) (Figures 2–4). It is noteworthy that changes in cellular components should not affect
spectral changes in the visible spectrum [13], but this phenomenon is commonly observed
both in ranges and in full bands [47]. Therefore, the correlation previously reported is valid,
as are the hypotheses initially described.

The internal structure of a leaf, such as the volume of mesophyll cells, varies among
species [29]. As a result, the near-infrared (NIR) and shortwave infrared (SWIR) regions
are greatly influenced by air cell interfaces. Additionally, the outer surface characteristics,
including waxiness and epicuticular metabolites, trichomes, and stomates, also impact
reflectance spectra in important crops. Therefore, the interplay of these external and internal
leaf features with reflectance factors and pigment phenotyping may alter the energy flow
within the leaf, potentially inducing toxic effects and impeding photosynthesis. Hence,
the use of remote sensing sensors for high-throughput pigment phenotyping in crops is of
utmost importance.

In contrast with Crusiol et al. (2022) [51] and Crusiol et al. (2023) [23], who did not
find significant variation in pigments or the water status in soybean crops when monitored
by combined AIAs, NB, and remote sensors, our study observed this variation in energy
dissipation components. These components are mostly influenced by non-photosynthetic
pigments, thermal influence by antioxidant mechanisms, the efficient use of water (WUE),
and leaf water content (WBI, DSWI–5) (Figures 7 and 8). Therefore, these components
exhibited changes in VIs across all regions of the analyzed spectra (350–2500 nm) [13].
Thus, it is important to evaluate the impact of grafting and various classes of pigments on
crops such as corn, sugarcane, coffee, canola, wheat, and tobacco. We found that plants
subjected to these classifications exhibited a higher degree of precision and accuracy in
their monitoring status. This precision and accuracy were superior to, for instance, those
stemming from integrated systems of cultivation and digital agriculture.

4. Material and Methods
4.1. Plant Materials

Six plants of agronomic importance, corn (Zea mays L.), sugarcane (Saccharum offici-
narum L.), coffee (Coffea arabica L.), canola (Brassica napus L.), wheat (Triticum aestivum L.),
and tobacco (Nicotiana tabacum L.), were collected from the Plant Cultivation Farms of the
State University of Maringá (Maringá, Paraná, Brazil). The selection of these crop plants
was based on their leaf development patterns. A total of 60 leaves were collected from each
plant group, resulting in a total of 360 samples analyzed for modeling. Furthermore, plant
metabolism was clustered into C3 and C4 categories based on wavelength bands, with corn
and sugarcane classified as C4 metabolism, and coffee, canola, wheat, and tobacco classified
as C3 metabolism. All leaves were collected and immediately taken to the laboratory
for in vivo analyses (hyperspectral measures) and in vitro analysis (extraction of pigment
profiles) during the vegetative growth phase. For leaves of the wheat plants, the flag leaf
was evaluated.

4.2. Pigment Quantifications and Hyperspectral Analysis

The quantification of chlorophylls and carotenoids (Chla, Chlb, Chla+b, and Car),
anthocyanins (AnC), and flavonoids (Flv) was performed using a methanolic extract-based
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method. The absorbance curve of pigments in vitro was analyzed between 350 and 1100 nm
using a Shimadzu UV–3600 Plus UV–VIS–NIR spectrophotometer (Shimadzu Inc., Tokyo,
Japan). The quantification of pigment profiles was performed and expressed in terms of
area and mass, as detailed in [14,26].

In addition, hyperspectral reflectance was measured using spectroradiometers (ASD
Inc; FieldSpec 3, Boulder, CO, USA) across the ultraviolet, visible, near-infrared, and short-
wave infrared bands, following the methodology outlined in [15]. In brief, the PlantProbe®

leaf clip (Analytical Spectral Devices ASD Inc., Longmont, CO, USA) was used to ensure
data acquisition free of atmospheric effects. Standard white reference plates (Spectralon®,
Labsphere Inc., Longmont, CO, USA) were employed for equipment calibration and op-
timization. Reflectance spectra of the leaves were obtained in the 350–2500 nm range.
The equipment was programmed to perform 50 readings for each sample, generating an
average spectral curve. Measurements were taken at a single point on the adaxial face of the
leaves. Furthermore, the same leaves used for pigment quantification were also analyzed
using spectroradiometers to establish correlations between the pigment profiles and the
corresponding reflectance spectra. This step was crucial for generating and validating
the models.

4.3. Statistical Analyses
4.3.1. Analysis of Variance and Descriptive Statistics

One-way analysis of variance was performed to analyze the data. The results were
considered statistically significant if the p-value was less than 0.001. To compare attributes,
a post hoc Duncan’s test was applied. Pearson’s correlation was also calculated (p < 0.001).
The results included the means, medians, minimum, maximum, and coefficient of variation
(CV) of the calculated data, following the methods reported by [27].

4.3.2. Analysis of Leaf Reflectance Spectral Fingerprints

Based on the hyperspectral reflectance curves, parameters derived from the machine
learning and artificial intelligence algorithm decision analysis were evaluated for the main
fingerprint groups associated with wavelengths (Table S1). The fingerprints, along with
vibrational modes, were related to the C3 and C4 metabolisms of corn, sugarcane, coffee,
canola, wheat, and tobacco crops. The correlations of coefficients, principal component
(PC) loadings, beta-loadings, and weighted coefficients were analyzed to identify the key
fingerprints. Principal component analysis (PCA) was performed using The Unscrambler
(CAMO AS, Oslo, Norway).

4.3.3. Machine Learning, Artificial Algorithms, and Hyperspectral Vegetation Index

Machine learning (ML) and artificial algorithms (AIAs) were utilized to perform rou-
tine analysis using Orange software scripts. The algorithms employed included adaboost
(AdaB), gradient boosting (GB), kernel K nearest neighbors (KNN), naive bayes (NB), neu-
ral network (NN), random forest (RF), support vector machines (SVM), and tree (Tree). The
evaluation model was based on a 70:30 data split, with 70% of the data used for training and
30% for testing. The performance of the prediction AIAs was evaluated in terms of rank-
performed precision and recall data, as detailed by [28]. In addition, each algorithm model
was subjected to a confusion matrix analysis to assess the predicted data. All algorithm
testing followed [13]. In addition, the Hyperspectral Vegetation Index (HVI) method was
used to calculate all possible combinations of two spectral bands, each corresponding to a
unique HVI algorithms. These HVIs are then correlated with leaf optical property efficiency
measures, using the Pearson correlation coefficient and coefficient of determination, and
visualized as contour maps [23].

4.3.4. Vegetation Indices

The vegetation indices (VIs) were calculated based on the descriptions in Table S1.
Reflectance hyperspectral data were tested with 15 VIs, such as NDVI750, WBI, RARS, ARI1,
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PSND, SIPI, PSRI, PSRI2, PSSRc, VOG1, VOG2, MSI, PRI, PVR, and FR (Table S1). These VIs
were used to correlate pigment profiling and make decisions for the best crop classification
based on correlation and association with a significance level of p < 0.001.

5. Conclusions

In conclusion, this method enables efficient and simultaneous quantification of chloro-
phyll, carotenoids, anthocyanins, and flavonoids in six crops (corn, sugarcane, coffee,
canola, wheat, and tobacco) based on area and mass. The approach combines artificial intel-
ligence, vegetation indices, wavelength selections, and remote sensing sensors to develop
UV–VIS–NIR–SWIR models, contributing to advancements in digital agriculture. Our
results demonstrate that PLSR, vegetation indexes, such as NDVI750, VOG, PSI, and PRI,
despite extensive changes, and hyperspectral vegetation index (HVI) algorithm models
exhibit precision and accuracy in calibration, cross-validation, and prediction. They provide
comprehensive, robust, and rapid evaluation tools for crop quality and agronomic science.
In addition, the use of full spectra based on hyperspectral curves has been demonstrated
to provide a more precise classification and estimation of pigment profiles in C3 and C4
plant metabolisms compared to range spectra. Consequently, our study offers promising
opportunities for the use of simultaneous algorithms in deciphering complex interactions
between hyperspectral data and pigment profiling phenotyping in plants. This could lead
to more accurate and precise spectral data classifications in the future, benefiting research
in remote sensing for plant research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants12122347/s1, Figure S1: (A) Correlation coefficients and
(B) PC loadings in the 350–2500 nm range, represented by light to dark purple lines for PC1, PC2,
and PC3, respectively. The red line indicates the −0.70 to +0.70 correlation range, with dots marking
the 700 and 1300 nm delimitations. Figure S2: Matrix of correlation displayed accept and error
frequency by model-based UV–VIS–NIR–SWIR comprising reflectance data to corn, sugarcane,
coffee, canola, wheat, and tobacco plants. (A) 350–700 nm; (B) 700–1300 nm; (C) 1300–2500 nm;
(D) 350–2500 nm. The correlation model test (frequency number) indicated a maximum simulation
to correct classification-based independent data (scale 0 at 100; light green to dark blue). Abbrevi-
ations for models are indicated in the Material and Methods section. Figure S3: β–loadings and
weighted coefficients predicted PLSR method-based UV–VIS–NIR–SWIR hyperspectral data. (A)
Chlorophyll a (Chla; mg m–2); (B) Chlorophyll b (Chlb; mg m–2); (C) Chlorophyll a+b (Chla+b; mg m–2);
(D) Carotenoids (Car; mg m–2); (E) Anthocyanins (AnC; nmol cm–2); (F) Flavonoids (Flv; nmol cm–2);
(G) Chlorophyll a (Chla; mg g–1); (H) Chlorophyll b (Chlb; mg g–1); (I) Chlorophyll a+b (Chla+b; mg
g–1); (J) Carotenoids (Car; mg g–1); (K) Anthocyanins (AnC; µmol g–1); (L) Flavonoids (Flv; µmol g–1).
Blue line (β–loadings) and red line (weighted coefficients). Table S1: Vegetation indexes calculated
from the hyperspectral reflectance of leaves. Table S2: Descriptive analysis of pigment attribute-based
area and mass. (n = 360). Table S3: Simultaneous PLSR statistical models obtained by calibration
and cross-validation phase by pigments for corn, sugarcane, coffee, canola, wheat, and tobacco
crops. Model goodness-of-fit (R2), offset, root mean square error (RMSE), ratio of performance to
deviation (RPD), and bias parameters from UV–VIS–NIR–SWIR hyperspectral data. Abbreviation
for attributes are indicated in the Material and Methods section. References [52–62] are cited in the
Supplementary Materials.
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