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Abstract: Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of anti-
cancer drugs. The main symptoms often include sensory disturbances and neuropathic pain, and
currently there is no effective treatment for this condition. This study aimed to investigate the
suppressive effects of magnolin, an extracellular signal-regulated kinase (ERK) inhibitor substance
derived from a 95% EtOH extract of the seeds of Magnolia denudata, on the symptoms of CIPN. A
taxol-based anti-cancer drug paclitaxel (PTX) was repeatedly injected (2 mg/kg/day, total 8 mg/kg)
into mice to induce CIPN. A neuropathic pain symptom was assessed using a cold allodynia test that
scores behaviors of licking and shaking paw after plantar administration of acetone drop. Magnolin
was administered intraperitoneally (0.1, 1, or 10 mg/kg) and behavioral changes to acetone drop
were measured. The effect of magnolin administration on ERK expression in the dorsal root ganglion
(DRG) was investigated using western blot analysis. The results showed that the repeated injections
of PTX induced cold allodynia in mice. Magnolin administration exerted an analgesic effect on
the PTX-induced cold allodynia and inhibited the ERK phosphorylation in the DRG. These results
suggest that magnolin could be developed as an alternative treatment to suppress paclitaxel-induced
neuropathic pain symptoms.

Keywords: paclitaxel; neuropathic pain; magnolin; allodynia; ERK

1. Introduction

Paclitaxel (PTX) is a chemotherapy agent derived from Taxus brevifolia and is widely
used for the treatment of various cancer diseases, including breast, lung, ovarian, and
esophageal tumors [1]. Many patients treated with PTX show side effects of peripheral
neuropathy manifested by sensory disturbances and pain in the extremities. According to
reports from clinics, more than 80% of patients experienced a tingling sensation and more
than 60% of patients had a cold sensation [2]. As in the case of neuropathic pain caused by
other diseases or lesions of the sensory nervous system [3], symptoms of chemotherapy-
induced peripheral neuropathy (CIPN) are not relieved by conventional analgesics. The
management of neuropathic pain symptoms became an important problem for the mainte-
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nance of chemotherapy [4], as cancer patients often abandon chemotherapy because of this
side effect. There remains an unmet need for the treatment of CIPN symptoms in clinics.

An important molecule responsible for the neuropathic pain condition is mitogen-
activated protein kinase (MAPK), such as extracellular signal-regulated kinase (ERK). ERK1
and ERK2 (ERK1/2) belong to an evolutionarily conserved group of serine/threonine
protein kinases, and they play important roles in the change of the nervous system in
various diseases. Previous studies have reported that phosphorylation of ERK (pERK) is
increased in the sensory nervous system in neuropathic pain conditions, resulting in the
manifestation of allodynia and hyperalgesia symptoms [5–9]. It has been also reported
that inhibiting the ERK is effective in relieving pain in animal models of this neuropathic
pain, suggesting the ERK could be an important therapeutic target for the treatment of
neuropathic pain [10].

The flower buds of Magnolia denudata Desrousseaux (Magnoliae Flos, Magnoliaceae)
have traditionally been used as a herbal medicine to treat various immunological conditions
and pain symptoms [11]. Magnolin, the major tetrahydrofurofuranoid lignan from M.
denudata, has been isolated from “Shin-i”, a collective term used in Korea to refer to the
flower buds of M. denudata, M. biondii, M. kobus, and M. sprengeri [12]. Magnolin could
relieve pain symptoms in the various pain models, including chronic constriction injury
(CCI), complete Freund’s adjuvant (CFA), oxaliplatin, and chronic inflammatory visceral
pain (CIVP) [8,13–15] by inhibition of ERK activation. However, whether magnolin could
attenuate the neuropathic pain and the changes in ERK activation induced by paclitaxel
administration have not been studied.

Previous animal studies have confirmed that PTX administration induces neuropathic
pain-like symptoms including cold allodynia in mice [16], and an increase in total expression
and phosphorylation of ERK in the dorsal root ganglion (DRG) is critically involved in this
neuropathic pain condition [17]. In this study, we investigated the analgesic efficacy of
magnolin on the cold allodynia symptom induced by PTX in mice. Further, we analyzed
the PTX-induced increase in ERK phosphorylation in the DRG and its inhibition by the
magnolin treatment.

2. Results
2.1. Isolation of Magnolin

We initially screened an 95% EtOH extract from the seeds of M. denudata using LC-
PDA-MS and identified three tetrahydrofurofuranoid lignans, magnolin (Rt 16.0 min),
kobusin (Rt 15.5 min), and aschantin (Rt 16.4 min) as major constituents (Figures 1 and 2).
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Figure 1. UHPLC-PDA chromatogram of the 70% EtOH extract from M. denudata (A) and magnolin 
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Figure 1. UHPLC-PDA chromatogram of the 70% EtOH extract from M. denudata (A) and magnolin
((B); Rt 16.0 min). Kobusin and aschantin were detected at Rt 15.5 and 16.4, respectively. Data
collected by Thermo Vanquish UHPLC system equipped with Thermo Hypersil GOLD column
(1.9 µm, 150 mm× 2.1 mm I.D.). The mobile phase was subjected to a series of linear gradients with a
flow rate of 0.3 mL/min: 0–3 min, 10% B; 3–35 min, 100% B; 35–42 min, 100% B; 42–43 min 10% B.
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Thus, repetitive chromatography was employed to isolate the most abundant magnolin
on a gram scale from the seeds of M. denudata in order to investigate the analgesic efficacy
of it on the cold allodynia symptom induced by PTX in mice. The chemical structure
of (+)-magnolin (Figure 2) was identified using specific rotation, 1H-NMR, 13C-NMR,
and LC-MS measurements and compared to published values (Figures S1–S3) [18]. The
purity of (+)-magnolin obtained in this study was determined to be >98% by NMR and
LC-PDA-MS experiments.

2.2. Cold Allodynia in Mice after Injection of PTX

Animals were randomly assigned to the PTX or the control group. PTX (2 mg/kg)
was intraperitoneally administered to PTX group mice every other day (days 0, 2, 4, and 6)
to induce symptoms of CIPN (Figure 3A). Control group mice were injected with vehicle
solution with the same schedule. An averaged frequency of the behavioral responses of
licking or shaking the hind paw in response to the administration of acetone drop was
measured to assess cold allodynia, a representative symptom of the PTX-induced CIPN.
The acetone drop tests were repeated before (day 0) and after the PTX injection (days 1,
7, 14, and 24). As reported in previous studies [19–21], the behavioral response against
the administration of acetone drop to the plantar surface was increased in mice treated
with PTX. The PTX-treated mice showed a significantly higher frequency of licking and
shanking behavior compared to vehicle-treated mice from day 7 to day 24 (Figure 3B).
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Figure 3. Induction of cold allodynia symptom following repetitive injection of PTX. (A) Experimental
schedule. (B) Increased behavioral response to plantar application of acetone drop in mice treated
with PTX. (Vehicle group, n = 5; PTX group, n = 6; **** p < 0.0001, day 7 and 14; ** p < 0.01, day 24;
Two-way repeated measures ANOVA followed by Sidak’s multiple comparisons test, compared to
the control group).

2.3. Analgesic Effect of Magnolin on PTX-Induced Cold Allodynia

To assess the analgesic effect of magnolin on cold allodynia, PTX group mice were
randomly divided into experimental or control groups and intraperitoneally injected with
three different doses of magnolin (0.1, 1, or 10 mg/kg) or vehicle solution. Based on the
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prior behavioral evaluation, the tests were performed on a day between 7 to 14 when the
cold allodynia was the most severe. Behavioral tests were performed before and after the
magnolin treatment (1 and 2 h). The lowest dose of 0.1 mg/kg did not affect cold allodynia
(Figure 4A). Significant analgesic effects appeared in the groups treated with doses of
1 mg/kg (Figure 4B) or 10 mg/kg (Figure 4C). The analgesic effect of magnolin treatment
on PTX-induced cold allodynia was maintained for at least 2 h (Figure 4B,C).
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Figure 4. Attenuation of PTX-induced cold allodynia by magnolin treatment. (A) No significant
behavioral change in PTX group mice treated with 0.1 mg/kg magnolin (Vehicle group, n = 8;
Magnolin group, n = 9). (B) Significant attenuation of PTX-induced cold allodynia in mice treated
with 1 mg/kg magnolin (Vehicle group, n = 9; Magnolin group, n = 10). (C) Significant attenuation of
PTX-induced cold allodynia in mice treated with 10 mg/kg magnolin (Vehicle group, n = 13; Magnolin
group, n = 14). Behavior levels at baseline (before PTX, e.g., day 0) were displayed with each test
result. Statistical comparisons were performed at each time point (**** p < 0.0001; Two-way repeated
measures ANOVA followed by Sidak’s multiple comparisons test, compared to the vehicle-treated
control group).

2.4. Effect of Magnolin Treatment on ERK Phosphorylation in the DRG of PTX-Treated Mice

Phosphorylation of ERK in the sensory nervous system is critically involved in the
manifestation of various neuropathic symptoms, including cold allodynia. Previous studies
have shown that magnolin directly targets ERKs and inhibits their signaling. To confirm
whether the magnolin treatment could attenuate pERK level in the mouse DRG, samples
were acquired from the PTX group on day 14 when the distinct cold allodynia symptom
appeared in PTX-treated mice. The DRG samples were collected from separate groups based
on the time elapsed after the magnolin treatment (1 and 2 h). Magnolin treatment attenuated
the ERK activity in the DRG, shown by the significantly lower levels of pERK/ERK ratio in
the groups treated with magnolin compared to the untreated PTX group (Figure 5A,B).
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(* p < 0.05; Kruskal–Wallis test followed by Dunn’s multiple comparisons test, compared to the control
group). (B) Protein expression demonstrated by western blot data.



Plants 2023, 12, 2283 5 of 12

3. Discussion

Among the various side effects of anticancer drugs, symptoms of CIPN are known
to be a major reason for patients to abandon chemotherapy. CIPN patients often suffer
from chronic sensory disturbances, including pain symptoms. Since these symptoms do
not respond well to conventional analgesic drugs, there is an unmet need in the clinics
for the management of the symptoms. In attempts to develop novel therapeutics, one
strategy is to investigate the analgesic properties of plant-derived substances. Many
medicinal plants that have been used in traditional medicine include active ingredients
that could exert analgesic effects. For example, narcotic analgesics are derived from opium
and have been used for thousands of years as a potent pain treatment. The strategy of
isolating analgesic candidates from plants with known empirical efficacy can help in the
development of successful analgesics for CIPN [22]. However, a single medicinal substance
typically contains numerous active ingredients, and which of these are selected and tested
as candidates is the key to successful candidate identification.

In this study, we focused on the change of the ERK1/2 activation in PTX-induced
neuropathic pain state. In the nervous system, changes in ERK1/2 phosphorylation are
critically involved in the development and maintenance of chronic neuropathic pain. Upon
nerve injury, ERK1/2 is activated in neurons and glia in the spinal cord and DRG [23] as
well as in brain regions [24]. Activated ERK1/2 in turn affects long-term potentiation of
neuronal activity in the nervous system, contributing to central sensitization [23–26]. PTX
is known to increase the activity of ERK1/2 in the DRG [27], similar to neuropathic pain
with other causes [17].

Recent investigations have revealed the bioactive compounds from plant sources as
selective ERK1/2 activation inhibitors [28]. This has led to the discovery of some naturally
occurring phenolic compounds with ERKs-inhibitory properties. Notably, catechol, usually
found in fruits and vegetables, inhibits the ERK2/c-Myc signaling axis, resulting in a
decrease in lung cancer tumors [29]. Similarly, vitisin A, a resveratrol tetramer from
Vitis vinifera roots, inhibits LPS-induced ERK1/2 in RAW 264.7 cells [30]. Rocaglamides,
derived from the genus Aglaia, inhibit proliferation by downregulating ERK activity [31].
In addition, naturally occurring lignans have been shown to inhibit the activation of
the ERK1/2 pathway. For instance, 7-Hydroxymatairesinol and 7-hydroxymatairesinol
2 from Picea abies have anti-inflammatory effects by reducing ERK phosphorylation [32].
Schisandrin C, a lignan found in Schisandra chinensis, also exhibits anti-inflammatory
activity by blocking phosphorylated ERK1/2 [33].

Magnolia species, including M. fargesii, M. denudata, M. biondii, and M. sprengeri have
been identified as a rich source of lignans. In particular, M. denudata, a medicinal plant used
in traditional medicine to treat pain diseases, inflammation, and allergic symptoms [34,35],
contains several major lignans, including magnolin, aschantin, kobusin, fargesin, and
3,4,3′4′-tetramethoxy-9,7′-dihydroxy-8,8′,7.O.9′-lignans [18]. Among several candidates,
we selected magnolin, a substance that has been studied in animal models of various pain
diseases [8,13–15]. With its inhibitory action on ERK activation [36], magnolin could mod-
ulate the production of various pain-related signaling molecules, such as tumor necrosis
factor-α [37] and nitric oxide [38]. In addition, the anticancer effects of magnolin have been
tested as well in animal models of lung, colorectal, breast cancer, and melanoma [39–43].
Considering that the ideal treatment for CIPN should not aggravate underlying cancer, this
mechanism of action is advantageous for the development of new therapeutics. Given that
the ERK activation is a common mechanism in both cancer tumorigenesis and CIPN [44,45],
it will be interesting to investigate whether magnolin not only inhibits CIPN but also
synergizes with the anticancer effects of individual chemotherapeutic agents.

As reported in previous studies, various types of sensory neuropathy symptoms have
different mechanisms so the efficacy of specific therapeutics on each symptom can vary
depending on the mechanistic action of the substance used [46–49]. In this study, cold
allodynia was used as a read-out of the successful induction of painful peripheral neu-
ropathy and the analgesic efficacy of the magnolin treatment. Patients of CIPN experience
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an innocuous cooling sensation as severe pain, and this symptom can be observed with
various animal models of CIPN. A shift in the activity of sensory neurons contributes
to this cold allodynia, including changes in DRG neurons responsible for ascending sen-
sory transmission [50–53]. A previous study has reported that ERK phosphorylation was
increased in an animal model of CIPN, and inhibition of ERK ameliorated neuropathic
pain [53]. Although the study was performed using different rodent species (rat) and the
chemotherapeutic agent (oxaliplatin), the results are consistent with our study. We found
that magnolin treatment could inhibit the ERK phosphorylation in the DRG of mice treated
with PTX, which attenuated the CIPN symptom, e.g., cold allodynia.

The ERK activation involves various upstream and downstream signaling pathways
and plays a pivotal role in the change of cellular functions [54]. Although this study did
not explore the detailed downstream of ERK change in the CIPN, previous studies have
reported the involvement of signaling pathways of ERK activation in the development and
maintenance of pain symptoms [45,55]. It is unclear whether the action of magnolin to
inhibit ERK1/2 also affects the cold tolerance of M. denudata. M. denudata can survive in low
or freezing temperature conditions and is known to reduce the adverse effects of cold stress
through multiple adaptive mechanisms [56]. A recent study investigated the physiological
mechanisms involved in the long-term cold acclimation of M. denudata and revealed the
involvement of various transcription factors [57]. The study broadly discussed changes
in the expression of genes involved in plant hormones, carbohydrate metabolism, cold-
related transcription factors, and antioxidation mechanisms. Given that phosphorylation of
ERK1/2 is involved in a variety of intracellular signaling, it is likely that magnolin, which is
of interest to us, may also be involved in the cold resistance of M. denudata through ERK1/2
and its downstream targets. Although we only investigated ERK1/2 inhibition in the DRG
of experimental animals, magnolin could be closely involved in many of the other cold
tolerance mechanisms mentioned above. Linking the mechanisms of the relief from cold
allodynia in animals with mechanisms of cold tolerance in plants may provide new clues
in future studies.

4. Materials and Methods
4.1. Plant Material

The seeds of M. denudata Desr. (Magnoliaceae) were collected at Irwon-dong, Gangnam-
gu, Seoul, Republic of Korea, in March 2019. The origin of the plant was authenticated
by Prof. Dae Sik Jang, one of the authors. A voucher of the specimen (MADE-2019) has
been deposited in the Natural Product Medicine Laboratory, College of Pharmacy, Kyung
Hee University.

4.2. UHPLC-PDA-MS Analysis

To identify the main components of M. denudata, a UHPLC-PDA-MS analysis was
performed. The Thermo Vanquish UHPLC system was used along with the LTQ-XL-MSn

and Thermo Hypersil GOLD column (1.9 µm, 150 mm × 2.1 mm I.D.). The mobile phase
was subjected to a series of linear gradients with a flow rate of 0.3 mL/min: 10% B from
0 to 3 min, 100% B from 3 to 35 min, 100% B from 35 to 42 min, and 10% B from 42 to
43 min. The extract was dissolved in MeOH and filtered using a PTFE filter (0.2 µm) at a
concentration of 25 mg/mL. Additionally, standard solutions of the isolated compounds
were also analyzed to verify the retention time. Each standard solution was dissolved in
methanol containing 10% DMSO at a concentration of 0.5 mg/mL and filtered.

4.3. Isolation of Major Lignans from M. denudata

The seeds of M. denudata (1.14 kg) were refluxed twice in 95% ethanol (18 L) for 2 h. The
solution was subsequently filtered through a Whatman No. 2 paper filter and concentrated
by rotary evaporation at 45 ◦C under decreased pressure. The extract (210 g) was partitioned
with H2O and ethyl acetate (EA) to produce H2O- and EA-soluble fractions. The EA-soluble
fraction (36.68 g) was submitted to Diaion-HP20 column chromatography (CC) with a gra-
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dient solvent system (acetone/H2O = 4/6 ~ 10/0), yielding 22 fractions (F1–F22). Fraction
F8 (11.15 g) was then chromatographed over Sephadex LH-20 with methylene chloride
(MC) and separated into seven fractions (F8-1–F8-7). Finally, fraction F8-2 was separated by
silica gel CC using a stepwise gradient mixture (MC/MeOH = 10/0 ~ 0/10), leading to the
purification of (+)-magnolin (6.8 g; 0.6%) and kobusin (64.4 mg). Fraction F8-3 was chro-
matographed over silica gel using a gradient solvent system (MC/MeOH = 10/0 ~ 0/10)
to obtain aschantin (77.4 mg).

4.3.1. (+)-Magnolin (1)

White powder: [α]20
D + 63.7 (c 0.01, CHCl3); 1H-NMR (500 MHz, CDCl3) δH 6.89 (1H,

d, J = 2.0 Hz, H-2′), 6.86 (1H, dd, J = 8.0, 2.0 Hz, H-6′), 6.83 (1H, d, J = 8.0 Hz, H-5′),
6.56 (2H, s, H-2′′ and 6′′), 4.75–4.71 (2H, m, H-2 and 6), 4.31–4.23 (2H, m, H-4eq and 8eq),
3.93–3.83 (2H, m, H-4ax and 8ax), 3.88 (3H, s, -OCH3), 3.86 (9H, s, -OCH3), 3.82 (3H, s,
-OCH3), 3.11–3.06 (2H, m, H-1 and 5); 13C NMR (125 MHz, CDCl3) δC 153.6 (C-3′′ and 5′′),
149.4 (C-1′′), 148.8 (C-3′), 137.6 (C-4′′), 136.9 (C-1′′), 133.6 (C-1′), 118.4 (C-6′), 111.2 (C-5′),
109.3 (C-2′), 102.9 (C-2′′ and 6′′), 86.1 (C-2), 85.9 (C-6), 72.2 (C-4), 71.9 (C-8), 61.0, 56.4, 56.1,
54.5 (-OCH3), 54.3; ESI-LTQ-MS (positive mode) m/z 417 [M+H]+ (calcd for C23H29O7,
417.4).

4.3.2. Kobusin (2)

White powder: 1H-NMR (500 MHz, CDCl3) δH 6.89 (1H, d, J = 2.0 Hz, H-2′), 6.86 (1H,
dd, J = 8.0, 2.0 Hz, H-6′′), 6.84 (1H, d, J = 2.0 Hz, H-2′′), 6.83 (1H, d, J = 8.0 Hz, H-5′′), 6.80
(1H, dd, J = 8.0, 2.0 Hz, H-6′), 6.77 (1H, d, J = 8.0 Hz, H-5′), 6.55 (2H, s, H-2′′ and 6′′), 5.94
(2H, s, -OCH2O-), 4.72 (2H, t, J = 4.5 Hz, H-2 and 6), 4.23 (2H, ddd, J = 12.0, 6.5, 6.5 Hz,
H-4eq and 8eq), 3.88–3.85 (2H, m, H-4ax and 8ax), 3.88 (3H, s, -OCH3), 3.86 (3H, s, -OCH3),
3.10–3.00 (2H, m, H-1 and 5).

4.3.3. Aschantin (3)

White powder: 1H-NMR (500 MHz, CDCl3) δH 6.84 (1H, d, J = 2.0 Hz, H-2′), 6.79 (1H,
dd, J = 8.0, 2.0 Hz, H-6′), 6.77 (1H, d, J = 8.0 Hz, H-5′), 6.55 (2H, s, H-2′′ and 6′′), 5.94 (2H, s,
-OCH2O-), 4.72 (2H, t, J = 4.5 Hz, H-2 and 6), 4.25 (2H, ddd, J = 12.0, 9.0, 6.5 Hz, H-4eq and
8eq), 3.90–3.85 (2H, m, H-4ax and 8ax), 3.85 (6H, s, -OCH3), 3.82 (3H, s, -OCH3), 3.10–3.00
(2H, m, H-1 and 5).

4.4. Experimental Animals

Adult C57/BL6J mice (male, 18–21 g, 6 weeks old; Deahan Biolink, Chungbuk, Korea)
were provided with water and food ad libitum. All the animals were randomly separated
and housed four to five per cage. The animal facility was maintained with a temperature of
23 ± 2 ◦C and humidity of 60–70% on a 12-h light-dark cycle (a light cycle; 08:00–20:00).
The animals were adapted to the environment for a week before conducting the experi-
ments. All procedures of this study were approved by the Institutional Animal Care and
UseCommittee of Kyung Hee University (KHUASP(SE)-20-679).

4.5. Paclitaxel Administration

Paclitaxel (Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 100% ethanol (Merck,
Marmstadt, Germany) and chromoper EL solution (Sigma-Aldrich, St. Louis, MO, USA)
at a concentration of 6 mg/mL to make stock. The stock solution was then diluted with
phosphate-buffered saline (PBS) to a final concentration of 0.2 mg/mL when used. Pa-
clitaxel was intraperitoneally administered to the mice every other day (days 0, 2, 4, and
6) with a total dose of 8 mg/kg (2 mg/kg/day). Control group mice were injected with
vehicle (100% ethanol and chromoper EL) diluted with PBS [19,20,58].
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4.6. Behavioral Assessment

To confirm the establishment of neuropathic pain, cold allodynia tests were performed
before and after the paclitaxel administration. Mice were placed in an inverted transparent
plastic cage (12 cm × 8 cm × 6 cm) on a metal mesh grid and acclimatized for 30 min.
Before the test, the mice were acclimatized for 7 days so that they could get used to the
behavioral experiment space and plastic cage. The experimenter proceeded to blindly
conduct the drug administration [59,60]

In the cold allodynia test, 10 uL of acetone was applied on the center of the plantar
surface of the hind paw, and then behavioral responses of licking or shaking the hind paw
were observed for 30 s. Tests were repeated 3 times in each hind paw. The total counted
licking and shaking behaviors in each hind paw were added up and divided by 6. The
control group also experienced the same tests [21,59].

4.7. Experimental Schedule

The animals were acclimatized to the experimental space, plastic cage, and stimulation
environments for 7 days. After this adaptation period, the baseline test was performed and
the day was set as day 0. PTX was injected on day 0, 2, 4, and 6 [19]. Behavior tests were
performed on day 0, 1, 4, 7, 14, and 24. The efficacy of magnolin was measured on a day
between day 7 and day 14, a period when PTX-induced pain symptom was severe. On this
day, animal behavior was measured before and 1, 2, and 4 h after the magnolin treatment.

4.8. Western Blot

To compare the PTX-induced change, DRG samples of the PTX group and the vehicle
group were collected on day 14 (14 days after the first injection of PTX or vehicle). To
assess the change of protein expression following the magnolin treatment, DRG samples
were collected 1 and 2 h after administration of magnolin in separate PTX group animals.
After adding tissue lysis buffer (iNtRON Biotechnology, Seongnam-si, Gyeonggi-do, Korea)
and beads to the collected sample, the tissue was homogenized and placed on ice for
1 h to lyse. The obtained protein was quantified by the Bradford assay method. An
equal amount of protein was mixed with 10% β-mercaptoethanol and heated in a heat
block at 100 ◦C for 10 min. Proteins (20 µg) were separated by 12% SDS-PAGE and
transferred to a 0.2 um polyvinylidene fluoride (PVDF) membrane using an electrophoretic
transfer system through transfer (Bio-Rad Laboratories, Hercules, CA, USA). After blocking
the membrane with 5% BSA in PBS containing 0.1% Tween-20 (PBST) for 1 h at room
temperature, samples were mixed with the primary antibody with 3% BSA in PBST (rabbit
Anti-pERK (1:2000, Danvers, MA, Cell Signaling). The membrane was incubated overnight
at 4 ◦C. After washing using PBST, the sample was incubated with rabbit IgG antibody
(1:2000; Vector Laboratories, Burlingame, CA, USA) for 1 h. For normalization of antibody
signals, the PVDF membranes were stripped and reprobed with rabbit Anti-pERK (1:2000,
Cell Signaling). Western blot assay was performed at least three times.

4.9. Data Analysis

Data were tested with the Shapiro-Wilk test and F test to confirm the normal dis-
tribution and the homogeneity of variances. Two-way repeated measures ANOVA fol-
lowed by Sidak’s multiple comparisons test was used to compare the behavioral data in
Figures 3 and 4. In the comparison of protein expression, non-parametric method was
adopted as the data of 1 h in Figure 5 could not pass the normality test (p = 0.0478). Kruskal-
Wallis test followed by Dunn’s multiple comparisons test was used to compared the protein
expression in Figure 5. Statistical analysis was performed using Prism v 7.0 (GraphPad
Software, La Jolla, CA, USA). All data were presented as mean ± SEM. In all the cases, tests
were considered significant at p < 0.05.
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5. Conclusions

Three tetrahydrofurofuranoid lignans, magnolin, kobusin, and aschantin were isolated
from the seeds of M. denudata as major constituents. Among the lignans, magnolin was
selected and its efficacy for CIPN was investigated. Mice treated with PTX exhibited cold
allodynia, a representing symptom of CIPN. Magnolin treatment successfully alleviated
the PTX-induced cold allodynia, shown by a significant behavioral change in PTX mice
treated with an intraperitoneal injection of 1 or 10 mg/kg magnolin. Following molecular
analysis showed that the magnolin treatment could inhibit the phosphorylation of ERK1/2
in the DRG of PTX group mice. In conclusion, these data demonstrated the analgesic
effect of magnolin on the PTX-induced cold allodynia symptom and the inhibitory effect of
magnolin on the ERK1/2 phosphorylation in the DRG of PTX-treated mice. We propose
magnolin as a substance that could be a novel candidate for the development of therapeutics
for CIPN.

6. Patents

N.K., G.C., S.-R.S., D.S.J. and S.K.K. hold a patent related to the contents of this article
(application #:10-2021-0150313 in Korea).
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