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Abstract: Enzymatic terpene functionalization is an essential part of plant secondary metabolite diver-
sity. Within this, multiple terpene-modifying enzymes are required to enable the chemical diversity
of volatile compounds essential in plant communication and defense. This work sheds light on the
differentially transcribed genes within Caryopteris × clandonensis that are capable of functionalizing
cyclic terpene scaffolds, which are the product of terpene cyclase action. The available genomic refer-
ence was subjected to further improvements to provide a comprehensive basis, where the number
of contigs was minimized. RNA-Seq data of six cultivars, Dark Knight, Grand Bleu, Good as Gold,
Hint of Gold, Pink Perfection, and Sunny Blue, were mapped on the reference, and their distinct
transcription profile investigated. Within this data resource, we detected interesting variations and
additionally genes with high and low transcript abundancies in leaves of Caryopteris × clandonensis
related to terpene functionalization. As previously described, different cultivars vary in their mod-
ification of monoterpenes, especially limonene, resulting in different limonene-derived molecules.
This study focuses on predicting the cytochrome p450 enzymes underlying this varied transcription
pattern between investigated samples. Thus, making them a reasonable explanation for terpenoid
differences between these plants. Furthermore, these data provide the basis for functional assays and
the verification of putative enzyme activities.

Keywords: terpene biosynthesis; cytochrome p450; Caryopteris × clandonensis; long read sequencing;
transcriptomics; chemical diversity; volatile compound

1. Introduction

Caryopteris × clandonensis is an ornamental plant, also known as “Bluebeard”, which
is phylogenetically classified in the Lamiaceae family. It is easily cultivated and rich in
volatile compounds. These, and other molecules detected and described, are terpenes,
e.g., α-copaene, limonene, or δ-cadinene [1], terpene derivates, e.g., keto-glycosides, clan-
donosides, and harpagides [2], as well as the pyrano-juglon derivate α-caryopteron [3]. The
species’ essential oil was found to display mosquito-repellent activity; however, the active
agent for this mode of action was not yet detected [4]. The Lamiaceae family is known to
harbor an interesting and valuable profile in secondary metabolites, including terpenoids,
flavonoids, and phenylpropanoids [5–7]. These compounds play important roles in the
plant’s interaction with its environment [8,9] as for the defense against abiotic and biotic
stresses [10]. They also harbor potential in pharmaceutical or industrial applications, as
seen for taxol [11], menthol [12], malvidin [13], isoliquiritigenin [14] or umbelliferone [15].
In general, terpenes and terpenoids are a molecule class, which is produced in vast varieties
by flowering plants [16] and is involved in a wide range of biological activities. Essential
oils and their monoterpenes, such as α-pinene and limonene, were investigated in terms of
their anti-inflammatory and virucidal activity in recent studies [17–19]. Moreover, other
terpenoids employ antibacterial properties [20] while others act as insecticides [4], are used
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as allelochemicals [21], or as attractants for pollinators [22]. The backbone of plant-derived
terpenes is produced via the mevalonate pathway. For this, the precursors dimethylallyl
diphosphate (DMAPP) and the functional isomer isopentenyl pyrophosphate (IPP) can be
connected via isoprenyl diphosphate synthases (IDS) to form larger units of terpenes. IPP
consists of five C-atoms (hemiterpene) whereas, through condensation of IPP and DMAPP
via IDS monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), and higher terpene
structures are built [23]. Further tailoring of these basic terpenes is conducted by terpene
synthases (TPS) and cytochrome p450 enzymes (CYPs). Plant TPS mediate complex carbo-
cation reactions, resulting in various cyclic structures of higher terpenes [24,25]. These can
be divided into eight subfamilies (TPSa-h) which can be clade- or even species-specific [26].
The first step in tailoring monoterpenes is hydroxylation. Subsequently, CYPs are mediating
a plethora of further reactions to enhance the functionalization (carboxylation, acetylation
or forming peroxides) [27,28]. Due to their promiscuity towards substrates, only a few
enzymes are necessary to yield various terpenoid structures and, therefore, differences in
their functions and modality [29]. Multiple sequences of different source organisms are
available in curated databases [30,31]. These allow easy access to the genetic information
on these enzymes. With CYPs occurring in all living organisms [30], the enzymes, similarly
to TPS, are divided for better identification, whereas specific CYP families are reserved
for each type of organism. Plant CYP families can be found in CYP71-99 and CYP701-999,
and in a four-digit scheme from CYP7001-9999 [32]. The categorization into these classes is
dependent on sequence similarity. The same family (Arabic number) needs matching amino
acids ≥40% and the subfamily (Arabic letter) ≥55% [33]. Therefore, the CYP76S40 [34] is
the 40th individual enzyme from the CYP76S subfamily and the CYP76 family. This way,
after annotation, contaminating sequences can be discarded solely due to their classification
in a non-plant CYP family.

One approach to elucidate variations in the enzymatic makeup and investigate the
sequences underlying terpene diversity is to compare differentially expressed gene (DEG)
products at a quantitative level using modern bioinformatics tools. Differences in the
metabolite profile exist during different stages of plant growth [35]. Different genes are
regulated from seedlings to mature plants to translate their genomic information into
proteins and interact in plant differentiation, protection or communication, depending on
their developmental state [36]. During plant breeding, deletion, duplications, mutations or
fragmentations can occur. Therefore, a distinct set of genes varies in its nucleotide code
and their transcription or translation rate, resulting in different phenotypes in the mature
plant [37]. The data can be levied and evaluated regarding efficacy to investigate these
differences. The number of transcripts does not solely result in higher protein outcome, but
also in, respectively, higher concentrations of secondary metabolites. Therefore, differential
expression analysis can identify genes or gene products responsible for either the stress
response mechanisms observed for abiotic stressors, such as drought or radiation, or as
has been shown for biotic stressors, such as pests and plant reactions to herbivores [38].
Typical DEG experiments harness the up- and down-regulation of genes after induction
or shock, e.g., during exposure to chemicals [39] or different environments [40]. Another
possibility is the investigation of specific traits of plant cultivars due to their variations
between hybrid plants [41]. Previously, the variations in Caryopteris × clandonensis’ volatile
compound setup was investigated, and a difference in the synthesis of limonene-derived
molecules (LDM) was observed [1]. The cultivar Dark Knight was detected to harbor a
low amount, whereas Pink Perfection shows high amounts of LDM. These variations were
discovered without a distinct change in their TPS or CYP makeup.

To that end, we show that the identification of terpene variety between different plant
cultivars can be pursued on a molecular level using a quantitative bioinformatics method
such as RNA-Seq analysis. Furthermore, we focus on terpene functionalization enzymes,
especially cytochrome p450 enzymes, to elucidate the mechanisms behind the variations in
monoterpene modifications as seen for limonene [1].
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2. Results and Discussion
2.1. RNA Sequencing and Mapping Quality

Samples subjected to short-read sequencing were taken from leaves of six Caryopteris
× clandonensis cultivars known to show differences in their LDM profile, Dark Knight
(DK), Grand Bleu (GB), Good as Gold (GG), Hint of Gold (HG), Sunny Blue (SB), and Pink
Perfection (PP). Sequencing was performed using an Illumina NovaSeq platform, which
generated about 20 million raw reads in bases for each sample. The reads were processed to
remove low-quality reads, bases, and adapter sequences, resulting in the clean reads used
for downstream analysis. After this purification step, a loss of 5.0 to 14.9 million bases was
seen between the samples. In Table 1, the run as well as cleaning and mapping statistics are
summarized. The Q20 and Q30 scores indicate the sequencing quality, with Q30 indicating
a lower error rate than Q20. This experiment’s high Q20 and Q30 scores suggest that the
sequencing quality was highly sufficient, with only a few sequencing errors. Moreover, the
clean reads exhibit a slight increase in quality scores, persistent throughout all samples.

Table 1. Statistics of short Illumina reads used for mapping on the reference genome (NCBI
SAMN32308290 (Pink Perfection, PP)). A paired-end run was employed on a NovaSeq6000 SP
(2 × 150 bp) for sequencing.

Caryopteris
× clandonensis

Cultivar

Raw Reads in Bases
Q20 in % Q30 in %

Clean Reads in Bases
Q20 in % Q30 in %

Totally
Mapped

in %

Uniquely
Mapped

in %Unique Duplicate Unique Duplicate

Dark Knight R1 24,501,785 19,238,555 99.95 94.76 13,072,273 29,945,355 99.99 95.08
87.8 79.3R2 26,380,719 17,359,621 99.25 87.90 16,204,470 26,813,158 99.46 88.25

Grand Bleu
R1 17,917,215 51,971,129 99.85 93.75 11,552,426 57,659,626 99.98 94.21

85.8 76.8R2 18,808,258 51,080,086 99.51 92.12 13,260,446 55,951,606 99.68 92.42

Good as Gold
R1 22,797,327 27,074,692 99.60 94.52 13,160,322 31,359,084 99.95 95.08

86.7 75.4R2 25,142,438 24,729,581 99.35 89.41 16,112,061 28,407,345 99.54 89.76

Hint of Gold
R1 20,547,645 20,953,229 99.89 94.67 15,165,071 33,935,373 99.98 95.06

86.4 77.2R2 23,044,700 18,456,174 99.38 88.40 18,084,814 31,015,630 99.56 88.81

Sunny Blue R1 20,535,582 25,022,034 99.96 94.96 13,908,152 27,181,140 99.99 95.35
87.0 80.5R2 22,771,085 22,786,531 99.39 88.30 16,573,745 24,515,547 99.56 88.60

Pink Perfection
R1 25,751,312 28,610,858 99.96 94.23 12,295,625 26,046,846 99.99 94.60

87.7 82.0R2 29,512,685 24,849,485 99.40 90.42 14,649,539 23,692,932 99.58 90.70

The available genome sequences from Caryopteris × clandonensis PP [1] were subjected to
further cleaning and improvement steps to curb the influence of contamination. A binning
algorithm, MetaBAT2 [42], usually used for metagenomic data, was used on the long-read
assembly of the genome and differentiated into 40 bins. The completeness and contiguity
were checked and, in summary, the 782 scaffolds/848 contigs, which add up to 344 Mb with a
genome completeness score of 96.8%, were reduced to 53 scaffolds/88 contigs, which add up
to 298 Mb and a BUSCO score of 96.5%. The utilized BUSCO gene sets belonged to the closest
affiliate Eudicotidae. Detailed information can be found in Table S1. This refined genome was
used as a reference for mapping the short-read sequences. A preliminary mapping of DK
transcripts on the respective long-read genomic data, compared to mapping the transcripts on
the PP genomic data, revealed an increased assignment of unique reads. Thus, the genome of
Caryopteris × clandonensis PP was chosen as a mapping reference for both cultivars, DK and
PP, resulting in a more comprehensive downstream analysis. The exact mapping counts for
the different methods can be found in Table S2.

The percentages of reads mapped to the reference genome, as seen in Table 1, indicate
the data accuracy and low presence of contaminating DNA. The amount of uniquely
mapped reads is also an important metric, as it indicates the proportion of reads that map
to a unique location in the reference genome. A high percentage of uniquely mapped reads
(greater than 70%) is desirable, reducing the possibility of mapping errors or ambiguous
mapping locations [43]. In our setting, we were able to accurately map between 85.8% and
87.8% of the sequences, indicating that a large proportion of the reads were successfully
located on the provided genome. Furthermore, the percentage of uniquely mapped reads
ranged from 75.4% to 82.0%, which is reasonably high and suggests that the quality of the
sequencing reads was sufficient to allow for exact mapping and is suited for downstream
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analysis. The observed duplication rates varied between 5.7% and 11.3%, and are well-
known in plant transcript mapping due to transcript isoforms [44].

2.2. Identification of DEG

To identify the mechanism behind the modification of LDM, we wanted to focus on
the DEGs between the cultivars of Caryopteris × clandonensis. Therefore, the mapping data
were subset and pooled into highly LDM-positive (SB, PP) and highly LDM-negative (DK,
GB) cultivars. The cultivars GG and HG were neither highly LDM-positive nor highly
LDM-negative, therefore both were disregarded during the initial DEG analysis. From
the 29,210 predicted genes in the mapping reference, 23,477 were observed to map in
all investigated sets. The DEGs were filtered using a log2 fold-change cutoff of absolute
values greater than 1, and an adjusted p-value of a minimum of 0.05, thereby the values
for each cultivar were transcribed at least two-fold. The values fitting these parameters
are highlighted in green; those which were disregarded during further analysis, because
of not fitting the parameters, are shown in red. Compared to the genes close to the
middle, there are a few genes with high fold-changes in LDM-positive plants, compared to
LDM-negative and those with significantly higher or lower transcript abundance. After
filtering the DEGs between LDM-positive and LDM-negative cultivars, 3305 genes were
identified, as seen in Figure 1A. For 100 genes, no Pfam class [45] and, for a further 168, no
EggNOG [46] description, could be assigned. Regarding the DEGs, a closer look reveals
the 20 most diverged genes, which can be seen in Figure 1B,C. Half of the annotated genes
are still uncharacterized, or their distinct function is unknown, according to the cluster of
orthologous groups. Interestingly, the genes associated with metal transport and metal
binding are differentially transcribed, as seen for g4372, g9694, and g8497. These functions
are known to be responsible for catalyzing redox reactions in plants [47,48]. Examining
DEGs further, g14432 is associated with the protein argonaute family and g1887 is a zinc
finger-like protein, whereas g3464 is a thioredoxin/disulfide isomerase. These proteins
regulate biological processes [49], as well as responses to abiotic stresses such as drought
stress [50,51]. In general, these DEGs describe the effects on the primary metabolism and
stress response of plants; however, they do not show any direct participation in tailoring
secondary metabolites within the plants. CYPs, in particular, are iron-binding; however, a
connection between the upregulation of metal-transporting proteins and CYPs cannot be
drawn from this data. The biosynthesis of LDM is not artificially induced in one cultivar
or silenced in the other. Thus, a specific and significant transcription of related terpene-
tailoring genes cannot be observed. To elucidate these mechanisms, it is necessary to take a
closer look into the DEGs of CYPs [28,52].

2.3. Terpene Tailoring through CYPs between Plant Cultivars

The identified 3305 DEGs can be further filtered into genes related to CYPs due to
conserved domains and the corresponding CYP Pfam class. Here, the domain PF00067 was
integrated into IPR001128. Both domains are indicators for sequences associated with the
cytochrome p450 superfamily (IPR036396) [53]. This homology-based search allowed the
identification of 70 putative sequences with different total lengths. Assuming a minimum
size of 29 kDa for a CYP, 61 genes remain. From a statistical point of view, the average size
of this pool amounts to a median of 1485 nucleotides, corresponding to the average size
of a translated protein of 54.5 kDa. This is also reported in the literature, with an average
plant CYP molecular mass between 45 and 62 kDa [54,55]. In regards to the identification
of LDM-modifying enzymes, this subset is necessary to obtain a detailed overview into
CYPs. These enzymes are known to play a huge part in terpene diversity in plants [56].
They are able to catalyze the hydroxylation of different backbones due to their substrate
promiscuity [29,57]. Therefore, the transcript abundance of specific CYPs may reveal the
mechanism behind LDM variances in this plant.
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off was set to 1 and an adjusted p-value of 0.05 was used to assign the DEGs; values fitting these 
parameters are highlighted in green and those which were disregarded during further analysis are 
shown in red. (B) Top 20 most significantly transcribed genes and their respective description, in-
cluding BLAST search percentage identity and determined accession for the putative assignment. 
(C) log10 normalized counts of the top 20 significant DEG in this setup. Genes from LDM-positive 
samples are displayed in green, those corresponding to LDM-negative samples are highlighted in 
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Figure 1. Differential expressed genes (DEGs) of Caryopteris × clandonensis cultivars highly producing
limonene-derived molecules (LDM-positive) and cultivars which produce lower amounts of LDM
(LDM-negative). Cultivars used for LDM-positive subset: Sunny Blue and Pink Perfection, and for
LDM-negative subset Dark Knight and Grand Bleu. (A) The volcano plot of DEG was identified between
the LDM-positive vs. LDM-negative plant cultivar subsets. Absolute log2 fold-change cutoff was set
to 1 and an adjusted p-value of 0.05 was used to assign the DEGs; values fitting these parameters
are highlighted in green and those which were disregarded during further analysis are shown in red.
(B) Top 20 most significantly transcribed genes and their respective description, including BLAST search
percentage identity and determined accession for the putative assignment. (C) log10 normalized counts
of the top 20 significant DEG in this setup. Genes from LDM-positive samples are displayed in green,
those corresponding to LDM-negative samples are highlighted in red.

Out of all the 23,477 mapped genes, 221 CYPs were detected, whereas 61 showed differ-
ences in transcript abundance. In Figure 2, all identified CYPs are visualized in an unrooted
phylogenetic tree. CYPs with high transcript abundance in LDM-positive cultivars are high-
lighted in green, whereas CYPs with low transcript abundance are represented in red.

To allocate the putative CYPs to their distinct family or subfamily, the Pfam-classified
CYP sequences were subjected to a BLAST search using a custom CYP database [54]. The
sequences were assigned to the same subfamily if the percent identity was above 55%,
and to the same family if greater than 40%. Eight CYP clans were highlighted within the
found enzymes, CLAN51, CLAN71, CLAN72, CLAN74, CLAN710, CLAN85, CLAN86,
and CLAN 97. This highlights that the major classes 71 and 72 are found to be involved,
primarily, in the terpene tailoring of different terpene classes [28]. For CYP71, a variety
of monoterpene modifications are described [34,58–61]. In our setting, most DEGs were
observed in this clan. The enzymes related to CYP72 are described as tailoring triterpenoids
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as saponins, characterized within plant defensive mechanisms against biotic stressors such
as herbivores or microbes [38,62].
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Figure 2. Phylogenetic tree of all transcribed cytochrome p450 (CYP) enzymes within the six in-
vestigated cultivars. Clan localization is highlighted on the outer ring. Differentially expressed
genes (DEGs) were marked in green for a high transcript abundance in limonene-derived-molecules-
positive cultivars and red for low transcript abundance, as seen in their fold-change differences. The
tree was constructed using the following parameters: Global alignment with a Blosum62 cost matrix,
Genetic distance model Jukes-Cantor, Neighbor-Joining and no outgroup was used, gap open penalty
was set to 12, and gap extension penalty to 3 during pairwise alignments.

DEGs with high transcript abundance in LDM-positive samples were used to compare
the genes between all sequenced cultivars. PP and SB were considered highly LDM-positive,
whereas DK and GB were LDM-negative. GG and HG were in between and, therefore,
were excluded in the initial DEG analysis. For the comparison of CYPs between the four
previously mentioned samples and the two latter samples, the CYPs found in LDM-positive
and LDM-negative samples were searched in GG and HG, and the normalized counts of all
samples were compared. PP was chosen, due to its LDM profile, as a setpoint to compare
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the transcript abundance between all samples. In, the results of a comparative approach
are visualized. The phylogenetic distance between the identified CYPs is shown in 3A.
Three clusters can be differentiated, with the first seen in the upper part consisting of
4 genes (g25953, g25443, g578, g8489), the second in the middle (g3273, g10380, g27034,
g27468, g27861), and the third cluster with 14 genes (g24222, g2313, g27787, g24257, g20804,
g3860, g10700, g16684, g24219, g9390, g14070, g28342, g8554, g2205) at the bottom. In
Section 3B, the fold-change between the cultivars is visualized; boxes marked with X
were transcripts with no mapping results in the respective cultivar. The clusters do not
share a similar transcript abundance pattern, nor do the genes that are closely related.
However, investigating the recurring, fixed-length patterns inside the sequences led to the
discovery of five motifs shared among all sequences. Figure 3C visualizes the motifs and
their distribution in the sequence. The exact motif sequences are presented in Table S3.
A closer look also reveals distinct recurring, CYP-specific domains [63]. The conserved
regions were reviewed extensively [38] and can be confirmed in this dataset. Starting with
the proline-rich membrane hinge (motif 8), which is part of the membrane anchor, another
conserved motif, which is important for the correct function of CYPs, is the site for oxygen
binding and activation, A/G-G-X-E/D-T-T/S (motif 3). This is followed by the E-R-R triad
and P(E)R(F) domain. Furthermore, the heme-binding site, with cysteine as the main ligand
to the heme, C-X-G (motif 2), which is necessary for the typical redox reaction of CYPs [64],
as well as the ERR triad (motif 6) and the (P(E)R(F)) sequence (motif 6), can be differentiated
among the discovered 10 motifs.
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of Gold (HG), Sunny Blue (SB), and Pink Perfection (PP). (A) Phylogenetic analysis of CYP sequences
with highly abundant transcripts regarding limonene-derived molecules (LDM) within the cultivars,
using Neighbor-joining method. (B) Heatmap of normalized transcript counts between distinct
cultivars. X represents enzymes with no transcripts in respective cultivars. The color palette displays
genes with high transcripts abundance in red to light-yellow colors, high transcript abundance is
depicted in light-green to blue (C) Identification of recurring, fixed-length patterns (motifs) identified
in LDM-positive transcripts. Motifs 1 to 10 are illustrated as colored boxes, to distinguish the motifs
between the different genes. Sequences can be found in Table S3.

Regarding the production of LDM, the genes g8554, g27861, g10700, and g24222 show
an interesting pattern compared to the highly LDM-positive cultivar PP, which makes them
candidates for further functional characterization to prove their LDM-producing potential.

The candidate genes were further investigated in terms of their putative function. The
initial estimates, using sequence and structural homology, consider g2422 and g8554 to
be involved in the hydroxylation of cinnamic acid, whereas g27861 and g10700 display
unknown activity towards flavonoids, sterols, and ferruginol. This substrate promiscuity is
known for CYPs, as they are able to catalyze different ligands [57,65], thus making func-
tional characterization using prokaryotic, yeast, or plant expression systems indispensable
to support claims on putative functions.

3. Materials and Methods
3.1. Plant Material

Cultivars of Caryopteris × clandonensis, DK, GB, GG, HG, SB, and PP, were acquired
from a local nursery (Foerstner Pflanzen GmbH, Bietigheim-Bissingen). DK and GB were
investigated to show a highly LDM-negative profile, whereas SB and PP show a highly LDM-
positive profile. GG and HG showed a non-conclusive profile in between. After growing to
maturity in the open in a warm, moderate climate zone, healthy leaves were sampled and
snap-frozen in liquid nitrogen and stored at −80 ◦C until RNA preparation for RNA-Seq.

3.2. Genomic Resource

The reference genome of Caryopteris × clandonensis used in this study was obtained
from NCBI SAMN32308290 (PP). The raw data were assembled as previously described [1]
and subjected to further refinements. For further processing, the reference was cleared from
possible contaminations, and scaled down from 783 contigs to 53 contigs using Metabat2
(v2.15) [42], keeping the genome completeness with 96.5% at a high level according to
BUSCO (v5.3.2) [66] analysis (2326 BUSCO groups, lineage dataset: Eudicotidae). Gene
model prediction was conducted using AUGUSTUS [67–70]. To detect repetitive sequences,
such as tandem repeats or transposable elements, soft masking was employed using Red
(v2018.09.10) [71].

3.3. RNA Preparation and Short Read Sequencing

High-quality RNA was extracted using the RNeasy Plant Mini Kit (Qiagen, Venlo,
The Netherlands) according to the manufacturer’s protocol. To ensure RNA integrity, the
Bioanalyzer RNA 6000 assay kit (Agilent, Santa Clara, CA, USA) was employed to yield an
average RNA Integrity Number of 7.7. The library preparation was performed using the
Illumina stranded mRNA prep kit with IDT for Illumina UD Indexes, Plate A. Correspond-
ing adapter was the Illumina Nextera Adapter (CTGTCTCTTATACACATCT). Library
preparation was performed according to the manufacturer’s protocol with a shortened
fragmentation time from 8 min (protocol) to 2 min (this study). Sequencing was performed
at the Helmholtz Munich (HMGU) by the Genomics Core Facility on a NovaSeq6000 SP
(2 × 150 bp). For each sample, two lanes were loaded and an average of 22 Mio fragments
were yielded. The corresponding lanes of each sample were concatenated tail-to-head
(v8.25) [72]. The combined short reads were subjected to comprehensive quality control
steps. Every step was analyzed with FastQC (v0.11.9) [73] and the necessity of another
trimming step was evaluated. Sequences shorter than 20 bp minimum length and with a
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quality phred score beneath 20 were extracted from the paired-end read data. The Illumina
Nextera Adapter was used to trim each read pair using Cutadapt (v.4.0) [74]. The first
10 bases were cut from the sequences, due to their sequence GC content, using Trimmomatic
(v0.38) and headcrop parameter [75].

3.4. Mapping and Annotation of Aligned Reads

Refined short reads were mapped on the clean reference genome using STAR (v2.7.10b) [76],
140 bases were chosen as the length of the genomic sequence around annotated junctions.
EggNOG (v2.1.5) [46,77] was employed to evaluate the function of the differentially expressed
genes using Pfam, GO, and COG databases. MEME suite (v5.5.1) [78] was used for identification
of motifs within sequences of interest. Visualizations were built in R. Except for STAR; all
sequencing analyses were conducted using galaxy project [79]. Analysis was based on reference-
based RNA-Seq data analysis [80,81]. The detection of CYPs was performed using a homology-
based search, using the conserved domain PF00067, which was integrated to IPR001128. Both
domains are indicators for a sequence association with the cytochrome p450 superfamily
(IPR036396) [53]. CYP-family classification was performed using a BLAST search [82] and a
custom database [83].

3.5. Evaluation of Differential Gene Expression between Aerial Plant Parts

Aligned transcripts were counted using FeatureCounts (v3.16) [84], normalized, and
differentially investigated with DESeq2 (v1.34.0) [85–87]. An adjusted p-value below 0.05,
and a fold-change greater than 2 and below 0.5, was used to determine the most differen-
tially expressed genes in this dataset.

4. Conclusions

This study provides a basis for further CYP research in Caryopteris × clandonensis,
especially regarding LDM. Furthermore, the reference genome was subjected to a cleaning
step, resulting in a decrease from 782 scaffolds to 53 scaffolds. Six cultivars were subjected
to an RNA analysis, which gradually neared the prediction of 4 possible LDM tailoring
CYPs out of 24, which were differentially expressed, and showed high transcript abundance,
compared to the other cultivars. Furthermore, the classification and phylogenetic analysis
of all mapped CYPs were conducted and they showed a distinct clustering in CYP CLAN71
and 72. All essential and conserved motifs could be recognized within these sequences.
However, experimentally focused research for functional characterization needs to be
conducted in order to identify the exact predicted function of these enzymes. A further
in silico step can include the prediction of docking and catalysis sites within a three-
dimensional structural model, as well as through molecular dynamic techniques and free
energy calculations [88,89].

In general, this approach can be used to detect further mechanisms and pathways
in plants, which show valuable medicinal effects. The biotechnological production of
artemisinin [90] and taxol [11] is a popular example of the possibilities in medicinal plant
research. There are already several approaches used, which combine omics approaches to
identify substances of interest [91–93].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/plants12122305/s1, Table S1: BUSCO assessment and assembly
statistics, Table S2: Mapping statistics on the genomic reference of Pink Perfection, Table S3: Motif
sequences of identified reoccurring patterns.
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